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Abstract

In this paper, we estimate the path of daily SARS-CoV-2 infections in England from the begin-

ning of the pandemic until the end of 2021. We employ a dynamic intensity model, where the mean

intensity conditional on the past depends both on past intensity of infections and past realised in-

fections. The model parameters are time-varying and we employ a multiplicative specification along

with logistic transition functions to disentangle the time-varying effects of non-pharmaceutical pol-

icy interventions, of different variants and of protection (waning) of vaccines/boosters. We show

that earlier interventions and vaccinations are key to containing an infection wave. We consider

several scenarios that account for more infectious variants and different protection levels of vac-

cines/boosters. These scenarios show that, as vaccine protection wanes, containing a new wave

in infections and an associated increase in hospitalisations in the near future will require further

booster campaigns and/or non-pharmaceutical interventions.
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1 Introduction

In this paper, we use data on SARS-CoV-2 infections in England to estimate a time series model where

the intensity of infections depends on both the level and intensity of past infections. We use this model

to quantify the impact of the Omicron BA.1/BA.2 sub-variants and of the waning of immunity from

vaccines/boosters on the COVID-19 epidemic in England, and to assess the timing and intensity of

non-pharmaceutical interventions (NPIs) and further booster campaigns that may still be needed in

2022 to curb future infection waves. We additionally quantify the hospitalisation waves associated

with new infection waves to show that further infections waves still require interventions.

There are two main challenges when fitting a model of COVID-19 to the data. First, the true

number of cases is not observed and the ratio of unreported to reported cases varies over time, due to

both changes in testing capacity and in testing behavior. Some econometric studies ignore unreported

cases and model only reported cases (Jiang et al., 2020, Liu et al., 2021, Khismatullina and Vogt,

2021, Lee et al., 2021); this can lead to inconsistent parameter estimates or to serious mid and long-

term forecasting errors, depending on the goal of the study (Korolev, 2021). Other studies employ

various strategies to identify the share of unreported cases: Li et al. (2020) and Hortaçsu et al. (2021)

identify the unreported cases through their mobility across regions; Arias et al. (2021), Rozhnova et

al. (2021), Viana et al. (2021) and Toulis (2021) use random sample serology tests; Gourieroux and

Jasiak (2020) use parameteric time-varying transition probabilities, and Sonabend et al. (2021) use

random tests in the population. We use the last identification strategy, as England runs a bi-weekly

random sample population survey based on polymerase chain reaction (PCR) tests, from which we

construct a time-varying ratio of total to reported cases and apply it to (delayed) daily reported cases

to approximate the total daily cases.

The second main challenge is model complexity. Most of the large-scale stochastic epidemiological

modelling papers that address the effectiveness of policy interventions compartmentalise the popula-

tion into susceptible, exposed, infected, recovered and possibly other states such as hospitalisations

or deaths. These models are necessarily complex over longer periods of time, because, for example,

only modelling infections in vaccinated or waned vaccinated typically require introducing another set

of compartments for each and therefore more unobservables (see, e.g., Sonabend et al., 2021, and the

citations therein). Because data on each infection type is typically not available at higher frequency,

several parameters in these models are unidentified and require calibration. With these additional cal-

ibrations, these models can be estimated by Bayesian filtering methods, although, due to nonlinearity

compound with several (unobserved) state variables and many parameters, their estimation can pose

substantial computational challenges.1

To reduce model complexity while allowing for vaccination and its waning, we propose a different

approach, where the population is not compartmentalised, and the effect of seasonality, vaccination

and waning enters the model parameters multiplicatively to the effect of variants of concern and that

of non-pharmaceutical interventions. To that end, we employ a dynamic intensity model with time-

varying parameters, where infections are assumed to follow a negative binomial distribution to allow for

overdispersion due to superspreader events.2 This model is akin to integer generalized autoregressive

conditional heteroskedasticity (INGARCH) models but instead of modelling variance clustering, it

1See e.g. the Supplementary Material in Sonabend et al. (2021), which describes how they estimate an age-structured,
regional, multiple vaccine type, multiple variant model.

2We chose the negative binomial distribution as this is most commonly used to model overdispersion in epidemiology
models (see, e.g., Rozhnova et al., 2021, Viana et al., 2021).
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models intensity clustering: when the intensity of the infection process is high, it stays high for a

while and it is reinforced by the level of past infections.3

The model parameters vary based on individuals’ behavior as a result of NPIs. We estimate

both the timing and the magnitude of the behavioral response following NPIs in a similar fashion to

Rozhnova et al. (2021) and Viana et al. (2021). The parameters also vary with vaccination, and

we estimate the intensity reduction from vaccination based on the vaccine schedule and the total

infections. This allows us to combine different administered vaccines into a single vaccine intensity

reduction parameter without requiring separate data on infections of vaccinated and non-vaccinated

individuals, data which is not available at daily frequency. The parameters also vary with variants of

concern and we estimate the timing and the effect of these variants in a similar fashion to Viana et al.

(2021). The seasonality cannot be identified separately and is calibrated based on previous studies.

The advantage of our model over more complex models is that it can be estimated relatively

quickly, and therefore can be used in real-time to inform policy makers on the interventions needed

and their timing, depending on new variants and (waning) effects of boosters. The disadvantage

compared to more complex epidemiology models is that it cannot explicitly account for the share of

the susceptible population entering and changing during an infection wave. However, since a large

fraction of individuals are susceptible to Omicron BA.1 and BA.2 sub-variants, regardless of their

vaccination or previous infection status, our model provides a good approximation to the path of

infections in the near future.

As the infection data is not stationary over long periods, we estimate the model via Bayesian

Hamiltonian Monte Carlo methods. Disentangling the effect of vaccines and boosters from those of

variants and NPIs allows us to employ counterfactuals and provide scenarios for the future six months,

both using NPIs and further booster campaigns.

Our counterfactuals shows that the timing of NPIs and of vaccines and boosters is key in curbing

infections waves. We find that the recent Omicron wave could have been substantially mitigated by

earlier timing and faster speed of vaccine and booster schedules or two weeks of lockdown in mid-

December 2021. Our scenarios show that another wave can happen in the coming months due to

booster waning, and its occurrence depends on a range of factors. First, on the transmissibility of

the Omicron BA.2 sub-variant: if its intensity increase relative to Omicron BA.1 is large, a new

wave can occur as early as March 2022. Second, on the choice of NPIs: maintaining semi-lockdown

restrictions from mid-December of 2021 may delay the next infection wave to the summer. Third,

on the effectiveness of boosters: if the booster intensity reduction is sufficiently high, under some

scenarios another infection wave is substantially delayed.

We then examine the implications these scenarios have for new hospital admissions. Our projected

hospital admissions track well observed hospital admissions, and we show that new hospitalisations

rise steeply, shortly after the start of another infection wave.

The rest of the paper is organised as follows. Section 2 describes the model. Section 3.1 describes

the data. Section 3.2 contains estimation results. Section 3.3 presents the counterfactual analysis,

3The dynamic INGARCH model was also used by Agosto and Giudici (2020), Roy and Karmakar (2021) and Giudici
et al. (2021) to model COVID-19 infections in U.S and Italy, though without accounting for overdispersion. The first
study assumes stationarity and constant parameters, therefore not accounting for NPIs. The second study models NPIs
nonparametrically, with Bayesian B-Splines, which makes it difficult to establish which periods relate to a particular
NPI. Giudici et al. (2021) use the Oxford COVID-19 Government Response Tracker to create NPI variables which are
then included as exogenous variables in the model, but this approach ignores endogeneity of individuals’ responses to
NPIs. Unlike our study, all three studies mentioned only use reported infections, and do not account for vaccination,
waning of vaccines, or variants of concern.
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and Section 3.4 provides projections of daily infections for the spring and summer of 2022. In Section

3.5 we approximate the daily new hospitalisations as a results of infections for counterfactuals and

projection scenario. Section 4 concludes. The Supplementary Appendix provides plots of parameter

posterior distributions along with parameter identification results obtained by simulation, as well as

additional counterfactuals and scenarios.

2 Model

The model for daily total COVID-19 cases (reported and unreported), yt, is a negative binomial

conditional response model:

yt|Ft−1 ∼ NegBinomial(λt, φ). (2.1)

The probability distribution function is given by(
y + φ− 1

y

)(
λt

λt + φ

)y (
φ

λt + φ

)φ
, (2.2)

with λt ∈ R+, φ ∈ R+, y ∈ N. The mean and the variance are given by E[yt|Ft−1] = λt and

V ar[yt|Ft−1] = λt+λ
2
t /φ, where λ2t /φ is the additional variance above the mean λt, Ft−1 = {yt−1, λt−1, yt−2, λt−2, . . .},

and

λt = λnpit st voct virt birt, (2.3)

where λnpit is the daily intensity of infections due to NPIs (either restrictions or relaxation of restric-

tions), st is seasonality, and voct, virt and birt are changes in intensity due to variants of concern,

vaccines and boosters.

To account for the seasonal pattern of SARS-CoV-2 (by which transmission is lower in summer

and higher in winter), we define the sinusoidal function st (Liu et al., 2021):

st = 1 + 0.1 cos(2π(t− t∗)/365.25), (2.4)

where t∗ is January 1 (due to coldest weather).

To account for the increase in intensity due to variants of concern, we define:

voct = (1− gα,t) + (1 + ρα)gα,t(1− gδ,t) + (1 + ρα)(1 + ρδ)gδ,t(1− go,t) (2.5)

+ (1 + ρα)(1 + ρδ)(1 + ρo)go,t, (2.6)

where the parameters ρα, ρδ and ρo represent the relative intensity increase of the Alpha, Delta and

Omicron BA.1 variants that became dominant in England in January 2021, June 2021 and December

2021 respectively. The intensity increase as the new variants take over is described using the logistic

functions:

gj,t =
1

1 + exp(−κj(t− t∗j ))
, (2.7)

where j = α, δ, o are the variants of concern, κj is the steepness of the logistic function and t∗j is the
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midpoint of the logistic function. The functions gj,t can be interpreted as probabilities of contracting

the new variant, which increase over time, while ρj can be interpreted as the relative intensity increase

when the new variant completely takes over. Therefore, as described in Section 3.1, we fitted the

logistic functions (2.7) to external gene sequencing data as in Viana et al. (2021) and Hansen (2021),

while ρj is estimated directly from fitting infection data.4

The effect of vaccinations and boosters and their waning is modelled as:

virt = (1− gv,t) + (1− vir wv,t)gv,t, (2.8)

birt = (1− gb,t) + (1− bir wb,t)gb,t, (2.9)

where virt and birt describe the vaccine/booster-induced intensity reduction. If there are no vaccinated

individuals, virt and birt are equal to 1. As more vaccines are administered, virt and birt decrease

to (1 − vir wv,t)gv,t and (1 − bir wb,t)gb,t respectively, where vir is the vaccine (two doses) intensity

reduction parameter and bir is the booster intensity reduction parameter. The transition from no

vaccination to vaccination is described by the logistic functions gv,t and gb,t:

gj,t =
c

1 + exp(−hj(t− t⊥j ))
, (2.10)

with j = v, b, where hj is the steepness, and t⊥j is the midpoint of the transition function. We assume

c = 0.7 (the fraction of the total population of England that had the 2nd dose of the vaccine by the

beginning of January 2022 when our sample ends). The logistic transition function for the vaccine and

booster uptake gv,t and gb,t are fitted to total share of daily vaccinations and boosters administered,

as explained in Section 3.1. Following Keeling et al. (2021), we introduce waning of vaccine protection

against infection through the exponential function:

wj,t =

exp(− t−t+
180 ), if t > t+,

1, if t+ ≤ t,
(2.11)

where j = v, b. For the estimation, we assume that the waning of vaccines starts on June 28, 2021,

hence t+ = June 28, 2021 (6 months after the first 2nd dose vaccine was administered December

29, 2020). For the booster, we do not assume waning in the estimation since our estimation ends in

December 24, 2021 (3 months after the first dose of the booster was administered in September 16,

2021). However, in the counterfactuals (Section 3.3), we assume that the boosters wane after four, five

and six months, while in the scenarios (Section 3.4), we assume that boosters wane after five months,

and the results for six months are relegated to the Supplementary Appendix.

4To motivate this choice further, note that the probabilities gj,t are unlikely to be identified within the dynamic
intensity model, separately from the time-varying effect of vaccinations and NPIs. Additionally, Götz et al. (2021) show
that if the number of susceptible individuals is fixed in an SIR (susceptible-infected-recovered) model with two virus
strains, then gj,t fitted to the share of the new variant in all cases within a period can be used to approximate the
transition in infectiousness from the old variant to the new one. Hansen (2021) shows this as well, without using an
SIR model. In both papers, the κj parameter directly relates to relative infectiousness of the new variant. We instead
estimate ρα, ρδ and ρo directly within the dynamic intensity model, following Viana et al. (2021) and therefore assuming
that we reach an average new intensity when the transition is completed.
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Table 1: NPIs transition functions

NPI transitions Meaning

f1,t first lockdown in 2020 to relaxation measures in the summer 2020
f2,t relaxation measures in the summer 2020 to second lockdown in November 2020
f3,t second lockdown to some relaxation measures before Christmas 2021
f4,t relaxation measures before Christmas 2020 to third lockdown in January 2021
f5,t lockdown in January 2021 to relaxation measures in Spring 2021
f6,t further relaxation measures and big gatherings

(the Euro 2020 football tournament end of June - beginning of July 2021)
f7,t no big crowded events (July 2021, after the end of the Euro 2020 tournament)
f8,t transition to a period with full relaxation (no restrictions) including

school/universities opening (from July 2021 to October 2021)
f9,t transition from school opening to school holiday (after late October 2021)

We specify λnpit as:

λnpit = θnpit yt−1 + βnpit λnpit−1, (2.12)

θnpit = θ0(1− f1,t) +
8∑
i=1

θifi,t(1− fi+1,t) + θ9f9,t, (2.13)

βnpit = β0(1− f1,t) +

8∑
i=1

βifi,t(1− fi+1,t) + β9f9,t. (2.14)

As can be seen from (2.12), λnpit is triggered by the previous day infections (yt−1) and previous day

intensity (λnpit−1). The parameters, θi ≥ 0 and βi ≥ 0, i = 0, . . . , 9, associated with yt−1 and λnpit−1
change in each regime by γi and ωi respectively: θi = θi−1 + (−1)iγi, βi = βi−1 + (−1)iωi i = 1, . . . , 9,

through logistic transition functions

fi,t =
1

(1 + exp(−ki(t− t+i )))
, i = 1, . . . , 9, (2.15)

where the ki describe the speed at which restrictions or relaxation measures are taken up by individuals,

and t+i describe the mid-time of the take-up of a restriction/relaxation. The correspondence between

each regime and NPIs is described in Table 1, where only the last regime does not refer to a NPI, but

to a transition to school holidays; nevertheless, we refer to it for simplicity as an NPI regime. The

fi,t logistic functions are directly estimated within the model, and approximate the timing and the

effect of individuals’ behavior following NPIs in a similar fashion to Rozhnova et al. (2021) and Viana

et al. (2021). This feature is not present in any other studies that employ the INGARCH model,

but is important because individuals might react ahead of measures, or might take time to adjust to

measures.
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3 Results

3.1 Data and Estimation Method

Data on variants of concern. We obtained the weekly percentage of COVID-19 positive cases

by gene pattern and Cycle threshold (Ct) value from the Office for National Statistics (ONS) Coro-

navirus (COVID-19) Infection Survey from England and we linearly interpolated them to obtain the

daily percentage of COVID-19 positive cases. For the Alpha variant we used gene sequencing data

from December 3, 2020 until January 10, 2021. The Alpha variant was identified if the ORF1ab and

N genes were present. For the Delta variant we used gene sequencing data between April 26, 2021

and December 6, 2021. The Delta variant was identified if ORF1ab, N and S genes were present. For

the Omicron BA.1 variant we used gene sequencing data between November 29, 2021 and January 3,

2022. The Omicron BA.1 variant was identified because of the absence of the S-gene in combination

with the presence of the ORF1ab and N genes. The logistic functions (2.7) were fitted to the daily

percentage of COVID-19 positive cases by gene.

Data on vaccines and boosters. We used daily observations for England from the official COVID-

19 in the UK dashboard on new people vaccinated with the second dose and new people receiving

a booster dose (from December 29, 2021 until January 13, 2022, and from September 16, 2021 until

January 13, 2022 respectively). The logistic functions (2.10) were fitted to the daily cumulative num-

ber of people vaccinated with the second dose and receiving the booster.

Constructed Daily Cases. For the model given in (2.3), our data is from May 3, 2020 until January

22, 2022, a total of N = 630 daily infections.5 The estimation of (2.3) is carried until December 24,

2021 and the data from December 25, 2021 until January 22, 2022 is used to assess the out of sample

fit of the model’s projections (in Section 3.4). The daily infections yt in (2.12) refer to the reported

and unreported cases, yt = yrt +yut . For the reported daily infections yrt we used new cases by specimen

date obtained from the official Coronavirus (COVID-19) in the UK dashboard. To approximate the

total daily infections, we proceeded as follows. Denote by Y r
1 =

∑t14
t=t1

yrt the reported cases by

specimen date for the period May 3-16, 2020, . . ., Y r
45 =

∑t630
t=t617

yrt the reported cases by specimen

date for the period January 9-22, 2022. The reported cases are considered to be reported with a delay

of 2 days since the onset of the symptoms (Casey-Bryars et al., 2021). Denote by Y1 =
∑t12

t=t1−2 yt

the total infections for the period May 1 - 14, 2021, . . ., Y45 =
∑t628

t=615 yt the total infections for

the period January 7 - 20, 2022. From the ONS Coronavirus (COVID-19) Infection Survey we have

the estimated percent (say pj) of the population that had COVID-19 for a time period of 14 days.

Then, Yj = pj × 56, 550, 138/100, where 56, 550, 138 is the population in England (based on the ONS

mid-year population estimates, June 2020). We calculate rj = (Yj/Y
r
j ), the ratio of total infections

and reported infections in the two-week period j, j = 1, . . . , 45. To calculate the daily total cases we

assume the daily ratio of total to reported infections within a 14-day period is equal to the two-week

ratio corresponding to that 14-day period. Let r̃t denote the daily ratio of total to reported cases;

then the total cases are yt = r̃ty
r
j . Note that we constructed daily data because some of the NPIs

transition functions are too short to use biweekly data, and could not have been estimated otherwise.

The total and reported new cases are shown in Figure 1 below. The divergence between the two

series is highest in times of high incidence, possibly due to limits to testing capacity, but also possibly

5The first observation for the PCR test surveillance in random samples of the population is May 3, 2020.
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due to testing behavior, suggesting that correcting for unreported cases is essential to remove the

time-varying sample selection bias in reported cases.6

Figure 1: Total infections and reported infections between May 3, 2020 until January 22, 2022 in
England
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Estimation. Because total cases are not stationary, we use Bayesian estimation with Hamiltonian

Monte Carlo (HMC) methods, implemented in R Stan, and for simplicity we also did so for stationary

data such as the share of new variants or cumulative vaccine/boosters uptake. Neal (2011) and

Fernández-Villaverde and Guerrón-Quintana (2021) provide a description of the HMC and highlight

its computationally efficiency relative to traditional Markov Chain Monte Carlo (MCMC) methods,

due to exploiting information from the gradient of the posterior, which reduces the correlation between

successive parameter values in the Markov chain and therefore ensures that the Markov chain converges

much faster than in MCMC.

Denoting by xj,t the daily percentage of COVID-19 positive cases due to the new variant or the

daily cumulated vaccine/booster uptake, we used xj,t ∼ N(gj,t, σ
2
j ), where gj,t is given by (2.7) (with

j = α, δ, o) or (2.10) (with j = v, b). Table 2 below lists the priors for all parameters - whether they

are estimated using sequenced gene data, vaccine data, or infections - and motivates their choice.

6The Supplementary Appendix, Section S1, shows the time-varying ratio of total to reported cases.
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Table 2: Prior distributions of the parameters in the model

Parameter Prior Description

θ0 LogN(0, 1) Vague prior (infections data)
γi LogN(0, 1) i = 1, . . . , 9, vague prior (infections data)
β0 LogN(0, 1) Vague prior (infections data)
ωi LogN(0, 1) i = 1, . . . , 9, vague prior (infections data)
ρα LogN(0, 0.5) Vague prior for Alpha (infections data)
ρδ LogN(0, 1) Larger scale than for Alpha (infections data)
ρo LogN(2, 2) Larger scale than for Delta (infections data)
vir Beta(5, 2) Gives more probability mass to values larger than 0.5 (infections data)
bir Beta(5, 2) Gives more probability mass to values larger than 0.5 (infections data)
ki Exp(1) i = 1, . . . , 9 (infections data)
t+1 N(35,7) 35 =June 6, 2020, relaxation in the summer 2020 (infections data)
t+2 N(140,7) 140 =September 19, 2020, transition to the second lockdown in November 2020

(infections data)
t+3 N(200,7) 200 =November 18, 2020, transition from the lockdown in November 2020

to relaxation (infections data)
t+4 N(230,7) 230 =December 18, 2020, transition from relaxation to lockdown in January 2021

(infections data)
t+5 N(270,7) 270 =January 27, 2021, transition from the lockdown in January 2021

to relaxation (infections data)
t+6 N(425,7) 425 =July 1, 2021, transition to large crowds events (Euro 2021) (infections data)
t+7 N(440,7) 440 =July 17, 2021 transition to no large crowed events (infections data)
t+8 N(515,7) 515 =September 29, 2021 transition to a period with full relaxation and

schools/universities opening (infections data)
t+9 N(555,7) 555 =November 8, 2021, transition form school opening to school holiday

(infections data)
φ LogN(0,1) Vague prior (infections data)
κi Exp(1) As in Rozhnova et al. (2021), κi = 1 means lift-up ∼ 6 days (i = α, δ, o) (gene data)
t∗α N(10,7) 10 =December 12, 2020, around the date when Alpha became dominant (gene data)
t∗δ N(10,7) 10 =April 26, 2021, around the date the Delta emerged (gene data)
t∗o N(17,7) 17 =December 15, 2021, around the date Omicron became dominant (gene data)
σj LogN(0,1) Vague prior, j = α, δ, o, v, b (gene/vaccination/booster data)
hi Exp(1) i = v, b (vaccination/booster data)

t⊥v N(190,7) 190 =July 6, 2021, around the date when 50% of the population had
the vaccine (2nd dose) (vaccination data)

t⊥b N(106,7) 106 =December 12, 2021, around the date 50% of the population had the booster (booster data)
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3.2 Posterior estimates

The transition functions for sequenced gene data and vaccination are shown in Figures 2a and 2b, and

the fitted total infections in Figure 3. The posterior medians along with their 90% credible intervals

are listed in Table 3. The estimated steepness of the transition functions based on sequenced gene

data is the highest for the Omicron BA.1 variant, 0.1508, while the steepness of transition function for

the Delta variant, 0.0377, is slightly higher than for the Alpha variant which is 0.0372. The estimated

transition functions for the vaccines and boosters from the vaccination data show that the uptake of

the booster is faster than the uptake of the vaccine 2nd dose.

Figure 2

(a) Transition functions variants of concern
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(b) Transition functions vaccine/booster
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Figure 3: Fitted versus total cases
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Table 3: Posterior medians

Parameter Posterior median 90% credible interval

Parameter associated with yt−1 θ0 0.94 [0.80, 1.16 ]
Parameter associated with yt−1 in regime 1 γ1 0.06 [0.02, 0.29]
Parameter associated with yt−1 in regime 2 γ2 0.03 [0.01, 0.06]
Parameter associated with yt−1 in regime 3 γ3 0.44 [0.22, 0.71]
Parameter associated with yt−1 in regime 4 γ4 0.20 [0.06,0.46]
Parameter associated with yt−1 in regime 5 γ5 0.05 [0.02, 0.10]
Parameter associated with yt−1 in regime 6 γ6 0.10 [0.04, 0.20]
Parameter associated with yt−1 in regime 7 γ7 0.17 [0.08, 0.30]
Parameter associated with yt−1 in regime 8 γ8 0.10 [0.03, 0.24]
Parameter associated with yt−1 in regime 9 γ9 0.14 [0.06, 0.28]
Parameter associated with λt−1 β0 0.24 [0.12, 0.51 ]
Parameter associated with λt−1 in regime 1 ω1 0.05 [0.02, 0.28]
Parameter associated with λt−1 in regime 2 ω2 0.03 [0.01,0.06]
Parameter associated with λt−1 in regime 3 ω3 0.15 [0.06,0.29]
Parameter associated with λt−1 in regime 4 ω4 0.14 [0.06,0.23]
Parameter associated with λt−1 in regime 5 ω5 0.06 [0.03, 0.12]
Parameter associated with λt−1 in regime 6 ω6 0.07 [0.03, 0.16]
Parameter associated with λt−1 in regime 7 ω7 0.17 [0.09, 0.28]
Parameter associated with λt−1 in regime 8 ω8 0.09 [0.04, 0.21]
Parameter associated with λt−1 in regime 9 ω9 0.09 [0.04, 0.20]
Intensity increase Alpha (relative to wild type) ρα 0.26 [0.15, 0.43]
Intensity increase Delta (relative to Alpha) ρδ 0.81 [0.44,1.34]
Intensity increase (relative to Delta) ρo 0.41 [0.10,0.76]
Vaccine intensity reduction vir 0.49 [0.22, 0.81]
Booster intensity reduction bir 0.69 [0.38, 0.92]
Steepness NPI transition function regime 1 k1 0.63 [0.12,2.93]
Steepness NPI transition function regime 2 k2 0.66 [0.12, 2.96]
Steepness NPI transition function regime 3 k3 0.11 [0.10, 0.14]
Steepness NPI transition function regime 4 k4 0.17 [0.11, 0.62]
Steepness NPI transition function regime 5 k5 0.54 [0.12, 2.75]
Steepness NPI transition function regime 6 k6 0.81 [0.13, 3.15]
Steepness NPI transition function regime 7 k7 0.12 [0.10, 0.82]
Steepness NPI transition function regime 8 k8 1.33 [0.35, 3.75]
Steepness NPI transition function regime 9 k9 1.22 [0.22, 3.46]
Mid-time NPI transition function regime 1 t+1 25.50 [1.70, 43.75]
Mid-time NPI transition function regime 2 t+2 140.70 [128.17, 153.50]
Mid-time NPI transition function regime 3 t+3 201.38 [199.20, 206.56]
Mid-time NPI transition function regime 4 t+4 217.34 [212.59, 227.90]
Mid-time NPI transition function regime 5 t+5 260.72 [256.34, 271.44]
Mid-time NPI transition function regime 6 t+6 426.72 [414.96, 434.92]
Mid-time NPI transition function regime 7 t+7 441.96 [440.14, 447.71]
Mid-time NPI transition function regime 8 t+8 532.02 [519.98, 532.94]
Mid-time NPI transition function regime 9 t+9 535.63 [535.04, 542.43]
Overdispersion parameter φ 18.60 [16.74, 20.56 ]
Steepness transition function Alpha κα 0.0372 [0.0316, 0.0429]
Steepness transition function Delta κδ 0.0377 [0.0331, 0.0433]
Steepness transition function Omicron BA.1 κo 0.1508 [0.1186, 0.1880]
Mid-time transition function Alpha t∗α 14.67 [12.90, 16.23]
Mid-time transition function Delta t∗δ 41.78 [39.65, 43.85]
Mid-time transition function Omicron BA.1 t∗o 16.44 [15.20, 17.74]
Steepness transition function vaccines 2nd dose hv 0.0285 [0.0279, 0.0291]
Standard deviation N(gα,t, σ

2
α) σα 0.0533 [0.0441,0.0658]

Standard deviation N(gδ,t, σ
2
δ) σδ 0.0988 [0.0915,0.1072]

Standard deviation N(go,t, σ
2
o) σo 0.1551 [0.1216,0.2023]

Standard deviation N(gv,t, σ
2
v) σv 0.0909 [0.0856, 0.0967 ]

Standard deviation N(gb,t, σ
2
b) σb 0.0153 [0.0138,0.0172]

Steepness transition function booster hb 0.0414 [0.0406, 0.0422]

Mid-time transition function vaccine 2nd dose t⊥v 155.32 [154.49, 156.16]

Mid-time transition function booster t⊥b 85.47 [84.98, 85.94]
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The rest of the parameters are estimated within the dynamic intensity model. As can be seen from

Table 3 above, the Alpha, Delta and Omicron BA.1 variants result in 26%, 81% and 41% higher

relative intensity. The vaccine intensity reduction parameter estimates vir and bir are 49% and 69%

respectively.7 The posterior medians for steepness of the transition functions in the regimes 8 and

9 (since the full relaxation in the summer 2021) are the highest (1.33 and 1.22 respectively). The

overdispersion parameter estimate is large, showing that a model without overdispersion would fit the

data poorly.

The way the model is written may suggest that some parameters only enter multiplicatively and

cannot be identified; however, the regimes over which these parameters are identified only partially

overlap, and this is ensured by gluing the transition functions, allowing identification from the time

variation in the non-overlap periods. In the Supplementary Appendix, Section S2, we show that the

posteriors for most parameters are tighter than their priors, and further demonstrate identification

through simulations.

The model implies that E[λt|Ft−1] = θ̄tyt−1 + β̄tλt−1, where θ̄t = θnpit st voct virt birt and β̄t =

βnpit st voct virt birt. In Figures 4 and 5 below, we show the estimated time evolution of the median

posterior estimates of θ̄t and β̄t plotted against the variants, vaccinations and the timing of various

measures. In these figures Steps 1 - 4 refer to the steps in the roadmap out of the third lockdown

(that took place in early 2021) in England. We further plot the contribution to the estimated θ̄t of

the estimates of θnpit st and θnpit stvoct, and similarly for β̄t. Figure 4 shows that in principle, NPIs

were effective should they have been implemented against the wild-type variant, but because of new

variants, their effectiveness dropped over time. The figure also shows that vaccines and boosters

substantially mitigated this drop. We see a drop in θ̄t in the summer of 2020, followed by an increase

in autumn 2020. This second wave is brought under control by a second lockdown, but θ̄t starts to

increase again as the Alpha variant takes over. At the same time, vaccinations begin and this tempers

down the increase until the Delta variant takes over and large events such as the Euro-2020 cup are

allowed, in which period the transmission soars. With these events no longer in place, the transmission

decreases again but then schools open, and we see another steep surge, which is tempered by school

holidays, but most importantly by boosters being widely administered. We see a similar evolution

for β̄t in Figure 5, except that as the Omicron variant becomes dominant, this parameter stays low.

This can be explained by the fact that β̄t measures the dependence of infections on the recent past

infections rather than the level of infections yesterday. This dependence becomes less important with

Omicron, as this variant is widely shown to generate immune escape, so that infections in the recent

past, with a previous variant, play a less important role than they did at providing protection against

infection compared to the case when other variants were dominant. Nevertheless, the estimate of β̄t is

not close to zero, indicating that this dependence is not negligible. This also motivates our use of the

reinforcing term β̄tλt−1: without it, the dependence on infections on the recent past infections cannot

be easily quantified.

7We stress here that vir and bir cannot be interpreted as vaccine and booster effectiveness against infection, as this
is a term usually reserved for comparing vaccinated with non-vaccinated in a controlled setting.
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Figure 4: Estimated time evolution of posterior median estimates of the parameters associated with
previous day infections yt−1
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Figure 5: Estimated time evolution of posterior median estimates of the parameters associated with
previous day intensity λt−1
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3.3 Counterfactual analysis

We use the estimates from Section 3.2 to run counterfactuals regarding the timing and intensity of

booster campaigns (Figures 6 and 7) and NPIs (Figures 8 and 9). In all figures, the shaded areas

represent the interquartile range from 4000 negative binomial draws (in the Supplementary Appendix,

Section S3, we included the same figures, but with the lower 5% to the upper 95% quantiles). The

projected daily median infections (solid lines) is given by the median from these 4000 draws.

Denote by θ̂0, β̂0, γ̂i ω̂i, k̂i, t̂
+
i (i = 1, . . . , 9); ĥj , t̂

⊥
j (j = v, b); v̂ir; b̂ir; ρ̂j , κ̂j , t

∗
j (j = α, δ, o), φ̂

the posterior medians from Table 3, which are used to obtain the estimates θ̂i, β̂i, f̂i,s, (i = 1, . . . , 9),

θ̂
npi

s , β̂
npi

s , ĝj,s (j = α, δ, o, v, b), v̂ocs, v̂irs and b̂irs (s = 1, . . . , T ), the in-sample time evolution of the

parameters. Then, for t = T + ` (` ≥ 1), a draw from the negative binomial is:

ỹt ∼ NegBinomial(λ̃t, φ̂), (3.1)

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.09.22272165doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.09.22272165
http://creativecommons.org/licenses/by-nd/4.0/


and the parameters’ time evolution for this draw are given by

λ̃
npi
T+1 = θ̂

npi

T+1yT + β̂
npi

T+1λ̂
npi

T , (3.2)

for ` = 1, and by

λ̃t = λ̃
npi
t , st ṽoct ṽirt b̃irt (3.3)

λ̃
npi
t = θ̃

npi
t ỹt−1 + β̃

npi
t λ̃

npi
t , (3.4)

for ` ≥ 2.

Figure 6 below shows what would have happened if the booster campaign had started in mid-

August 2021 rather than mid-September 2021. In this counterfactual, t = T + 1 corresponds to

November 27, 2021 (when the first case of Omicron BA.1 variant was identified in England), and for

t = T + 1, . . ., we obtain the out-of-sample parameters evolution: θ̃
npi
t = θ̂

npi

t , β̃
npi
t = β̂

npi

t , ṽirt = v̂irt,

b̃irt = (1− g̃bt ) + (1− b̂ir wb,t)g̃bt , (3.5)

g̃bt =
c

(1 + exp(−ĥb(t− t̃)))
, (3.6)

where b̂ir =0.69, ĥb = 0.0414 (posterior medians for bir and hb from Table 3), and c = 0.7 (70% of

the population is assumed to be reached by the vaccine/booster campaigns, as we considered in the

estimation of the model in Section 3.2). The booster waning in (3.5), wb,t, starts 5 months after August

16, 2021. It is calculated as in (2.10) with t+ = January 15, 2021. For the mid-time in the transition

function of the booster, (3.6), we consider the case when 50% of the population is reached relatively

fast, that is, in 85 days, exactly like the current booster campaign that started in mid-September

2021 (t̃ = November 8, 2021). We also consider the case when 50% of the population is reached later

than 85 days since the start of the booster campaign in mid-August, more exactly in 120 days (t̃ =

December 13, 2021 in (3.6)). In Figure 6 we present the projected daily infections from November 27,

2021 (when the first case of Omicron BA.1 variant was identified in England). The black line shows

the total daily infections. The red line shows the posterior median prediction for the scenario in which

50% of the population received the booster by the start of December 2021. The blue line shows the

posterior median prediction for the scenario in which 50% of the population received the booster by

the start of January 2021. Hence, this figure shows that had the booster campaign started one month

earlier and reached quickly a significant fraction of the population, the winter infection wave could

have been avoided. However, an early start would not have been sufficient to avoid a winter wave if

the booster uptake was not fast enough.

14

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.09.22272165doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.09.22272165
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6: Counterfactual when the vaccine booster campaign starts on August 16, 2021 and the
population is reached faster (red) or slower (blue); projection of daily infections from November 27,
2021; bir = 0.69 (posterior median) and ρo = 0.41 (posterior median)

Figure 7 below shows a hypothetical scenario in which the booster campaign started as it actually

occurred, but the population is reached at different speeds and/or more people received the booster.

In this counterfactual, t = T + 1 in (3.1) corresponds to November 27, 2021 (when the first case of

Omicron BA.1 variant was identified in England). For t = T + 1, . . . we obtain the out-of-sample

parameters evolution as follows: θ̃
npi
t = θ̂

npi

t and β̃
npi
t = β̂

npi

t . As one cannot have a booster without

being fully vaccinated first, for vaccines, we use the transition function estimated from the vaccination

data, but with total vaccinated population share c ∈ {0.7, 0.8, 0.9}, where c = 0.7 is what actually

occurred, and c > 0.7 are hypothetical scenarios.8 More exactly, in (3.3) we use:

ṽirt = (1− g̃v,t) + (1− v̂ir wv,t)g̃v,t, (3.7)

g̃v,t =
c

1 + exp(−ĥv(t− t̂⊥v ))
, (3.8)

where the 2nd dose vaccine waning, wv,t, starts on June 28, 2021 (as considered in the estimation,

Table 3), and c = 0.7, 0.8, 0.9. For the booster, we use (3.5) and (3.6), but with t̃ = November 14, 2021

and c = 0.7 (70 % of the population is reached, red line from Figure 7). This scenario corresponds

to the situation when 50% of the population is reached by the beginning of December 2021. We also

consider the hypothetical scenario when 50% of the population is reached later in December 2021 and

by the beginning of January 2022, in which case we take t̃ = December 9, 2021 (for the blue, green and

light blue lines from Figure 7), with different speeds: c = 0.9 (90% of the population is reached, blue

line), c = 0.8 (80% of the population is reached, green line), c = 0.7 (70% of the population is reached,

light blue). In Figure 7 we present the projected daily infections from November 27, 2021 (when the

first case of Omicron BA.1 variant was identified in England). Figure 7 confirms that the speed of the

booster campaigns would have been key to maintain the spread of Omicron. The estimated model

predicts that had 50% of the population received a booster before Christmas 2021 then the winter wave

driven by the spread of Omicron could have been avoided. If 50% of the population is boosted by early

January (which is what occurred) then the estimated model predicts a winter wave similar to what

was observed up to the start of 2022 with a peak being reached in mid-January. In reality the number

of infections peaked in early January which suggests that the measures adopted during December

8Therefore, when c > 0.7, the vaccination speed is faster.
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2021 (after mid-December masks became mandatory in most public indoor venues, individuals were

advised to work from home and proof of vaccination was required to enter nightclubs or attend large

gatherings) to contain the spread of Omicron did have an impact (note that the projected daily median

infections in the scenarios considered start in November 27, 2021 which is prior to the adoption of

restriction measures in December 2021).

Figure 7: Counterfactual when the vaccine booster campaign starts on September 16, 2021 and popu-
lation is reached at different speeds; projection of daily infections from November 27, 2021; bir = 0.69
(posterior median) and ρo = 0.41 (posterior median)

In Figures 8 and 9 below we present respectively a counterfactual analysis with a circuit breaker

(two weeks of hard-lockdown as recommended by one member of the Scientific Advisory Group for

Emergencies in England) and a semi-lockdown (similar to what was implemented by the government

in England after mid-December of 2021). In Figures 8 and 9 the projected daily infections are from

December 18, 2021 (t = T+1 in (3.1) corresponds to this date). In particular, ṽirt = v̂irt and b̃ir = b̂ir

with booster waning function wv,t calculated as in (2.11) with t+ = January 15, 2021 (waning starts

4 months after mid-September 2021), t+ = February 14, 2021 (waning starts 5 months after mid-

September 2021) and t+ = March 16, 2021 (waning starts 6 months after mid-September 2021). We

consider the following hypothetical evolution of the parameters due to the NPIs:

θ̄
npi
t = θ̂0(1− f̂1,t) +

8∑
i=1

θ̂if̂i,t(1− f̂i+1,t) + θ̂9f̂9,t(1− f10,t)

+ (θ̂9 − 0.05)f10,t(1− f11,t) + (θ̂9 − 0.05 + γ̂8)f11,t

≈ θ̂9f̂9,t(1− f10,t) + (θ̂9 − 0.05)f10,t(1− f11,t) + (θ̂9 − 0.05 + γ̂8)f11,t, (3.9)

β̄
npi
t = β̂0(1− f̂1,t) +

8∑
i=1

β̂if̂i,t(1− f̂i+1,t) + β̂9f̂9,t(1− f10,t)

+ (β̂9 − 0)f10,t(1− f11,t) + (β̂9 + ω̂8)f11,t

≈ β̂9f̂9,t(1− f10,t) + (β̂9 − 0)f10,t(1− f11,t) + (β̂9 + ω̂8)f11,t, (3.10)

where the results in (3.9) and (3.10) follow from the fact that for t = T +1, . . ., the transition function

f̂9,t is the dominant one and the transition functions for the previous regimes have no impact. In (3.9)
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and (3.10) above, f10,t is the transition function from relaxation to hard lockdown or semi-lockdown:

f10,t =
1

1 + exp(−k10(t− t∗))
, (3.11)

with t∗ =December 22, 2021 (for the circuit breaker starting on December 18, 2021), t∗ =January 8,

2022 (for the circuit breaker starting on January 4, 2022 when total infections reach their peak), and

t∗ = December 28, 2021 (for the semi-lockdown that starts on December 18, 2021). The steepness of

the transition function (3.17) is considered k10 = 0.1 (similar to k̂3 the estimate of steepness of the

transition function f̂3,t from relaxation to hard-lockdown in November 2020 in Table 3). For the hard

lockdown, the midpoint of the transition function is reached 4 days after the lockdown is imposed,

while for the semi-lockdown the midpoint is reached after 10 days. Hence, the transition function is

steeper for the hard lockdown compared to the semi-lockdown. The exit from lockdown in period with

relaxation is captured though the transition function

f11,t =
1

1 + exp(−k11(t− t−))
, (3.12)

with steepness equal to k11 = 1 (≈ k̂8 the steepness of the transition function f̂8,t to a period of full

relaxation in the summer and Autumn 2021, see Table 3). Moreover, t− = February 20, 2022 (for the

circuit breaker in December 18 with exit in 2 weeks), t− = March 9, 2022 (for the circuit breaker in

January 4 with exit in 2 weeks), t− = March 10, 2022 (for the semi-lockdown in December 18 with

an exit in 2 weeks), t− = March 23, 2022 (for the semi-lockdown in December 18 with an exit of 4

weeks). For all scenarios in Figures S11 and S12 we assume that the exit is in 2 or 4 weeks after the

lockdown is imposed, but we allow for the fact that restrictions are usually lifted gradually, not in

one go. To account for this, the midpoint of the transition function from lockdown to relaxation is

reached 50 days after the measures are lifted. The choice of 50 days is motivated by the fact that

between the midpoint of f̂7,t and that of f̂8,t (between the big sport event at the beginning of July

2021 and the peak of infections in late October 2021 when full relaxation measures were in place and

the Delta variant was dominant) there are 90 days. The results from Figures S11 and S12 are similar

if the midpoint of f11,t is reached after 100 days (if restrictions are lifted slower). As seen from (3.9),

the parameter associated with previous day infections, yt−1, transitions from θ̂9 to θ̂9 − 0.05 during

lockdown (to reflect that the lockdown reduces the infections). The choice of 0.05 is similar to γ̂5

(see 3) in regime 5 (after the third lockdown that started in January 2021). As seen from (3.16) the

parameter associated with past daily intensity λt−1 remains unchanged. This is motivated by the fact

that starting with the period when Delta became dominant, and in particular when the Omicron BA.1

became dominant, the importance of λt−1 has diminished while the importance of yt−1 in triggering

new infections has increased, reflecting the fact that Omicron is more transmissible than previous

variants. Once the lockdown ends, the parameters increase by γ̂8 and ω̂8 (the posterior medians of

the parameters associated with the NPI in the summer 2021 when full relaxation measures were in

place).
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Figure 8: Counterfactual when there is a circuit break (2 weeks hard lockdown) from December 18,
2021 or January 4, 2022 (peak of infections); projection of daily infections from December 18, 2021;
bir = 0.69 (posterior median) and ρo = 0.41 (posterior median)

Figure 9: Counterfactual when there is a semi-lockdown from December 18, 2021; projection of daily
infections from December 18, 2021; bir = 0.69 (posterior median) and ρo = 0.41 (posterior median)

Figures 8 and 9 also demonstrate that the timing of adoption of restriction measures is key. If

a circuit breaker lockdown had been implemented in mid-December 2021 then the estimated model

predicts that the increase in cases in early winter due to Omicron could have been avoided. However,

a late circuit breaker lockdown or a semi-lockdown of either 2 or 4 weeks would not have prevented

the winter wave. Note that the semi-lockdown scenario of 4 weeks is close to what the government

implemented (the government restrictions were put in place between mid-December to late January,

approximately 6 weeks) and the estimated model projections track well the total realised infections.

The similarity between the counterfactual cases of 2 and 4 weeks semi-lockdown indicates that perhaps

the government could have ended restrictions earlier than it did and that would not have resulted in

a significant increase in infections.

3.4 Scenarios

In this section, we provide scenarios for the evolution of total COVID-19 cases in the next six months.

As in Section 3.3 the shaded areas in all figures represent the interquartile range from 4000 negative

binomial draws (in the Appendix, Section S4, we included the same figures, but with the lower 5%

to the upper 95% quantiles). The projected daily infections are given by the median from these 4000

draws. The draws are obtained as described at the beginning of Section 3.3 and are based on (3.1)-(3.4)
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with t = T + 1 corresponding to December 25, 2021. Moreover,

ṽoct = (1− ĝα,t) + (1 + ρ̂α)ĝα,t(1− ĝδ,t) + (1 + ρ̂α)(1 + ρ̂δ)ĝδ,t(1− ĝo,t)

+ (1 + ρ̂α)(1 + ρ̂δ)(1 + ρ̂o)ĝo,t(1− gBA.2,t)

+ (1 + ρ̂α)(1 + ρ̂δ)(1 + ρ̂o)(1 + ρBA.2)gBA.2,t

≈ (1 + ρ̂α)(1 + ρ̂δ)(1 + ρ̂o)ĝo,t(1− gBA.2,t)

+ (1 + ρ̂α)(1 + ρ̂δ)(1 + ρ̂o)(1 + ρBA.2)gBA.2,t, (3.13)

where the result in (3.13) follows from the fact that from the summer 2021 the Delta variant is

dominant; ρBA.2 is the intensity increase parameter for the Omicron BA.2 variant relative to the

Omicron BA.1 variant, and gBA.2,t is the transition function of the Omicron BA.2 variant

gBA.2,t =
1

1 + exp(−κ̂o(t− t∗∗))
, (3.14)

with κ̂o the steepness of the transition function for the Omicron BA.1 variant ĝo,t, and the mid-time

of gBA.2,t is t∗∗ = February 5, 2022, that is 12 days after the first cases of infections with the Omicron

BA.2 variant were genomically confirmed in England. For the Omicron BA.1 variant the mid-time in

the transition function was estimated to be 16 days after the first case appeared in England (November

27, 2021). Thus, we assume that the BA.2 variant spreads more rapidly than the BA.1 variant.

In obtaining the draws ỹt, we also considered:

θ̄
npi
t = θ̂0(1− f̂1,t) +

8∑
i=1

θ̂if̂i,t(1− f̂i+1,t) + θ̂9f̂9,t(1− f10,t) + (θ̂9 + γ̂8)f10,t

≈ θ̂9f̂9,t(1− f10,t) + (θ̂9 + γ̂8)f10,t, (3.15)

β̄
npi
t = β̂0(1− f̂1,t) +

8∑
i=1

β̂if̂i,t(1− f̂i+1,t) + β̂9f̂9,t(1− f10,t) + (β̂9 + ω̂8)f10,t

≈ β̂9f̂9,t(1− f10,t) + (β̂9 + ω̂8)f10,t, (3.16)

where f10,t is the transition function from some relaxation measures to full relaxation

f10,t =
1

1 + exp(−k10(t− t∗∗∗))
, (3.17)

with k10 = 1 (≈ k̂8 the steepness of the transition function f̂8,t to a period of full relaxation in the

summer and Autumn 2021, see Table 3). We consider two cases for t∗∗∗. The first one corresponds to

a scenario with an early impact of measures lifted: t∗∗∗ = March 13, 2022 (50 days after January 27

2021 when measures of Plan B were lifted).9 The second case corresponds to a scenario with a late

impact of measures lifted: t∗∗∗ = May 6, 2022 (100 days after January 27 2021 when measures of Plan

B were lifted).

Finally, to obtain the draws ỹt we have ṽirt = v̂irt, and

b̃irt = (1− ĝbt ) + (1− b̃ir wb,t)ĝbt , (3.18)

9Plan B refers to measures introduced on December 8, 2021, in England: working from home for those who can, face
mask wearing to most public indoor venues, vaccine passport, and daily tests for those who are contacts of Omicron
cases.
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where b̃ir = 0.75 (Figures S13-S15 below) and b̃ir = b̂ir = 0.69 (posterior median) (Figures S17-S20

in Section S5 from the Supplementary Appendix). The higher bir is chosen because: (a) the scenarios

with bir = 0.69 seem pessimistic when plotted against infections in February 2022, which were not

used in the estimation, but just plotted out of sample; (b) it partially compensates for the fact that we

do not account for temporary immunity in the model, but previously acquired infections with Omicron

BA.1 may temporarily protect against infection with Omicron BA.2, as suggested by a recent Danish

study - Lyngse et al.(2022). Therefore, the scenarios considered are a baseline case in which the BA.2

sub-variant does not become dominant (Figure 10), (ρBA.2 = 0) and three cases where the BA.2 sub-

variant leads to ρBA.2 ∈ {5%, 10%, 20%} intensity increase compared Omicron BA.1 (Figures 11-13).

We assume that the booster wanes in 5 months (Figures 10-13), and the Supplementary Appendix

(Section S5, Figures S21-S23) shows the same scenarios but with waning after 6 months.

In all scenarios we consider projections for whether NPIs are not lifted, lifted having an early

impact on infections and lifted having a late impact on infections. The case in which the lifting of

restrictions has early impact represents a scenario in which individuals quickly start taking advantage

of the greater freedoms allowed and the case of a late impact represents a scenario in which individuals

remain cautious. Black dots indicate the observed total infections and the black line the in-sample

posterior median for the estimated model from Section 2.

Figure 10 shows that the estimated model projections match well the observed peak in infections

observed in early January, 2022 with infections projected to continue falling until they reach very

low levels by March. However, we can also observe that due to waning of boosters after 5 months,

infections increase again. The timing for the emergence of a new wave will depend on restriction

measures. Maintaining restrictions similar to those implemented from mid-December, 2021 to late

January, 2022 could mean delaying the new wave to the summer. Lifting the measures can lead to a

new wave emerging in either early spring (if there is an early impact from lifting restrictions) or late

spring (if there is a late impact from lifting restrictions).

Figure 10: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.75, ρo = 0.41 (posterior median), no increase in relative BA.2 intensity
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Figure 11 shows that if the Omicron BA.2 sub-variant has an intensity increase of ρBA.2 = 5%

relative to Omicron BA.1 (Figure 11), then the timing of the projected new wave changes relative to

what was shown Figure 10: with late impact from lifting restrictions, a new wave starts in mid-April

(rather than May) and in the case of no lifting of restrictions a new wave starts in late May, 2022

(rather than July). If ρBA.2 = 10% (Figure 12) then for both the case of late impact from lifting

restrictions and no lifting of restrictions a new wave starts in late mid-April. If ρBA.2 = 20% (Figure

13) then a new wave is predicted to start in March (even if the restrictions imposed in mid-December

of 2021 were to be kept).

Figure 11: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 5%

Figure 12: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 10%
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Figure 13: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 20%

3.5 Impact on hospitalisations

A large number of infections causes many economic disruptions, including work absences, and sub-

stantial health burdens. As a larger population is vaccinated and boosted, it may seem that the second

concern becomes smaller. For this purpose, we also approximate new hospital admissions associated

with the projected cases for the scenarios considered in the previous section.

Let y∗t represent the median projected infections in a given scenario from Figures 10-13 and further

three scenarios in the Supplementary Appendix (Section S5, Figure S21-S23) which are the same, but

with the booster waning after 6 months rather than 5 months. Denote by y∗vt and y∗nvt the projected

infected people that had the vaccine (the second dose and the booster) and did not have the vaccine,

respectively. The series for y∗vt was obtained by multiplying y∗t by the fraction vaccinated individuals

in the total reported cases (p∗vt ). We obtained this fraction by using data from the COVID-19 vaccine

weekly surveillance reports published week 48 of 2021 until week 4 of 2022. p∗vt was obtained by

dividing the sum of reported individuals which received a second dose more than 14 days before the

specimen date plus those which received boosters by total cases minus those cases for which the booster

status was unknown. Weekly values for p∗vt for weeks 47 to 52 of 2021 and 1 to 3 of 2022 were obtained

by linear interpolation (these varied from as low as 52.71% in week 47 to 70.21% in week 51 of 2021).

After January 22, 2022 we maintained p∗vt constant at 61.38%. The series for y∗nvt series was obtained

by multiplying y∗t by 1− p∗vt .

To these series we apply a risk of hospitalisation for the Omicron BA.1 variant of 1.5551%. This

was obtained as follows: ro = 0.33 × 1 × 4.7% = 1.551%, where 0.33 is the hazard ratio of Omicron

relative to Delta (UKHSA, 2021), 1 is the hazard ratio of Delta relative to Alpha (Veneti et al., 2022)

and 4.7% is the adjusted absolute risk of hospital admission for the Alpha variant (Nyberg et al.,

2021). Then, y∗nvt ro and y∗vt (1− vehosp|infection,t)ro give the hospitalised infected non-vaccinated and

hospitalised infected vaccinated, where vehosp|infection,t is the vaccine effectiveness against hospitali-

sation conditioned on infection which (following Viana et al., 2021, equation (14)) can be obtained

from:

vehospwh,t = veinfectionwin,t + (1− veinfectionwin,t)vehosp|infection,t, (3.19)

with the difference that the vaccine protection wanes, where veinfection is the vaccine efficacy against
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infection for the Omicron BA.1 variant, vehosp is the vaccine efficacy against hospitalisation and win,t

is the waning of the vaccines protection against infections. For the Omicron BA.1 variant we consider

veinfection = 0.7 (UKHSA, 2022, p.4) and waning of vaccine protection against infections win,t is given

by (2.11) but with t+ = February 14, 2022 (when the vaccine booster protection in the projections in

Figures 10-12 starts waning). We consider vehosp = 0.95 (UKHSA, 2022, p.8) which wanes over time.

The waning of the vaccine protection against hospitalisations is assumed wh,t = win,t. It follows from

(3.19)

vehosp|infection,t =
vehospwh,t − veinfectionwin,t

1− veinfectionwin,t
. (3.20)

Our projections for new hospital admissions start on January 2, 2022 (projected infections start on

25 of December, 2021 but we assume a delay in hospital admissions for the Omicron BA.1 variant of 7

days, see ONS, 2021). Figure 14 shows the projected new admission into hospital based on the median

of projected infections from Figures 10-13 when waning of the vaccine booster is after 5 months (in

Section S6 of the Supplementary Appendix we present the projected new admissions into hospital

assuming the waning of boosters is after 6 months). The figure also includes observed new hospital

admissions (by date of hospitalisation) for England until January 22, 2022 (obtained from the official

Coronavirus in the UK dashboard).

Figure 14: Projected new admissions into hospital based on the median projected infections from
Figures S13-S15, waning of boosters after 5 months, bir = 0.75 , ρo = 0.41 (posterior median)
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As can be seen from Figure 14, the projected new hospital admissions match well actual new

hospital admissions in the period for which observations are available. The projections show that with

a new infection wave, new hospitalisations rise steeply and quickly reach the peak of new hospital

admissions experienced during the pandemic so far (4,134 new hospital admissions on January 12,

2021). It is possible that these projections are too large because we did not model temporary immunity

protection conferred by a recent infection, which would require a more complex epidemiological setup.

In that case, Figure 14 is still relevant for policy makers in approximating the timing of a rise of

hospital admissions.

4 Conclusion

We proposed a dynamic intensity model for SARS-CoV-2 infections in England to disentangle

between NPIs, vaccines uptake and variants of concern.

We find that NPIs were effective at reducing infections in all waves so far, but that they worked

best with the wild-type variant, which is natural given the fact that more infectious variants are harder

to contain. We also found that the decrease in effectiveness of the same NPIs due to more infectious

variants was strongly mitigated by vaccines and boosters.

Our counterfactuals show that had the booster campaign started one month earlier or if it had

reached faster a significant fraction of the population then the winter wave in December 2021 could

have been avoided. We also show that a two week lockdown implemented early would have been

much more effective at reducing infections in December 2021 than the longer semi-lockdown actually

implemented.

Projections for the next few months of 2022 from the estimate model show that, as booster pro-

tection wanes, another wave is predicted to occur. The predicted timing for the new wave is affected

by several factors: 1) NPIs ; 2) infectiousness of Omicron BA.2 variant; 3) timing for the waning of

booster protection ; and 4) effectivity of boosters at reducing infection intensity. Our analysis also

reveals that, whenever a new wave of infections is projected to occur in a given scenario, new hospital

admissions increase substantially shortly afterwards.

Even though our analysis is tailored to England, the framework we developed can be used for

any country for which total cases can be inferred, and data on variants and vaccines is available.

While our scenarios are focused on Omicron, our framework can also be employed for new variants

of concern, to inform policy makers about the necessity and timing of further booster campaigns and

non-pharmaceutical interventions.

References

Agosto, A. and P. Giudici (2020). A Poisson Autoregressive Model to Understand COVID-19

Contagion Dynamics. Risks 8, 1–8.

Arias, J. E., J. Fernández-Villaverde, J. R. Ramı́rez and M. Shin (2021). Bayesian Estimation of

Epidemiological Models: Methods, Causality, and Policy Trade-Offs. Working Paper 28617, National

Bureau of Economic Research. https://www.nber.org/papers/w28617

Casey-Bryars, M., J. Griffin, C. McAloon, A. Byrne, J. Madden, D. Mc Evoy, Á. Collins, K.
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Supplementary Appendix

S1. Ratio of reported to total cases

Figure S1 shows the time-variation in total to reported cases, interpolated linearly every two weeks,

constructed assuming reported cases have a two-day or a five-day delay from infectiousness to report-

ing.

Figure S1: Ratio of total cases to reported cases
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S2. Posteriors and Identification

Figures S2-S8 plot the posterior distributions (and the posterior median) of all parameters against

their priors. Here, recall that the parameters, θi ≥ 0 and βi ≥ 0, i = 0, . . . , 9, associated with yt−1

and λnpit−1 change in each regime by γi and ωi respectively: θi = θi−1 + (−1)iγi, βi = βi−1 + (−1)iωi

i = 1, . . . , 9, γi = θi − θ0, and ωi = βi − β0, i = 1, . . . , 9.

We note that, while some parameters enter in our model specification as products (see (2.3) in the

main paper), they are in fact identified over different periods, often non-overlapping or only partially

overlapping. For example, ki, t
+
i (the steepness and midpoint parameters in the NPIs transition

functions) are identified in their own regime i where other transition functions are already fixed (the

transition functions for the variants-of-concern, the vaccine 2nd dose and booster gi,t, i = α, δ, o, v, b).

Moreover, θ0, β0, γi, ωi, i = 1, . . . , 9 (associated with the previous day infections yt−1 and previous

daily intensity λt−1) are also identified in their own regime which do not fully overlap with samples

over which ρα, ρδ, ρo, vir, bir are identified. However, there are parameters that are identified only

by very volatile periods or short periods, such as the parameters corresponding to the second and to

the sixth regime of the NPIs (describing the transition from some relaxation measures to the second

lockdown in November 2021, and the transition to relaxations and the Euro 2020 football tournament).

Therefore, to further check identification, we fixed the parameters at their posterior median, gen-

erated 100 samples from the model, re-estimated the model on each of these samples, and displayed in

Figures S2-S8 the fraction of medians that are outside the 90% credible range (this Bayesian identifi-

cation analysis is recommended in Aitchison, 1962); see the values of z in Figures S2-S8. As expected,

for most parameters, this fraction is below 10%, as should be the case if the parameters are identified,
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and there are only two regime parameters that seem less well identified: ω2 and ω6 which correspond

λt−1 in the second and the sixth regime. Additionally, we note that the posterior density of the booster

intensity reduction parameter bir has a large overlap with the prior, perhaps because the sample over

which this parameter is identified is too short.

Figure S2: Prior and posterior for ρα, ρδ and ρo
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Figure S3: Prior and posterior for vir and bir
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Figure S4: Prior and posterior for θ0 and γi i = 1, . . . , 9

Figure S5: Prior and posterior for β0 and ωi i = 1, . . . , 9
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Figure S6: Prior and posterior for t+i , i = 1, . . . , 9

Figure S7: Prior and posterior for ki, i = 1, . . . , 9
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Figure S8: Prior and posterior for φ
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S3. Counterfactuals in Section 3.3 repeated with the lower 5% to the

upper 95% quantiles

Figure S9: Counterfactual when the vaccine booster campaign starts on August 16, 2021, and the
population is reached faster (red) or slower (blue); projection of daily infections from November 27,
2021; bir = 0.69 (posterior median) and ρo = 0.41 (posterior median)

Figure S10: Counterfactual when the vaccine booster campaign starts on September 16, 2021, and
population is reached at different speeds; projection of daily infections from November 27, 2021;
bir = 0.69 (posterior median) and ρo = 0.41 (posterior median)
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Figure S11: Counterfactual when there is a circuit break (2 weeks hard lockdown) from December 18,
2021, or January 4, 2022 (peak of infections); projection of daily infections from December 18, 2021;
bir = 0.69 (posterior median) and ρo = 0.41 (posterior median)

Figure S12: Counterfactual when there is a semi-lockdown from December 18, 2021; projection of daily
infections from December 18, 2021; bir = 0.69 (posterior median) and ρo = 0.41 (posterior median)
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S4. Scenarios in Section 3.4 repeated with the lower 5% to the upper

95% quantiles

Figure S13: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.75, ρo = 0.41 (posterior median), no increase in relative BA.2 intensity

Figure S14: Projected total cases from December 25, waning of boosters after 5 months, bir = 0.75,
ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 5%
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Figure S15: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 10%

Figure S16: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 20%

S5. Further scenarios for boosters and their waning

In Figures S17 and S18 (with the interquartile range) we look at what happens if the booster intensity

reduction is only 0.69 rather than the 0.75 assumed so far in the main paper (Section 3.4). In this

case a projected new wave happens earlier (compared to the case when bir=0.75). The figures are

repeated in Figures S19 and S20 with the lower 5% to the upper 95% quantiles.
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Figure S17: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.69 (posterior median), ρo = 0.41 (posterior median), with no BA.2 variant, with the interquartile
range

Figure S18: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.69 (posterior median), ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 0.05,
with the interquatile range
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Figure S19: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.69 (posterior median), ρo = 0.41 (posterior median), with no BA.2 variant, with the lower 5% to
the upper 95% quantiles

Figure S20: Projected total cases from December 25, 2021, waning of boosters after 5 months, bir =
0.69 (posterior median), ρo = 0.41 (posterior median), and relative BA.2 intensity increase ρBA.2 =
0.05, with the lower 5% to the upper 95% quantiles

Figures S21-S23 show a more optimistic scenario compared to the one in the main paper (Section

3.4), in which the booster intensity reduction is still 0.75, but it wanes slower (in 6 months compared

to 5 months). The figures report the interquartile range. The same figures are repeated in Figures

S24-S26, but with the lower 5% to the upper 95% quantiles. We see that in most cases, an infection

wave still occurs with high probability, but is substantially delayed if measures are lifted and have a

late impact. Only if ρBA.2 is 5%, we note that no wave occurs within the next months.
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Figure S21: Projected total cases from December 25, 2021, waning of boosters after 6 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 5%, with the interquartile
range

Figure S22: Projected total cases from December 25, 2021, waning of boosters after 6 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 10%, with the interquartile
range
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Figure S23: Projected total cases from December 25, 2021, waning of boosters after 6 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 20%, with the interquartile
range

Figure S24: Projected total cases from December 25, 2021, waning of boosters after 6 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 5%, with the lower 5% to
the upper 95% quantiles
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Figure S25: Projected total cases from December 25, 2021, waning of boosters after 6 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 10%, with the lower 5%
to the upper 95% quantiles

Figure S26: Projected total cases from December 25, 2021, waning of boosters after 6 months, bir =
0.75, ρo = 0.41 (posterior median), relative BA.2 intensity increase ρBA.2 = 20%, with the lower 5%
to the upper 95% quantiles
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S6. Further results on the impact on hospital admissions

Figure S27 shows the projected new admission into hospital from January 2, 2022 based on the median

of projected infections from Figures S21-S23 when the waning of the vaccine booster is after 6 months.

Figure S27: Projected new hospital admissions based on the median projected infections from Figures
S21-S23, waning of boosters after 6 months, bir = 0.75 , ρo = 0.41 (posterior median)
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