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ABSTRACT

Differences in the way human cerebral cortices fold have been correlated to health, disease, develop-
ment, and aging. But to obtain a deeper understating of the mechanisms that generate such differences
it is useful to derive one’s morphometric variables from first principles. This work explores one
such set of variables that arise naturally from a model for universal self-similar cortical folding
that was validated on comparative neuroanatomical data. We aim to establish a baseline for these
variables across the human lifespan using a heterogeneous compilation of cross-sectional datasets,
as the first step to extend the model to incorporate the time evolution of brain morphology. We
extracted the morphological features from structural MRI of 3650 subjects: 3095 healthy controls
(CTL) and 555 Alzheimer’s Disease (AD) patients from 9 datasets, which were harmonized with a
straightforward procedure to reduce the uncertainty due to heterogeneous acquisition and processing.
The unprecedented possibility of analyzing such a large number of subjects in this framework allowed
us to compare CTL and AD subjects’ lifespan trajectories, testing if AD is a form of accelerated aging
at the brain structural level. After validating this baseline from development to aging, we estimate
the variables’ uncertainties and show that Alzheimer’s Disease is similar to premature aging when
measuring global and local degeneration. This new methodology may allow future studies to explore
the structural transition between healthy and pathological aging and may be essential to generate data
for the cortical folding process simulations.
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Significance Statement

Understating Cortical folding is of increasing interest in neurosciences as it has been used to discriminate disease in
humans while integrating pieces of knowledge from compared neuroanatomy and neuroproliferations programs. Here
we propose estimating the baseline of cortical folding variables from multi-site MRI human images, evaluating the
changing rate of its independent variables through the human lifespan, and proposing a simple harmonization procedure5

to combine multicentric datasets. Finally, we present a practical application of these techniques comparing Alzheimer’s
Disease and Cognitive Unimpaired Controls based on the estimated changing rates.

Highlights

• Baseline of independent cortical folding variables from 3650 multi-site human MRI

• Propose a simple harmonization procedure to combine multicentric datasets10

• Evaluate the changing rate of independent variables through the human lifespan

• Practical application comparing Alzheimer’s Disease and Controls rates
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Introduction

Mapping the human brain development and aging longitudinally from a unique dataset is barely impossible due
to our extensive lifespan. Suppose one wants to understand the time evolution of the brain morphology through15

the whole lifespan. In this case, it is mandatory to combine multiple datasets and devise methods that allow a fair
comparison among them. The recent advent of large heterogeneous datasets (to ensure the legit results across several
populations) and data curation innovations allowed neuroscience to explore the brain’s changes on an enormous scale,
from functional data to structural studies. Here, we propose a novel methodology of combining structural MRI from
different acquisition sites and equipment, acknowledging their heterogeneity and providing insights about cortical20

folding during development and aging, with a practical application of these results in Alzheimer’s Disease, the most
common dementia worldwide. This effort is essential to provide experimental information about the evolution span of
the cortex morphology and build a cortical folding theory.

In the past years, the study of cortical folding in humans and other mammals was extensively promoted by the application
of translational science, open-access databases, and data science tools which allowed the field to grow in multiple and25

sometimes convergent directions [1–4]. Due to its biological background, cortical folding measurements have been
included in human brain structure analysis, discriminating disease from healthy controls [5,6], describing its correlation
with cognition [7], and relation to aging [8, 9]. Despite the lack of consensus defining a unique theory that explains
cortical folding in every scale, Mota & Herculano-Houzel [10] proposed a cortical folding model respected by more
than 50 mammals brain hemispheres. It predicts a power-law relationship between cortical thickness (T), exposed (AE),30

and total area (AT ) (Equation 1).

T
1
2AT = kAα

E (1)

Where α is the fractal index and universal constant, with a theoretical value of 1.25 and calculated as 1.305 [10] when
considering a heterogeneous dataset of different species, thus, the usual geometrical variables used to describe the
cortex are not independent in this model.

Wang et al. continued this work, validating the theory for different groups of humans [11] in specific regions of35

interest [12], obtaining new evidence that the cortex is indeed a fractal structure. In 2021, Wang et al. showed that from
this model one could derive a more natural set of nearly independent morphological variables, K, S, and I, that could be
used to improve disease discrimination from regular and typical structural changes of the brain, like aging [13].

In this framework, the morphology of each cortex is expressed as a point in a three-dimensional abstract space, with
each coordinate component corresponding to the log-value of an independent morphometric variable. The use of40

log-values guarantees that linear combinations of the basis vectors correspond to power-law relations. Conversely, as
long as any new variables are expressible as power laws, different but equivalent sets of variables can thus be related to
each other by a change of Cartesian coordinate bases.

As a starting point, we use the log-values of the commonly morphometric variables, the total area log10 AT, exposed
area log10 AE and average thickness log10 T2. We then derive our new variables thusly: K = log10k (Equation 2) is45

a near-invariant quantity obtained by isolating k in Equation 1, and is associated with conserved viscoelastic [REF]
properties of cortical matter. S (Equation 3), also dimensionless, encapsulates the aspect of brain shape that changes
more significantly across cortices, and I (Equation 4), representing brain isometric volume and carries the information
about overall cortical size.1. Those three variables combined may help distinguish pathological events similar to age
effects, as AD.50

K = log10 k = log10 AT − 5

4
log10 AE +

1

4
log10 T

2 (2)

S =
3

2
log10 AT − 3

4
log10 AE − 9

4
log10 T

2 (3)

I = log10 AT + log10 AE + log10 T
2 (4)

1One may understand this as similar to "Principal Component Analysis", a change of basis on the data representation, but
using scaling considerations rather than covariance eigenvectors to define the principal directions. The new set of variables are
combinations of the usual geometrical variables used to describe the cortex. The principal component K is given by the power-law
relation, which contains the correlation between the variables. The variables S and I are orthonormal to K.
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Baseline values of those cortical morphological variables and their inherent uncertainties over the human lifespan were
never defined due to methodological limitations of combining multicenter studies of brain structural images [14, 15].
However, both are crucial for applied studies. Uncertainties determine measuring limitations and allow a proper
comparison between different cohorts. Baseline values allow clinical applications and, when necessary, simulations of
healthy control data. Multi-center studies have become more common in the last few decades due to improved data55

sharing and the open science trend. However, combining MRI data from multiple experiments is not a trivial task.
Part of these uncertainties is explained by type A errors, i.e., random, which appear as a consequence of the natural
fluctuation within the species and from the data acquisition itself. Theoretically, these random errors are the same if one
considers multiple experiments.

Confounding components could be added when gathering MRI images with differences in acquisition parameters,60

acquisition equipment, and versions of the post-processing software [15,16]. Together, these effects can add type B
errors to the data, ultimately reflecting a systematic difference in morphological variables calculated from different
databases and increasing the data spread. In practice, the natural fluctuations are convoluted with the type B errors,
enhancing the data spread.

Recently, a vast literature in primary morphological variables from MR images, [17–19], and more complex ones [14],65

explored the limitations of compiling images acquired with different scanners and protocols and its implication in
statistical analysis results. The suggested solution for these limitations is a procedure called data harmonization, in
which there is an "explicit removal of site-related effects in multi-site data" [18].

It is essential to add that one cannot, in general, untangle the contributions of natural fluctuation and data acquisition to
random errors. Also, it is not possible to distinguish between type B errors of the acquisition and processing. For this,70

one would need a diligent procedure to track all differences between acquisition and processing as well as multiple
images of the same individual for each sample. This manuscript deals only with the first case, estimating the type A
errors due to acquisition and processing using three subsequent structural images of the subjects2. The uncertainties
associated with the variables (K, S, and I) are summarized in Equation 5.

σ2
X = σ2

Natural + σ2
Random + σ2

TypeB−Sample (5)

In this manuscript, we developed a simplistic harmonization method that allows a multi-site analysis, determining K, S,75

and I baseline values, their uncertainties, and the ratio of changing rates through years for cross-sectional images of
healthy controls. Although this work focused is these novel morphological variables, we also provided the baseline
of usual morphological variables such as thickness T and Gyrification Index GI. A robust estimation framework of a
baseline time function is important to provide future clinical studies enough information to compare brain structure
trajectories in case of a pathological investigation. We then, as a clinical application and extension of de Moraes et80

al. [20], and Wang et al. [12], verify if Alzheimer’s Disease (AD) is similar to a premature accelerated aging brain in
terms of the independent morphological variables, K, S, and I, by comparing their rates. Finally, we have determined
the time evolution of the fractal dimension α proposed in Mota & Herculano-Houzel’s model [10], interpreting all
results within the framework of this theory.

Materials and Methods85

Participants and data included in this analysis were either acquired by the D’Or Institute for Research and Education
(IDOR), Rio de Janeiro, RJ, Brazil, used by [20] (approved by the Hospital Copa D’Or Research Ethics Committee
under protocol number CAAE 47163715.0.0000.5249), published by Wang et al. [11,12] or from open-access databases,
as AHEAD [21] and AOMIC (PIOP01 and PIOP02) [22]. The total number of subjects is 3095 healthy controls from
4 to 96 years old and 555 Alzheimer’s Disease subjects from 56 to 92 years old. To investigate the type B errors90

during image acquisition and variances in repeated measures performed in the same conditions, we included the first 50
subjects from the AOMIC ID1000 [22], described in Supplementary Material. AHEAD and HCPr900 only include
age range instead of the actual age due to local Ethics Committee rules. To overcome the lack of a exact number, we
assumed the interval’s mean age as a reference. Datasets’ demographics are summarized in Table 1.

The structural images from IDOR, AHEAD, AOMIC ID1000, PIOP1, and PIOP2 were processed in FreeSurfer95

v6.0.0 [27] with the longitudinal pipeline [28] without manual intervention at the surfaces [29]. The FreeSurfer localGI
pipeline generates the external surface and calculates each vertex’s local Gyrification Index (localGI) [30]. Values
of Average Thickness, Total Area, Exposed Area, and Local Gyrification Index were extracted with Cortical Folding
Analysis Tool [31]. We defined as ROI the whole hemisphere, frontal, temporal, occipital, and lateral lobes (based on

2Structural T1w images from AOMIC ID1000 dataset, described in Material and Methods.
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Table 1: Summary for each dataset. Mean value ± standard deviation. Diagnostic: CTL – Healthy control; AD –
Alzheimer’s Disease. Details in Supplementary Material , Table 4.

Datasets Diagnostic N (F) Age (Age range) [years]

ADNI [23] CTL 868 (445) 75 ± 6.5 (56; 96)
AD 542 (241) 75 ± 8 (56; 92)

AHEAD¹ [21] CTL 100 (56) 42 ± 19 (24; 76)
AOMIC PIOP01 [22] CTL 208 (120) 22 ± 1.8 (18; 26)
AOMIC PIOP02 [22] CTL 224 (128) 22 ± 1.8 (18; 26)
HCP900r [24] CTL 881 (494) 29 ± 3.6 (22; +36)

IDOR CTL 77 (53) 66 ± 8.4 (43; 80)
AD 13 (8) 77 ± 6.1 (63; 86)

IXI-Guy’s CTL 314 (175) 51 ± 16 (20; 86)
IXI-HH CTL 181 (94) 47 ± 17 (20; 82)
IXI-IOP CTL 68 (44) 42 ± 17 (20; 86)
NKI [25] CTL 168 (68) 34 ± 19 (4; 85)
OASIS6 [26] CTL 312 (196) 45 ± 24 (18; 94)

TOTAL CTL 3095 (1762) 46 ± 23 (4; 96)
AD 555 (249) 75 ± 8 (56; 92)

FreeSurfer definition of lobes). The lobes’ area measurements were corrected by their integrated Gaussian Curvature,100

removing the partition size effect and directly comparing lobes and hemisphere cortical folding.

Datasets’ demographics, acquisition, and processing information are summarized in Supplementary Material, Table 4.

Statistical data analysis

The data harmonization procedure is based on the time evolution of the basic morphological variables T , AT or AE ,
modeled as an exponential decay. Using Linear Mixed Models (LMM), we subtracted the sample shift, estimated as the105

Standard Deviation of Sample Random Effects (log10(V ariable) ∼ Age×ROI + (1|Sample : ROI)) in Healthy
Controls. From this procedure we directly calculate the variables K, S and I and determine for all morphological
variables of interest (also T , AT , AE ,GI = At/Ae) their baseline and uncertainties. This harmonization procedure
was validated as the most probable description of the data using the Bayesian comparison framework described in the
appendix B. More than that, the Bayesian approach cross-validated all results presented here.110

Multiple comparisons of means were made with ANOVA, correlations between cortical folding independent variables,
and age estimated with Pearson r and post hoc evaluations with Tukey multiple comparisons of means. The statistical
significance threshold was set at α = 0.05, and multiple corrections (Bonferroni) were applied when needed. Healthy
Control subjects are used as a reference in the necessary normalization and harmonization procedures. A standard linear
regression was used to obtain the fractal index α.115

All analyses were done considering the whole cortical hemisphere and the lobes (see appendix C) as most diseases
imply local or nonuniform global structural damage. LMM, standard linear regression and statistics derived from their
results were analyzed with RStudio (v1.4.1717 and R v4.1.1). The Bayesian model comparison was developed in
Python3 with the package PyMC3.

Data and code availability120

Data from previous publications are available from their repositories: Wang et al., 2016 [11] and Wang et al., 2019 [12].
Data from AHEAD [21] and AOMIC [22] datasets with the cortical folding variables extracted by these authors are
available [32]. Data acquired at IDOR does not have clearance for public sharing patients’ information that could lead
to identification due to local Ethics Committee approval restrictions but will be shared upon request.

Informed consent was obtained from all subjects for the published datasets as part of the original data acquisition.125
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Results

Multisite harmonization

The analysis starts with data harmonization, a crucial step to combine information from multiple sites allowing a fair
comparison among datasets. Figure 1 shows the result of the harmonization procedure and its reflection on the primary
morphological variables. The LMMs are used to fit the data assuming a single angular coefficient for all samples130

and different linear coefficients due to type B errors. We considered the variables trend with age linear based on the
correlation between T , AT , and AE with Age for the Healthy Control group calculated from our data. There was a
significant correlation for T (Pearson r = -0.49; p < 0.0001), AT (Pearson r = -0.11; p < 0.0001), and AE (Pearson
r = -0.05; p < 0.0001). As shown in appendix B, the harmonization was validated as the most probable description of
this data.135

Figure 1: Basic morphological variables through age for Healthy Controls (A) raw data, (B) after harmonizing, removing
the estimated residual from the Linear Mixed Model. This procedure results in the harmonized values of the novel
morphological variables K, S and I.

Baseline, rate estimates, and Alzheimer’s Disease diagnostic discrimination

An immediate consequence of the harmonization is defining a baseline value and its uncertainty for any morphological
variable considered in this work. The LMM provide quantitative information about the trends of these variables through
age. The estimated uncertainties values are summarized in Table 2 and summaries of linear mixed models are available
in Supplementary Material A, Table 5. The so-called Natural Fluctuation represents human diversity and was considered140

the Residual Standard Deviation of the models. Moreover, we estimated the random component of the experimental
error derived from the multiple-image acquisition and processing, described in Supplementary Material C.1. We
considered the Random Effect of the Sample category (intercept) Standard Deviation as the type B component of the
experimental error. The σX is the resultant uncertainty, composed of the previously described errors, and is the square
root sum of each one’s squared values. Thereby, σK = 0.026 (4.9%), σS = 0.14 (1.6%), and σI = 0.091 (0.9%) with145

the corresponding fraction of their healthy controls intercept.

5
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Table 2: Summary of the estimated uncertainty components for each morphological variable of interest.

Variable Natural Fluctuation σacquisition + σprocessing σX =
√
Σσ2

i
σNatural σRandom¹ σTypeB−Sample

T [mm] 0.1 0.019 0.085 0.13 (5.35%)
AT [mm2] 9700 290 4900 10871.3 (10.78%)
AE [mm2] 2900 70 530 2948.86 (7.62%)
GI 0.095 0.0069 0.11 0.14 (5.60%)
K 0.016 0.0017 0.021 0.026 (4.94%)
S 0.12 0.014 0.076 0.14 (1.56%)
I [mm3] 0.082 0.0064 0.037 0.091 (0.87%)

¹repeat measure, mean standard deviation.

The baseline determined by our method is a standard that can be used to compare Health Controls with any atypical
group (in terms of brain morphology). It is directly calculated using LMM from the time evolution of the independent
morphological variables as shown in 2.
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Figure 2: K, S and I through age for Healthy Controls after harmonizing in the primary morphological variables T, AT ,
and AE (removing the estimated residual from the Linear Mixed Model).

Considering Alzheimer’s Disease, we used the baseline to verify if the age trends of K, S, and I are different between the150

diseased and Healthy Control groups. We extracted the rates of change for each variable and diagnostic, summarized in
Table 3 and displayed in Figure 3. The slopes were compared with post hoc pairwise mean comparisons.

There is a significant difference between Control and AD slopes in K (pairwise comparison estimate -0.00090,
p < 0.0001), S (pairwise comparison estimate 0.0013, p = 0.004) and I (pairwise comparison estimate -0.0017,
p < 0.0001) as expected from Figure 3. For K, the AD curve is virtually flat as if it had reached a plateau, while for I,155
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Table 3: Changing rate per year for each variable (after harmonization) and diagnostic. Mean value ± standard deviation.
Rate [%] was estimated as the fraction from the mean value.

Diagnostic CTL AD

T [mm] (-440 ± 6) ×10−5 mm/year (-0.18%) (-14 ± 4) ×10−4 mm/year(-0.062%)
AT [mm2] (-240 ± 5) mm2/year (-0.24%) (-9. ± 4)×10 mm/year (-0.096%)
AE [mm2] (-41 ± 1) mm2/year (-0.11%) (-4 ± 1) ×10 mm/year (-0.1%)
GI (-350 ± 5)×10−5 1/year (-0.13%) (3 ± 4) ×10−4 1/year (0.012%)
K (-860 ± 9) ×10−6 1/year (-0.16%) (3 ± 6) ×10−5 1/year (0.0059%)
S (160 ± 6) ×10−5 1/year (0.018%) (3 ± 5) ×10−4 1/year (0.0029%)
I (-310 ± 4) ×10−5 1/year (-0.03%) (-14 ± 3) ×10−4 1/year (-0.013%)
Rate [%] was calculated as the rate fraction from the mean value.

Diagnostic AD CTL
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Figure 3: Fitted values extracted from the linear regression model after data harmonization. Bars represent the
95% confidence interval. Complete summary of linear models in Supplementary Material A, Table 5. (A) Concerning
K, Alzheimer’s Disease (AD) has a shallow slope, meaning small changes with Age. Compared to healthy controls,
AD values of K are almost constant and similar to older subjects (AD slope p-value < 0.0001 and CTL slope p-
value < 0.0001; pairwise comparison estimate -0.00090, p < 0.0001). (B) For S, the AD and CTL patterns have similar
intercepts, but statistically different slopes (AD slope p-value = 0.004 and CTL slope p-value < 0.0001; pairwise
comparison estimate 0.0013, p = 0.004). (C) For I, that reflects brain volume, CTL has a decreasing volume with aging,
while AD has a smaller slope (AD slope p-value < 0.0001 and CTL slope p-value < 0.0001; pairwise comparison
estimate -0.0017, p < 0.0001). The curves for the AD group were extended to early ages to ease the comparison.

we see a constant reduction from brain isometric volume, with a reduced intercept. Comparing the mean values within
AD and CTL, there is a significant difference for K (pairwise comparison estimate 0.042, p < 0.0001, representing 7.9%
of the CTL mean) value, S (pairwise comparison estimate -0.14, p < 0.0001, 1.5%) and I (pairwise comparison estimate
0.11, p < 0.0001, 1.0%).
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In order to complete the full description of the cortical morphology within the framework established by the Mota &160

Herculano-Houzel’s model, we separated the data from both Health controls and AD patients per decade and fitted the
fractal dimension α theorized to be 1.25. The result is shown in Figure 4
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Figure 4: Slope α derived from the Cortical Folding model from Mota & Herculano-Houzel through age for Healthy
Controls and AD subjects. Data points from (0, 5] and [95, 100] years old were omitted due to the reduced data with
95% Confidence Interval. The numbers on top of each point indicates the number of subjects at each interval.

As most diseases imply local or nonuniform global structural damage, we expanded the results of trajectories to the
lobes. We included ROI as a fixed effect in the linear mixed model equation with harmonized variables: V ariable ∼
Age×Diagnostic×ROI + (1|Sample : Diagnostic : ROI). Rates are summarized in Supplementary Material C.165

We discriminated AD and healthy aging (CTL) trends with K at the Frontal (p adj < 0.0001), Occipital (p adj < 0.0001),
Parietal (p adj < 0.0001), and Temporal lobes (p adj < 0.0001), as expected from [20]. Despite the rates being smaller
for AD than CTL, the results mimic the whole brain with Alzheimer’s Disease trajectories appearing as a plateau during
aging. The Frontal and Parietal lobe shows the least folded pattern (K) in AD (within lobe comparison are described in
Supplementary Material C). Also, there are significant differences with S CTL and AD at the Frontal (p adj = 0.00035)170

and Parietal lobes (p adj < 0.0001); and among I, between CTL and AD at the Frontal (p adj < 0.0001), Occipital
(p adj = 0.0031), Parietal (p adj < 0.0001), and Temporal lobes (p adj < 0.0001)).

Discussion

We analyzed a combination of datasets aiming to establish K, S, and I baseline through human lifespan. The suggested
model included complexity at two levels: accounting for heterogeneous acquisition and processing and heterogeneous175

brain structures across healthy and disease subjects. The hypothesis is that non-homogeneous methodology (inclusion
criteria, acquisition, and processing) implies more significant uncertainty due to type B errors. Thereby, we suggested a
harmonization procedure that allows the comparison of data from multisite reducing this kind of experimental errors.
This result is innovative by its simplicity and focuses on expanding our independent morphological variables knowledge.
The main caveat of our procedure is the impossibility of accounting for all differences between the samples and using180

this to define a universal harmonization according to each acquisition protocol. Our method does not depend on one
reference sample or a gold standard definition. The removal of the shift for each sample is carried out based on the
available healthy control data, which can always be added to the analysis.

8
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In other words, our method does not account for a possible global type B error that could shift all samples equally.
By looking at the uncertainty in cortical thickness estimation, our results are compatible with previous work. Our185

findings of 0.02 mm (Table 2) of uncertainty in cortical thickness are in agreement with a variability less than 0.03
mm found in a test-retest analysis by Han et al. [33]. Moreover, they suggest that uncertainties of 0.15 mm across
platforms of manufacturers and 0.17 mm across field strength, at this work, coupled with processing uncertainties
and estimated in 0.14 mm. A most recent study from Frangou et al. [34] suggests a Mean Inter-individual variation
of 0.07 ± 0.06 mm for hemisphere’s cortical thickness at all age ranges in the study compared to 0.10 mm from our190

findings. This compatibility suggests that the possible global type B error is close to 0; thus the harmonization could be
regarded as being close to the universal one.

The typical values for the K, S, and I independent variables through the whole life span and their related uncertainties
were obtained by this work. These curves not only can be used to discriminate pathological from healthy aging in
cross-sectional harmonized data but also are a powerful tool to morphologically describe non-typical cortex. Estimating195

the uncertainties is crucial to constructing the baseline curves and was carefully developed by this work. We estimated
three types of uncertainties with linear mixed models and repeated measures: type B errors (combination of multiple
datasets), repeated measures, and the natural variation in the human species. The error from acquisition and processing
were coupled at the individual and sample levels. We expect future works to disassociate the uncertainties in detailed
factors (test-retest analysis, across platforms, field strengths, and acquisition parameters with the same sample of200

subjects) to better measure morphological variables of interest.

We have demonstrated the usage of the baseline curves by analyzing AD data. In terms of K, a measure of axonal
tension, the AD curve is virtually flat as if it had reached a plateau of reduced brain tension. Comparing with Healthy
Controls, this plateau seems to be the same experienced by the oldest subjects. Interpreting in terms of the Mota
& Herculano-Houzel cortex model, AD can be regarded as a form of accelerated aging from the axonal tension205

perspective. On the other hand, the evolution of S, I, and even the fractal dimension α suggest that the AD cortex is not
morphologically similar to the health one, with a very different shape, isometric volume, and time evolution. However,
it is interesting to note that both S and I converge to a value compatible with the oldest health subjects. In the future,
correlating these results with the elasto-mechanic properties of the AD cortex will help to understand better the physical
limits of Mota & Herculano-Houzel model and expand it theoretically.210

A significant result that could only be achieved by combining multiple data is the value of the fractal dimension α
through human lifespan and its evolution through atypical conditions. We extended the analysis in de Moraes et al. [35]
and verified how the slope α behaves with healthy aging. We found that the slope is compatible with the theoretical
prediction for subjects between 20 and 60 years old. Defining this range of applicability of the theory is essential to
understand the period of life in which the model’s basic assumptions are still valid. After, we confirmed the findings215

that the slope escapes the model after 60 years old, diverging from the theoretical value of 1.25. Before 15 years
old, we have found a hint that the slope is also inferior to 1.25, in disagreement with the model. Along, a non-linear
pattern is suggested by the K baseline function before 20 years. One of the leading hypotheses to explain the deviation
of the measured α from the expected value in both cases (before 15 and after 60 years old) is the breakdown of the
homogeneity on the cortical surface. The suggestion of a homogeneity breakdown makes it particularly interesting to220

further study AD in the age range compatible with 1.25. Understanding the regimes outside the model is a fundamental
step towards the theoretical understanding of cortical folding. Coupled with analysis of neuropathologies such as AD,
these empirical results improve the cortical folding theory.

More than discriminating disease and healthy subjects, understanding the pathology trajectory is vital to defining
landmarks, indicating future injury, and collaborating to develop efficient treatment. Notably, in Alzheimer’s Disease225

and its prodromal form, Mild Cognitive Impairment, subsequent phases of damage may start at least 20 years before
the diagnostic [36]. The structural damage is an initial state than cognitive alterations, as memory and clinical
functions [37]. As pointed out by Fjell et al. [38], healthy aging also contributes to reductions in cortical thickness,
and understanding the overlap between healthy aging and pathological aging triggers is crucial to segregate both
events. Nevertheless, the possible similarity of structural damage in Alzheimer’s Disease and aging is explored by230

multiple previous studies [13, 39–41]. We hypothesize that the structural changes due to AD are reflected in measures
of the brain’s global structure and shape. Therefore, cortical folding derived variables K, S, and I are sensitive to
this perturbation. We verified this hypothesis by analyzing the difference in aging trajectories between healthy and
pathological brains.

At a more refined grain scale, the lobes, the results are compelling to confirm [13] suggestion that K, S, and I together235

would be a powerful tool to discriminate similarly but distinct events, as AD and aging. In this case, the difference
between events is in the cortical structure’s changing velocity or rate. Then with the rates for K, S, and I at the lobes,
we could explore whether a lobe would unfold faster. For AD, the temporal lobe has the biggest unfolding (K) and
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shrinking rate (I), while healthy aging is more aggressive at the Parietal lobe, followed by the temporal and frontal
lobes.240

The natural expansion of this work is to include Mild Cognitive Impairment (MCI) subjects. As seen before, the
MCI is an intermediary step between healthy aging and AD in the disease progression, cognitive impairment, and
structural changes [20,36,37]. Also, we intend to continue this work by applying this approach to a longitudinal dataset
composed of MRI structural images with MCI subjects that eventually convert to AD and compare to the cortical
folding components of non-converters. Including this data would allow having a more reasonable aging trajectory245

by having the transition period from healthy aging to pathological aging. Further, we expect to explore K, S, and I
function with age for the age range comprising newborns to 25 years old in future studies. This study will help better
understand the value of the slope α at this age, revealing if there is an inflection point that can be connected to the
development/aging transition in human brains [42], such as suggested by the data.

This work successfully achieved its goal of combining multiple samples with a simplistic harmonization procedure that250

adjusts K, S, and I values for the 3650 subjects. Hereafter we estimated K, S, and I typical values and aging rates to
discriminate against Alzheimer’s Disease subjects based on their changing rates. To validate the proposed methodology,
we analyzed results for Cortical Thickness, which are in concordance with previously published findings. At a glance,
the significant differences found in aging rates for the cross-sectional data are suggestive that a brain with Alzheimer’s
Disease has premature and accelerated aging in terms of morphology.255
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Supplementary Material

A Supplementary Tables, Figures and Results

Table 4: Summary for each dataset. Mean value ± standard deviation. Cross-sectional analyses were performed
compilating all samples into one heterogeneous dataset.

Datasets Diagnostic N (F) Age [years] MRI equipment FreeSurfer
ADNI [23] CTL 868 (445) 75 ± 6.5 multiple 3T v5.3

AD 542 (241) 75 ± 8
AHEAD¹ [21] CTL 100 (56) 42 ± 19 Philips Achieva 7T v6
AOMIC PIOP01 [22] CTL 208 (120) 22 ± 1.8 Philips Achieva 3T
AOMIC PIOP02 [22] CTL 224 (128) 22 ± 1.8 Philips Achieva dStream 3T
HCP900r1 [24] CTL 881 (494) 29 ± 3.6 Siemens Skyra (modified) 3T v5.32
IDOR [20] CTL 77 (53) 66 ± 8.4 Philips Achieva 3T v6

AD 13 (8) 77 ± 6.1
IXI-Guy’s3,4 CTL 314 (175) 51 ± 16 Philips Intera 3T v5.3
IXI-HH4 CTL 181 (94) 47 ± 17 Phillips Gyroscan Intera 1.5T v5.3
IXI-IOP6 CTL 68 (44) 42 ± 17 GE 1.5T v5.3
NKI [25] CTL 168 (68) 34 ± 19 Siemens Magnetom 3T v5
OASIS7 [26] CTL 312 (196) 45 ± 24 Siemens Vision Scanner 1.5T Dev 20061005
Diagnostic: CTL – Healthy control; AD – Alzheimer’s Disease
1AHEAD and HCPr900 datasets provided an age range for each subject. Therefore, we supposed that each
subject’s age was the provided interval’s mean age.
2modified version
3http://brain-development.org/ixi-dataset/
4IXI subset: Guy’s Hospital
5IXI subset: Hammersmith Hospital
6IXI subset: Institute of Psychiatry
7Data were only available for hemispheres analysis, not used for the lobes tests.
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B Bayesian model selection

In order to show that the harmonization procedure used were the most suitable, one can compare it with other models to465

describe the data. For example, the angular coefficient could also be a random effect for the LMM, varying across the
samples. Using Bayesian model selection [43], one can show that the LMM used in this work is the most probable
description to the data.

Considering our dataset comprised by J samples where D(j) = {d1(j), d2(j), · · · , dNj(j), } denotes the data of a
morphological variable in the j-th sample. The degree of belief in a model M that describes a normally distributed data470

for each age is given by the posterior probability:

P (M |D(j)) =

∫
∆A(j)β

dA(j)βP (A(j)β |I)
N(j)∏
i=1

1

σ(j)

√
2π

exp [yi(j) − µ(xi(j), A(j)β ]
2/2σ2

(j) (6)

P (M |D) =
J∏

j=1

∫
∆A(j)β

dA(j)βP (A(j)β |I)
N(j)∏
i=1

1

σ(j)

√
2π

exp [yi(j) − µ(xi(j), A(j)β)]
2/2σ2

(j) (7)

The term µ(xi(j), A(j)β) is given by the model M proposed to describe the data, with the set {A(j)β} being the
free parameters of the model defined within a range ∆A(j)β . A prior probability P (A(j)β |I) is assigned for all free
parameters reflecting the prior knowledge about their values. The basic model of this work assumes that the log of
morphological variables follow µ = ax+ b(j), with the dispersion σ(j) for each samples. Uninformative priors were475

used for the free parameters. This integral can be easily done numerically using Python3 with PyMC3 package or
similar. The advantage of this approach is that it naturally penalizes the insertion of unnecessary new parameters
avoiding over-fitting.

With multiple models Mi, one defines the odds as Oij =
p(Mi|D)
p(Mj |D) . As

∑
i p(Mi|D) = 1, the probability of the model

M1 is given by:480

p(M1) =
1

1 +
∑

i Oi1

The alternative models considered by this work were: i) µ = ax+b(j), with the same dispersion σ(j); ii) µ = a(j)x+b(j),
with the dispersion σ(j) for each sample; iii) µ = a(j)x+ b(j), with the same dispersion σ(j) for each sample; iv) We
also tested the simplest non-linear trend µ = cx2 + ax+ b(j), with the dispersion σ(j) for each sample; We have found
that the LMM used in the work is the most probable. The code implementing this approach is given by the authors.

It is important to note the all parameters calculated using the LMM approach can be obtained in this framework by a485

slight modification of equation 7. Instead of marginalizing over all the parameters, by left one out, we obtain P (Aj1|D)
which gives directly the most probable value for the parameter Aj1 and its credible region.
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C Expanded results to lobes

We expanded the analyses of trajectories to the lobes by including ROI as a fixed effect in the linear mixed model
equation: V ariable ∼ Age × Diagnostic × ROI + (1|Sample : Diagnostic : ROI). Rates are summarized in490

Table 6 and Figure 5. Differences within lobes and rate differences within diagnostics are described in Figure 6.

Table 6: Changing rate per year for each variable, diagnostic and lobe. Mean value ± standard deviation.

Variable ROI CTL AD

T

F -0.0058 ± 6.5e-05 (-0.24%) -0.00095 ± 0.00043 (-0.043%)
O -0.0034 ± 6.5e-05 (-0.16%) -0.0012 ± 0.00043 (-0.06%)
P -0.0048 ± 6.5e-05 (-0.21%) 0.0012 ± 0.00043 (0.059%)
T -0.0051 ± 6.5e-05 (-0.19%) -0.0016 ± 0.00043 (-0.067%)

GI

F -0.0029 ± 6.6e-05 (-0.12%) 0.00038 ± 0.00044 (0.017%)
O -0.0025 ± 6.6e-05 (-0.1%) -0.00049 ± 0.00044 (-0.02%)
P -0.0048 ± 6.6e-05 (-0.17%) 0.00026 ± 0.00044 (0.0095%)
T -0.0035 ± 6.6e-05 (-0.14%) -0.00054 ± 0.00044 (-0.023%)

K

F -0.00092 ± 1.3e-05 (-0.17%) 5.4e-05 ± 8.4e-05 (0.0092%)
O -0.00068 ± 1.3e-05 (-0.14%) -0.00012 ± 8.4e-05 (-0.022%)
P -0.0011 ± 1.3e-05 (-0.22%) 0.00031 ± 8.4e-05 (0.053%)
T -0.00096 ± 1.3e-05 (-0.18%) -0.00019 ± 8.4e-05 (-0.033%)

S

F 0.0027 ± 8.2e-05 (0.03%) 0.00027 ± 0.00055 (0.003%)
O 0.0015 ± 8.2e-05 (0.017%) -1.1e-05 ± 0.00055 (-0.00013%)
P 0.0026 ± 8.2e-05 (0.027%) -0.0023 ± 0.00055 (-0.024%)
T 0.0022 ± 8.2e-05 (0.025%) 7e-04 ± 0.00055 (0.0078%)

I

F -0.0036 ± 6e-05 (-0.036%) -0.00087 ± 4e-04 (-0.0087%)
O -0.0029 ± 6e-05 (-0.031%) -0.0013 ± 4e-04 (-0.014%)
P -0.003 ± 6e-05 (-0.029%) -0.00022 ± 4e-04 (-0.0021%)
T -0.003 ± 6e-05 (-0.029%) -0.00097 ± 4e-04 (-0.0096%)

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2022. ; https://doi.org/10.1101/2022.03.10.22272228doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.10.22272228
http://creativecommons.org/licenses/by-nc-nd/4.0/


MANUSCRIPT - MARCH 11, 2022

Diagnostic AD CTL

P T

F O

0 25 50 75 100 0 25 50 75 100

−0.60

−0.55

−0.50

−0.60

−0.55

−0.50

Age [years]

K

A

P T

F O

0 25 50 75 1000 25 50 75 100

8.5

9.0

9.5

10.0

8.5

9.0

9.5

10.0

Age [years]

S

Diagnostic AD CTL
B

P T

F O

0 25 50 75 1000 25 50 75 100

8.5

9.0

9.5

10.0

8.5

9.0

9.5

10.0

Age [years]

I

Diagnostic AD CTL
C

Figure 5: Fitted values for (A) K, (B) S and (I) and age for all for the Frontal lobe ("F"), Parietal lobe ("P"), Occipital
lobe ("O") and Temporal lobe ("T") after data harmonization. Bars represents 95% confidence interval.
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Figure 6: Difference in slopes for each lobe within diagnostics after data harmonization. Bars represent a 95%
confidence interval. (A) K, (B) S, and (C) I.
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C.1 Repeated measurements

The random error is an essential fraction of the global uncertainties, as it is the variance that occurred after multiples
measures in the same condition. To estimate the reproducibility within subjects, we processed (as described in Materials
and Methods) the first 50 subjects with all three T1w images from the AOMIC ID1000 [22] dataset (described in495

Supplementary Material Table 7). The AOMIC ID1000 comprises multiple Magnetic Resonance Imaging protocols,
especially three structural T1w images acquired during the same scan with the same protocol in a Philips Intera 3T. The
select sample has the advantage of being composed of only healthy human subjects within a narrow age range, from 20
to 26 years old. We hypothesized that should be no difference of means within the three runs, despite the variation for
each subject (Figure 7).500

Table 7: Summary for the 50 subjects of AOMIC ID1000 dataset. Mean value ± standard deviation.

Session Age [years] T K S I

1 23 ± 1.7 2.7 ± 0.093 -0.51 ± 0.017 9.1 ± 0.093 10 ± 0.078
2 23 ± 1.7 2.7 ± 0.093 -0.51 ± 0.017 9.1 ± 0.095 10 ± 0.076
3 23 ± 1.7 2.7 ± 0.094 -0.51 ± 0.017 9.1 ± 0.091 10 ± 0.078
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Figure 7: Cortical folding model with the traced path for each hemisphere of each subject (gray line). The sample
respects the model with slope α = 1.23 ± 0.06, 95% confidence interval = (1.12,1.34).
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To estimate the uncertainty/variation of repeated measures, one could estimate the distribution of standard deviations of
the data. We calculated the standard deviation for each subject and hemisphere across the three images, for the Cortical
Thickness, K, S, and I.

We compared the means for each run with a Repeat Measure ANOVA. There is no significant difference of means
through runs (1, 2 and 3) (Figure 8): Cortical Thickness [mm], F(2, 198) = 0.481, p = 0.62, eta2[g] = 0.000192; GI, F(2,505

186) = 0.196, p = 0.81, eta2[g] = 0.00001; K, F(2, 198) = 0.138, p = 0.87, eta2[g] = 0.0000144; S, F(2, 185) = 0.352,
p = 0.69, eta2[g] = 0.0000798; I, F(2, 198) = 0.775, p = 0.46, eta2[g] = 0.0000523. The estimate standard deviations
are: Cortical Thickness [mm], 0.019 ± 0.013 mm; GI, 0.0069 ± 0.0047; K, 0.0017 ± 0.0012; S, 0.014 ± 0.01; I,
0.0064 ± 0.0043 (Figure 9).

These results suggest high reliability in subsequently acquired images processed with FreeSurfer v6.0, in concordance510

with [44] finds for reliability in FreeSurfer processing comparing volumes measurements. We suggest that the estimated
standard errors accurately estimate the uncertainty due to a repeated acquisition and image processing within the same
site and parameters.
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Figure 8: Trajectories for each hemisphere of each subject through the acquisition runs. There is no significant difference
in means. (A) Cortical Thickness [mm]: F(2, 198) = 0.481, p = 0.62, eta2[g] = 0.000192; (B) K: F(2, 198) = 0.138,
p = 0.87, eta2[g] = 0.0000144; (C) S: F(2, 185) = 0.352, p = 0.69, eta2[g] = 0.0000798; (D) I: F(2, 198) = 0.775,
p = 0.46, eta2[g] = 0.0000523.
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Figure 9: Standard Deviation (SD) distribution for each variable. The solid line represents the mean value, and the
dashed line the standard deviation of the distribution. (A) Cortical Thickness: 0.019±0.013 mm; (B) K: 0.0017±0.0012;
(C) S: 0.014±0.01; (D) I: 0.0064±0.0043.
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D multicenter influence on cortical folding model and its independent morphological
components515

We estimated the influence of multicenter datasets in estimating K, S, and I typical values and rates per year across the
human lifespan, including as random effects at the linear mixed model. Using these models allows one to calculate
the residual variance arising from the methodological heterogeneity and the variance from each category, the different
included data samples in this manuscript.

The systematic shifts, estimated from the Linear Mixed Models (LMM, V ariable ∼ Age ×Diagnostic × ROI +520

(1|Sample : Diagnostic : ROI)), can be used as inputs to multisite harmonization procedures, reducing the influence
of heterogeneous methodology (Figure 1). The harmonization consists of subtracting the estimated shift from the
raw data of each sample (Xharmonized = Xraw − shiftX ). It reduces the systematic error due to the samples, and
consecutively, the total uncertainty of the variable (Table 8). A step-by-step code is available [35].

Future studies can progress on the limitation by detailing influences and increasing specificity in methodology, such as525

the scan field strength, model and manufacturer, and decoupling acquisition imaging processing components.

Table 8: Comparison of estimated error after the multisite harmonization.

Variable Natural Fluctuation σacquisition + σprocessing σX =
√
Σσ2

i
(σwithinspecienaturalvariation) random¹ systematic (σsample)

T [mm] 0.1 0.019 0.000 0.10 (4.10%)
AT [mm2] 9700 290 0 9704.33 (9.63%)
AE [mm2] 2900 70 0 2900.84 (7.5%)
GM volume [mm3] 33000 3600 0 33195.8 (13.27%)
GI 0.097 0.0069 0.000 0.97 (3.74%)
K 0.017 0.0017 0.000 0.017 (3.19xx%)
S 0.12 0.014 0.000 0.12 (1.32%)
I 0.082 0.0064 0.000 0.082 (0.79%)

¹repeat measures, mean standard deviation
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