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Abstract (275/300 words) 

Objective 

Acute brain injury remains common after extracorporeal cardiopulmonary resuscitation. 

Using a large international multicenter cohort, we investigated the impact of peri-

cannulation arterial oxygen (PaO2) and carbon dioxide (PaCO2) on ABI occurrence. 

Design 

Retrospective cohort study. 

Setting 

Data in the Extracorporeal Life Support Organization Registry from 2009 to 2020. 

Patients 

Adult patients (≥18 years old) who underwent extracorporeal cardiopulmonary 

resuscitation. 

Interventions 

None. 

Measurements and Main Results 

Of 3,125 patients with extracorporeal cardiopulmonary resuscitation (median age=58, 

69% male), 488 (16%) experienced at least one form of acute brain injury, which 

included ischemic stroke, intracranial hemorrhage, seizures, and brain death. 217 (7%) 

experienced ischemic stroke and 88 (3%) experienced intracranial hemorrhage. The 

registry collects two blood gas data pre- (6 hours before) and on- (24 hours after) 

extracorporeal membrane oxygenation (ECMO) cannulation.  Blood gas parameters 

were classified as: hypoxia (<60mmHg), normoxia (60-119mmHg), and mild (120-

199mmHg), moderate (200-299mmHg), and severe hyperoxia (≥300mmHg); hypocarbia 
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(<35mmHg), normocarbia (35-44mmHg), mild (45-54mmHg) and severe hypercarbia 

(≥55mmHg). In multivariable logistic regression analysis, pre-ECMO hypoxia 

(aOR=1.46, 95%CI: 1.03-2.08, p=0.04) and on-ECMO severe hyperoxia (aOR=1.55, 

95%CI: 1.02-2.36, p=0.04) were associated with composite ABI. Also, on-ECMO severe 

hyperoxia was associated with intracranial hemorrhage (aOR=1.88, 95%CI: 1.02-3.47, 

p=0.04) and in-hospital mortality (aOR=3.51, 95%CI: 1.98-6.22, p<0.001). Pre- and on-

ECMO PaCO2 levels were not significantly associated with composite ABI or mortality, 

though mild hypercarbia pre- and on-ECMO were protective of ischemic stroke and 

intracranial hemorrhage, respectively. 

Conclusions 

Early severe hyperoxia (≥300mmHg) on ECMO was a significant risk factor for acute 

brain injury and mortality for patients undergoing extracorporeal cardiopulmonary 

resuscitation. Careful consideration should be given in early oxygen delivery in ECPR 

patients who are at risk of reperfusion injury. 

 

Keywords: Neurological Injury; Extracorporeal Membrane Oxygenation; ECPR 
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Introduction 

Extracorporeal cardiopulmonary resuscitation (ECPR) combines venoarterial 

extracorporeal membrane oxygenation (VA-ECMO) and cardiopulmonary resuscitation 

(CPR) as a rescue therapy for patients with refractory cardiac arrest. Though ECPR use 

has rapidly increased(1) and may improve survival outcome compared to conventional 

CPR(2,3), acute brain injury (ABI) commonly occurs in as many as 27-32%(4,5) of 

patients, leading to poor neurological outcome(3,6). Primary ABI is caused by global 

brain ischemia during cardiac arrest. In contrast, secondary ABI occurs as a 

consequence of ECMO support; the immediate cerebral blood flow restoration results in 

reperfusion injury(7). Cerebral reperfusion injury may be compounded by aggressive 

oxygen therapy and acute changes in carbon dioxide during peri-cannulation period(7–

9). ABI is not only a significant cause of morbidity, but also portends an increase in 

mortality in ECMO patients(10,11).  

 Although the exact mechanisms behind ABI during ECMO support remain to be 

elucidated, acute changes in arterial carbon dioxide (PaCO2) and oxygen tension 

(PaO2) have plausible mechanisms to cause ABI. PaCO2 serves as a key regulator of 

cerebral autoregulation(12) and neuronal metabolic demand(13), and rapid decreases 

in PaCO2 may cause ABI by the combined effect of increased neuronal excitability with 

decreased cerebral blood flow. Though tissue hypoxia is widely known to be injurious, 

hyperoxia and resulting toxicity from increased free radical formation is also detrimental, 

especially after rapid reperfusion(14). Both PaCO2 and PaO2 have previously been 

associated with ABI and mortality in VA- and venovenous (VV-) ECMO patients, but 

these findings have not been well studied in ECPR patients(15). As clinical experience 
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accumulates and ECPR becomes widely used, focused research on management of 

neurologic complications and on-ECMO care such as optimal oxygen and carbon 

dioxide level is imperative to improve neurological outcomes of ECPR patients; 

however, evidence regarding this is currently sparse. 

In this study, we utilized the Extracorporeal Life Support Organization (ELSO) 

registry to examine the relationship between peri-cannulation PaCO2 and PaO2 levels 

on occurrence of ABI in patients receiving ECPR. We hypothesized that greater degree 

of peri-cannulation CO2 removal and severity of hyperoxia after ECMO initiation are 

associated with ABI. 

 

Materials and Methods 

Study Design and Population  

This study was approved by the Johns Hopkins Institutional Review Board with a waiver 

of informed consent. The ELSO Registry is a voluntary database that collects clinical 

information and outcomes of ECMO support in adults and children from >500 member 

centers worldwide(16). The registry collects demographics, pre-ECMO medical 

diagnoses, hemodynamic and laboratory values before and during ECMO support, 

complications during ECMO support including ABI, and outcome such as survival to 

hospital discharge. Diagnosis and medical history are reported according to the 

International Classification of Diseases, 9th Edition and 10th Edition codes.  

A retrospective analysis of ECPR patients in the ELSO database from January 

2009 to December 2020 was performed. The inclusion criteria were 1) patients 18 years 

old and older; and 2) patients who received one run of ECMO support for ECPR 
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indication. We excluded 1) patients who underwent multiple runs to avoid complexity 

and bias of confounding the outcome data; and 2) patients treated with non-ECPR VA-

ECMO and VV-ECMO.  

Data Collection and Definitions 

ECPR is defined in the ELSO registry as the rapid deployment of VA-ECMO in the 

setting of unsuccessful conventional cardiopulmonary resuscitation(17). The ELSO case 

report form collects hemodynamic and arterial blood gas (ABG) values before and after 

ECMO cannulation (“pre-ECMO” and “on-ECMO”, respectively). The pre-ECMO ABG 

value is the closest measurement to cannulation in the 6 hours before ECMO initiation. 

The on-ECMO value is the closest value to 24 hours after cannulation but could be 

taken at any time in hours 18-30 after cannulation. Delta PaO2 (rise in PaO2 over 24 

hours) is defined as on-ECMO PaO2 minus pre-ECMO PaO2. Delta PaCO2 (change in 

PaCO2 over 24 hours) is defined as on-ECMO PaCO2 minus pre-ECMO PaCO2. 

Relative delta PaO2 and PaCO2 were defined as the delta value divided by the pre-

ECMO blood gas value. Physiologically improbable data values under the following 

conditions were treated as erroneous values: pH>8.0 or <6.5, PaO2>760, and 

PaCO2>240 or <20 mmHg. PaO2 and PaCO2 categories were defined as following: 

hypoxia (<60 mmHg PaO2), normoxia (60-119) mmHg, mild hyperoxia (120-199) 

mmHg, moderate hyperoxia (200-299) mmHg, severe hyperoxia (>300 mmHg), 

hypocarbia (<35 mmHg PaCO2), normocarbia (35-44 mmHg), mild hypercarbia (45-54 

mmHg), and severe hypercarbia (>55 mmHg). Numerical cutoffs for categories were 

determined based on standard clinical practice and prior literature(8). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.22272203doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.10.22272203


 9 

 Various ECMO complications were also included in the study. ECMO circuit 

mechanical failure includes any component or equipment failures which require 

intervention, such as replacement. Renal replacement therapy includes the use of any 

dialysis or hemofiltration while on ECMO. Hemolysis was defined as free plasma 

hemoglobin >50 mg/dL. Gastrointestinal (GI) hemorrhage included any upper or lower 

GI bleeding requiring packed red blood cell or whole blood transfusion, endoscopic 

intervention, or use of a hemostatic agent. 

We defined composite acute brain injury (ABI) to include ischemic stroke, 

intracranial hemorrhage (ICH), diffuse brain ischemia, brain death, seizure, and ABI 

requiring neurosurgical intervention. In the ELSO database, ischemic stroke is defined 

as central nervous system (CNS) infarction as confirmed by ultrasound, computed 

tomography (CT), or magnetic resonance imaging (MRI). ICH is comprised of intra- or 

extra-parenchymal CNS hemorrhage as confirmed by ultrasound, CT, or MRI, or any 

CNS other hemorrhage, including intraventricular hemorrhage. Subtypes of ICH, such 

as intracerebral, subarachnoid, or subdural hematoma, were not available in the 

database. Seizure included those detected by clinical assessment or 

electroencephalogram. Those with ischemia, intraventricular hemorrhage, and 

neurosurgical intervention, which were added as variables to the ELSO database in 

2019 and after, were included as part of the ABI group.  

Outcomes  

The primary outcome was composite ABI. The secondary outcomes were ischemic 

stroke, ICH, and mortality.  

Statistical Analysis 
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Continuous variables were expressed as medians with interquartile range (IQR). 

Categorical variables were expressed as frequencies with percentages. Wilcoxon rank-

sum and Pearson’s chi-squared tests were used to compare continuous and categorical 

variables, respectively. Cuzick’s non-parametric test was used to assess for trends over 

time(18). P values < 0.05 were considered statistically significant. 

Univariable and multivariable logistic regression were performed to determine 

associations between PaO2/PaCO2 metrics and 1) ABI, 2) ischemic stroke, 3) ICH, and 

4) mortality. Variables which had a p<0.05 by univariable analysis were included in the 

initial multivariable regression model. Different permutations of PaO2/PaCO2 metrics 

were added to assess improvements in model performance. PaO2/PaCO2 metrics 

included in different models were categorized PaO2/PaCO2 values, as above, 

PaO2/PaCO2 as a continuous variable, delta, and relative delta PaO2/PaCO2. The 

models with the lowest Akaike’s information criterion (AIC) were selected as the final 

models. The final model for ABI (primary outcome) was adjusted for the following pre-

ECMO characteristics based on these variables being statistically significant in 

univariable regression: age, race, pre-ECMO pH and lactate, requirement of renal 

replacement therapy, hemorrhagic hemolysis, and on-ECMO arrythmia. Adjusted odds 

ratios (aOR) were presented with 95% confidence intervals (CIs). Statistical significance 

was set at p<0.05. All analyses were carried out in STATA 17 (StataCorp, LLP, College 

Station, TX). 

 

Results 

Incidence and Mortality of ABIs 
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Of 3,125 patients (median age=58, 69% male) who underwent ECPR intervention, 488 

(16%) experienced ABI. The most common type of ABI was ischemic stroke (n=217, 

7%), brain death (n=183, 6%), ICH (n=88, 3%), and seizures (n=69, 2%). Except for a 

decrease in 2020, the use of ECPR has steadily increased over time from 36 patients in 

2009 to 677 in 2019 (p-trend=0.003) (Figure 1A). The incidence of composite ABI 

among ECPR patients has decreased over time (p-trend=0.02). However, the incidence 

of ischemic stroke has increased while ICH has remained stable (Figure 1B). Those 

with ABI (88% vs. 65%), ischemic stroke (84% vs. 68%), and ICH (89% vs. 68%) had 

higher mortality compared to those without (p<0.001 for all). 

Arterial Oxygen Tension and ABI 

Patients with ABI had a lower median pre-ECMO PaO2 compared to those without (73 

mmHg vs. 77, p=0.02) (Table 1). Following ECMO initiation, those with ABI had a 

higher PaO2 (156 vs. 133 mmHg, p<0.001) and delta PaO2 (+84 vs. +50 mmHg, 

p<0.001), and were more likely to have moderate (13% vs. 10%, p=0.003) or severe 

hyperoxia (22% vs. 15%, p=0.003). Additionally, ABI patients had a higher relative delta 

PaO2 (+112% vs. +67%, p<0.001). Distributions of on-ECMO PaO2 and PaCO2 are 

plotted in Figure 2. There was a U-shaped relationship between oxygenation status and 

frequency of composite ABI, ischemic stroke, and ICH (Figures S1A, S1C, S1E). 

Compared to other types of ABI, those with ICH experienced the largest increase in 

PaO2 as well as highest on-ECMO PaO2 (Figure S2). 

Arterial Carbon Dioxide Tension and ABI 

Those with ABI had a higher pre-ECMO PaCO2 (51 vs. 48 mmHg, p=0.01), were more 

likely to have severe hypercarbia (46% vs. 37%, p<0.001), and less likely to have mild 
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hypercarbia (15% vs. 22%, p<0.001) prior to ECMO initiation (Table 1). There were no 

differences in PaCO2 between those with and without ABI after ECMO initiation, 

however, the ABI group had a marginally larger delta PaCO2 (-12 vs. -11 mmHg, 

p=0.04). 

Risk Factors of ABI 

Composite ABI 

Differences in baseline characteristics, pre-ECMO, and ECMO variables between those 

with and without composite ABI are shown in Table 1. In the final multivariable model 

for composite ABI, lower pre-ECMO pH (aOR=1.13 per 0.1 unit drop, 95% CI: 1.03-

1.25, p=0.01), pre-ECMO hypoxia (aOR=1.46, 95% CI: 1.03-2.08, p=0.04), on-ECMO 

severe hyperoxia (aOR=1.55, 95% CI: 1.02-2.36, p=0.04), and renal replacement 

therapy (aOR=1.70, 1.22-2.37, p=0.002) were significant risk factors of developing 

composite ABI (Table 2, Figure 3A). Delta PaO2 and delta PaCO2, and relative deltas, 

were not significantly associated with ABI. 

Ischemic stroke 

We separately analyzed secondary outcomes, ischemic stroke and ICH. In a 

multivariable logistic regression model for ischemic stroke (Figure 3B, Table S1), older 

age (aOR=0.90 for every 10 year age increase, 95% CI: 0.80-0.99, p=0.04) and pre-

ECMO mild hypercarbia (aOR=0.56, 95% CI: 0.34-0.92, p=0.02) were protective against 

ischemic stroke. In the same model, higher weight (for every 10 kg increase, aOR=1.10, 

95% CI: 1.02-1.17, p=0.008), lower pre-ECMO pH (aOR=1.16 per 0.1 unit drop, 95% 

CI: 1.06-1.28, p=0.001), and renal replacement therapy during ECMO (aOR=2.03, 95% 

CI: 1.47-2.78, p<0.001) were associated with ischemic stroke.  
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ICH 

By multivariable logistic regression, (Figure 3C, Table S2), female sex (aOR=2.27, 95% 

CI: 1.41-3.66, p=0.001), atrial fibrillation (aOR=2.45, 95% CI: 1.12-5.36, p=0.03), and 

on-ECMO severe hyperoxia (aOR=1.88, 95% CI: 1.02-3.47, p=0.04) were associated 

with ICH. On-ECMO mild hypercarbia (aOR=0.39, 95% CI: 0.15-1.00, p=0.05) was 

protective against ICH. 

Risk Factors of Mortality 

There was a U-shaped relationship between both on-ECMO PaO2 and delta PaCO2 with 

mortality (Figure S3). In a multivariable model, those who had ABI had more than a 

four-fold increased adjusted odds of mortality (aOR=4.18, 95% CI: 2.28-7.64, p<0.001) 

(Figure S4, Table S3). Increasing age (aOR=1.28 for every 10 year increase, 95% CI: 

1.13-1.45, p<0.001) and weight (for every 10 kg increase, aOR=1.08, 95%CI: 1.00-1.17, 

p=0.05), as well as on-ECMO lactate (aOR=1.12, 95% CI: 1.07-1.18, p<0.001), lower 

pre-ECMO mean blood pressure (for every 10 mmHg decrease, aOR=1.15, 95% CI: 

1.07-1.24, p<0.001) and lower on-ECMO pH (aOR=1.29 per 0.1 unit drop, 95% CI: 

1.05-1.59, p=0.02) were associated with mortality. Severe hyperoxia on-ECMO was 

strongly associated with mortality (aOR=3.51, 95% CI: 1.98-6.22, p<0.001), as were 

ECMO circuit mechanical failure (aOR=2.17, 95% CI: 1.17-4.01, p=0.01), renal 

replacement therapy (aOR=2.24, 95% CI: 1.44-3.48, p<0.001), and on-ECMO arrythmia 

(aOR=2.56, 95% CI: 1.47-4.45, p=0.001). Similar to the ABI models, delta PaO2 and 

delta PaCO2, and relative deltas, were not significantly associated with mortality. 

 

Discussion 
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Our analysis of 3,125 ECPR patients within the ELSO registry revealed that 16% 

experienced at least one type of ABI. Ischemic stroke (7%) was the most common type 

of ABI, followed by brain death (6%), ICH (3%) and seizure (2%). ABI is a consequential 

and common occurrence in patients receiving ECPR: a meta-analysis of 78 studies 

(2008-2019) showed similar prevalence of ischemic stroke, brain death and ICH, though 

overall prevalence of ABI was higher in that study (27%)(4). We observed an 18-fold 

increase in ECPR use between 2009 and 2019, as increasing evidence accumulates for 

the benefit of ECPR over conventional CPR(7). Rates of composite ABI and brain death 

decreased while frequency of cerebrovascular events, such as ischemic stroke and 

intracranial hemorrhage, remained unchanged (Figure 1). Since ECPR survival has 

improved in the modern era(4), these epidemiological data may point to better selection 

of patients who may benefit from ECPR as well as more standardized practice and 

experience(19) while the prevention and treatment of on-ECMO cerebrovascular 

complications remains a challenge.  

 In cardiac arrest patients, early and prolonged hyperoxia (PaO2>300 mmHg) is 

associated with mortality and poor neurological outcome after both conventional 

CPR(20) and during VA-ECMO (non-ECPR specific)(8). A retrospective analysis of 

adult ECPR patients within the ELSO database from 2010 to 2015 showed that 

moderate hyperoxia (PaO2 101-300 mmHg), but not severe hyperoxia (PaO2>300 

mmHg), was associated with increased mortality(21). The current study is the first to 

utilize a large international ECPR cohort to demonstrate early severe hyperoxia is a 

strong risk factor of ABI, which contributes to significant mortality and morbidity after 

ECMO. Severe hyperoxia likely exacerbates reperfusion injury in ECPR by providing 
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greater substrate for toxic free radical formation(14) and subsequent derangements like 

neuronal metabolic failure(22) and a pro-inflammatory state(23). Given the clinical 

evidence and mechanistic plausibility of ABI caused by hyperoxia, we need clinical trials 

to determine optimal oxygenation targets within the first 24 hours after ECPR where 

ischemic reperfusion injury risk is highest.  

 Pre-ECMO hypoxia was also associated with increased risk of composite ABI but 

not with ischemic stroke or ICH individually. Cardiac arrest results in temporary global 

anoxia and low cerebral blood flow, so pre-ECMO hypoxia likely mediates hypoxic 

ischemic brain injury (HIBI) and subsequent brain death rather than increasing the risk 

of cerebrovascular events, which are likely on-ECMO complications. A meta-analysis of 

ECPR studies reported HIBI as the most common type of ABI (23%) by a substantial 

margin(4). Though HIBI is not explicitly recorded in the ELSO registry, our cohort had 

similarly high rates of brain death (38% of all ABI), majority of which may be caused by 

HIBI. 

The role of hypercarbia in ECMO is contentious. On one hand, an analysis of VA-

ECMO patients in the ELSO registry, PaCO2 was associated with increased mortality at 

tensions <30 mmHg and >60 mmHg(24). On the other hand, Munshi et al. reported that 

mild hypercarbia (PaCO2>45 mmHg) was inversely associated with mortality (OR=0.78, 

95% CI=0.32-1.93) in ECPR patients(21). In this study, did not find any associations 

between PaCO2 and mortality. Regarding ABI, on-ECMO mild hypercarbia (45-54 

mmHg) was protective against ICH while pre-ECMO mild hypercarbia protected against 

ischemic stroke. PaCO2 may play a distinct physiological role in ECPR versus VA-

ECMO. Hypercarbia is known to increase cerebral blood flow and, in a phase II 
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randomized controlled trial, was associated with lower serum levels of neuronal and 

glial injury biomarkers (serum neuron specific enolase and S100b) 24 hours post-

cardiac arrest compared to normoxia in post-cardiac arrest patients(25). Thus, mild 

hypercarbia in peri-cannulation period may attenuate the risk of ABI.  

Despite delta PaCO2 in ABI patients being marginally higher than in non-ABI 

patients in univariate analysis, delta PaCO2 was not significantly associated with ABI or 

mortality after adjustment. Neither sensitivity analysis nor categorization using ordinal 

analyses of PaCO2 yielded meaningful trends. Prior studies with VA-ECMO patients are 

equivocal. With the benefit of protocolized neuromonitoring and frequent ABG 

collections, we have previously reported that large delta PaCO2 in VA-ECMO patients 

was significantly associated with ICH (OR=2.69; 95% CI=1.18-6.13) but not with 

composite ABI or mortality(26). Diehl et al. found a PaCO2 drop >20 mmHg was 

associated with mortality but not ABI in VA-ECMO(24). The lack of agreement suggests 

that peri-cannulation delta PaCO2 may be a non-specific phenomenon, and PaCO2 

management strategies should be further explored in a prospective study with granular 

ABG data and sufficient sample size. Also, it’s important to highlight that our study 

focused only on ECPR patients unlike other aforementioned studies.   

We systematically investigated the risk factors for ABI, ABI subtypes, and 

mortality. In addition to pre-ECMO hypoxia and on-ECMO hyperoxia discussed above, 

lower pre-ECMO pH and requiring renal replacement therapy (RRT) on-ECMO were 

strongly associated with composite ABI. Pre-ECMO pH has been reported as an 

independent predictor of survival(27), with pH ≥	 7.0 being associated with better 

neurological outcome in ECPR patients(28). Especially in ECPR patients with severe 
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metabolic acidosis post-cardiac arrest, pre-ECMO pH is likely a function of the duration 

of cerebral anoxia/hypoxia prior to the arrest(28). RRT reflects acute renal failure from 

hemodynamic instability and lack of adequate perfusion, which are also risk factors for 

ABI(29). In our study, both lower pre-ECMO pH and post-ECMO RRT were also 

associated mortality. Obesity was also associated with ischemic stroke. Though the 

pathology underlying obesity contributes to the etiology of ischemic stroke by promoting 

pro-thrombotic and pro-inflammatory state(30,31), obese patients may also experience 

delays during cannulation with longer low flow time, which increases likelihood of 

ischemic ABI(4,32). The main risk factors for ICH were atrial fibrillation and on-ECMO 

hyperoxia, suggesting that anticoagulant use during VA-ECMO as well as reperfusion 

injury during ECMO may lead to hemorrhagic conversion of ischemic stroke(33).  

The study has several limitations. This was a retrospective study. We did not 

have access to many Utstein style variables, which may be importantly related to our 

outcomes of interest. We lacked granular ABG data since the ELSO registry only 

collects one pre-ECMO and one on-ECMO value, which prevented us from assessing 

variability or temporal trends (such as rates of change or duration of hyperoxia). The 

ELSO registry does not collect anticoagulation data, which is an important risk factor of 

ICH that could not be adjusted in our analysis. Further, as suggested by previous 

studies, the lack of adjudication of neurological diagnosis and standardized 

neuromonitoring protocol across contributing centers likely underestimates ABI 

frequency(34). As the study was retrospective, the association between hyperoxia and 

ABI is not causal in the absence of information regarding the timing of ABI. 

Nonetheless, our study contributes significantly to the literature as it utilized a large 
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international cohort that was sufficiently powered to capture clinical practice variations 

across ECMO centers. 

 

Conclusions 

In a large, international cohort of ECPR patients, we found severe hyperoxia (≥300 

mmHg) following ECMO initiation to be associated with acute brain injury and mortality. 

However, carbon dioxide levels on ECMO or its drop pre- vs. post-cannulation were not 

associated with composite ABI. Given the risk of reperfusion injury following cardiac 

arrest, early oxygen delivery practices in ECPR and optimal threshold warrants further 

study in a prospective trial. 
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Tables 

Table 1. Demographics, clinical characteristics, and extracorporeal membrane 

oxygenation characteristics for extracorporeal cardiopulmonary resuscitation patients 

who had acute brain injury (ABI) versus those who did not. 

 
Total 

(n=3,125) 
No ABI 

(n=2,637, 84.4%) 
ABI 

(n=488, 15.6%) 
p value 

Age (years) 58 (47-67) 59 (48-67) 54 (43-64) <0.001 
Female sex 961 (31%) 814 (31%) 147 (30%) 0.79 
Weight (kg) 81 (70-97) 80 (70-96) 84 (70-100) 0.10 
Race    0.03 
     White 1,789 (57%) 1,541 (58%) 248 (51%)  
     Asian 627 (20%) 519 (20%) 108 (22%)  
     Black 274 (9%) 221 (8%) 53 (11%)  
     Hispanic 114 (4%) 92 (3%) 22 (5%)  
     Other 235 (8%) 191 (7%) 44 (9%)  
Comorbidity      
     Diabetes 304 (10%) 253 (10%) 51 (10%) 0.56 
     Hypertension 234 (7%) 189 (7%) 45 (9%) 0.11 
     Atrial fibrillation 132 (4%) 107 (4%) 25 (5%) 0.28 
     Cardiomyopathy 280 (9%) 235 (9%) 45 (9%) 0.83 
     COPD 96 (3%) 79 (3%) 17 (3%) 0.57 
Pre-ECMO mean blood pressure (mmHg) 57 (41-72) 57 (42-71) 56 (40-75) 0.87 
Pre-ECMO ABG     
     pH 7.17 (7.02-7.29) 7.18 (7.02-7.30) 7.11 (6.97-7.25) <0.001 
     HCO3- (mEq/L) 18 (13-22) 18 (14-22) 17 (13-21)  0.003 
     PaO2 76 (57-112) 77 (57-112) 73 (54-108)  0.018 
     PaCO2 49 (38-63) 48 (38-62) 51 (40-66)  0.013 
     Lactate (mmol/L) 10.0 (5.6-14.3) 9.9 (5.3-14.0) 11.6 (7.4-15.4) <0.001 
Pre-ECMO ABG O2 Categories     0.0 
     Hypoxia (<60 mmHg) 900 (29%) 737 (28%) 163 (33%)  
     Normoxia (60-119 mmHg) 1,526 (49%) 1,300 (49%) 226 (46%)  
     Mild hyperoxia (120-199 mmHg) 451 (14%) 382 (14%) 69 (14%)  
     Moderate hyperoxia (200-299 mmHg) 248 (8%) 218 (8%) 30 (6%)  
     Severe hyperoxia (≥300 mmHg) 0 (0%) 0 (0%) 0 (0%)  
Pre-ECMO ABG CO2 Categories    <0.001 
     Hypocarbia (<35 mmHg) 506 (16%) 431 (16%) 75 (15%)  
     Normocarbia (35-44 mmHg) 760 (24%) 645 (24%) 115 (24%)  
     Mild hypercarbia (45-54 mmHg) 665 (21%) 592 (22%) 73 (15%)  
     Severe hypercarbia (≥55 mmHg) 1,194 (38%) 969 (37%) 225 (46%)  
Post-ECMO ABG (24 hrs)     
     pH 7.41 (7.35-7.46) 7.41 (7.35-7.46) 7.40 (7.35-7.45)  0.64 
     HCO3- (mEq/L) 24 (20-26) 24 (20-26) 23 (20-26)  0.70 
     PaO2  138 (89-257) 133 (88-250) 156 (99-305) <0.001 
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     PaCO2  37 (33-42) 37 (33-42) 37 (32-42)  0.97 
     Lactate (mmol/L) 3.4 (1.8-7.2) 3.3 (1.8-7.2) 3.8 (2.1-7.0)  0.21 
Post-ECMO ABG O2 Categories     0.003 
     Hypoxia (<60 mmHg) 130 (4%) 104 (4%) 26 (5%)  
     Normoxia (60-119 mmHg) 904 (29%) 779 (30%) 125 (26%)  
     Mild hyperoxia (120-199 mmHg) 583 (19%) 494 (19%) 89 (18%)  
     Moderate hyperoxia (200-299 mmHg) 336 (11%) 274 (10%) 62 (13%)  
     Severe hyperoxia (≥300 mmHg) 501 (16%) 394 (15%) 107 (22%)  
Post-ECMO ABG CO2 Categories     0.97 
     Hypocarbia (<35 mmHg) 831 (27%) 692 (26%) 139 (28%)  
     Normocarbia (35-44 mmHg) 1,228 (39%) 1,020 (39%) 208 (43%)  
     Mild hypercarbia (45-54 mmHg) 321 (10%) 270 (10%) 51 (10%)  
     Severe hypercarbia (≥55 mmHg) 58 (2%) 49 (2%) 9 (2%)  
Delta PaO2 (mmHg) 53 (1-171) 50 (0-157) 84 (14-216) <0.001 
Relative delta PaO2 (%) 73 (1-231) 67 (0-210) 112 (18-314) <0.001 
Delta PaCO2 (mmHg) -11 (-25 - -1) -11 (-24 - -1) -12 (-28 - -2)  0.04 
Relative delta PaCO2 (%) -23 (-41 - -2) -23 (-41 - -2) -26 (-43 - -5)  0.080 
Days on ECMO support 3.0 (1.0-5.9) 2.9 (0.9-5.9) 3.2 (1.5-6.0) <0.001 
Additional mechanical support device 512 (16%) 429 (16%) 83 (17%) 0.69 
ECMO complications     
     ECMO circuit mechanical failure 435 (14%) 356 (14%) 79 (16%) 0.12 
     Renal replacement therapy 834 (27%) 648 (25%) 186 (38%) <0.001 
     Glucose < 40 mg/L 21 (1%) 13 (0%) 8 (2%) 0.004 
     Hemolysis 82 (3%) 62 (2%) 20 (4%) 0.03 
     Cardiac arrhythmia 455 (15%) 364 (14%) 91 (19%) 0.005 
     Gastrointestinal hemorrhage 151 (5%) 124 (5%) 27 (6%) 0.43 
     Disseminated intravascular coagulation 62 (2%) 48 (2%) 14 (3%) 0.13 
Outcomes 
     Survival 980 (31%) 922 (35%) 58 (12%) <0.001 

 
 
Continuous values are represented as # (interquartile range) and categorial variables are represented as 
n (%). Blood gasses have units of mmHg unless otherwise noted. Abbreviations – COPD: chronic 
obstructive pulmonary disease; ECPR: extracorporeal cardiopulmonary resuscitation; ECMO: 
extracorporeal membrane oxygenation; ABG: arterial blood gas; PaO2: arterial oxygen level; PaCO2: 
arterial carbon dioxide level. “Additional mechanical support device” includes left and right ventricular 
assist devices (VAD), intra-aortic balloon pumps, and percutaneous VADs. Delta PaO2 = Post-ECLS 
PaO2 minus Pre-ECLS PaO2. Delta PaCO2 = Post-ECLS PaCO2 minus Pre-ECLS PaCO2. “Other” race is 
defined as a separate category in the ELSO database. 
 
Fields with physiologically improbable values were treated as missing: pH>8 or <6.5, PaO2>760, and 
PaCO2>240 or <20 mmHg. Missing variables for some variables result in different denominators, listed 
here: male sex (n=3,104), weight (n=3,032), race (n=3,039), pre-ECLS pH (n=3,113), HCO3- (n=2,965), 
and lactate (n=1,592), post-ECLS pH (n=2,458), HCO3- (n=2,421), PaO2 (n=2,454), PaCO2 (n=2,438), 
and lactate (n=1,405), delta PaO2 (n=2,454), delta PaCO2 (n=2,438), and pre-ECLS mean blood pressure 
(n=1,971). 
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Table 2. Factors associated with composite acute brain injury by multivariable logistic 

regression. C-statistic for model is 0.67. Variables with a p<0.05 are bolded. 

 
Abbreviations – ECMO: extracorporeal membrane oxygenation. PaO2: arterial oxygen level; 
PaCO2: arterial carbon dioxide level. Addition of delta PaO2 and CO2 parameters (both raw 
values and relative percentages) degraded model performance compared to using only the 
categorized variables and were consequently excluded from the final model.  

 Multivariable 
  aOR 95% CI p value 
Age (by 10 years) 0.92 0.82-1.02 0.11 
Race    
     White Reference 
     Black 1.55 0.92-2.62 0.10 
     Hispanic 1.79 0.83-3.90 0.14 
     Asian 0.91 0.58-1.41 0.66 
     Other 1.54 0.98-2.42 0.06 
Decreasing pH (per 0.1 units), pre-ECMO 1.13 1.03-1.25 0.01 
Lactate, pre-ECMO 1.01 0.99-1.04 0.34 
PaO2, pre-ECMO    
     Hypoxia (<60 mmHg) 1.46 1.03-2.08 0.04 
     Normoxia (60-120 mmHg) Reference 
     Mild hyperoxia (120-199 mmHg) 1.13 0.71-1.80 0.62 
     Moderate hyperoxia (200-299 mmHg) 0.86 0.45-1.63 0.64 
PaCO2, pre-ECMO    
     Hypocarbia (<35 mmHg) 0.86 0.50-1.48 0.59 
     Normocarbia (35-44 mmHg) Reference 
     Mild hypercarbia (45-54 mmHg) 0.72 0.44-1.17 0.18 
     Severe hypercarbia (≥55 mmHg) 0.94 0.61-1.45 0.76 
PaO2, on-ECMO    
     Hypoxia (<60 mmHg) 1.32 0.66-2.66 0.43 
     Normoxia (60-120 mmHg) Reference 
     Mild hyperoxia (120-199 mmHg) 1.28 0.85-1.91 0.24 
     Moderate hyperoxia (200-299 mmHg) 1.34 0.83-2.17 0.24 
     Severe hyperoxia (≥300 mmHg) 1.55 1.02-2.36 0.04 
Renal replacement therapy 1.70 1.22-2.37 0.002 
Hemolysis 1.47 0.64-3.35 0.36 
Arrhythmia 1.34 0.89-2.04 0.17 
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Figures 

Figure 1. Trends in the (a) utilization of extracorporeal cardiopulmonary resuscitation 

(ECPR) and incidence of acute brain injury (ABI), and (b) for the incidence of individual 

ABI types. Trends were assessed using Cuzick’s non-parametric trend test. Annual 

ECPR volume has increased (p-trend=0.003) while incidence of ABI has decreased (p-

trend=0.023). Incidence of brain death decreased and ischemic stroke increased, while 

incidence of ICH and seizure have not changed over time.  
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Figure 2. Histograms for (a) on-ECMO PaO2 and (b) on-ECMO PaCO2. Abbreviations – 

ECMO: extracorporeal membrane oxygenation. 
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Figure 3. Forest plot for multivariable model of (a) acute brain injury (ABI), (c) ischemic 

stroke, and (c) intracranial hemorrhage (ICH). Dot represents adjusted odds ratio and 

brackets represent the 95% confidence intervals. Asterisks mark variables with a 

p<0.05. 
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