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Abstract 26 

Covid-19 is a contagious disease caused by SARS-CoV-2, a novel severe acute 27 

respiratory syndrome coronavirus. Common variants and networks underlying host 28 

genetic mechanisms have been extensively studied to identify disease-associated 29 

genetic factors. However, there are few studies about the rare variants, typically inborn 30 

errors of immunity, in understanding the host genetics behind Covid-19 infection, 31 

especially in the Chinese population. To fill this gap, we investigate likely-deleterious 32 

missense and high-confidence predicted loss-of-function variants by (a) performing 33 

gene- and pathway-level association analyses, (b) examining known genes involved in 34 

type I interferon signaling and others previously reported in Covid-19 disease, and (c) 35 

identifying candidate genes with accumulating mutations and their potential protein-36 

protein interactions with known genes. Based on our analyses, several putative genes 37 

and pathways are uncovered and worth further investigation, for example, genes 38 

IL12RB1, TBK1, and TLR3, and pathways Tuberculosis (hsa:05152), Primary 39 

Immunodeficiency (hsa:05340), and Influenza A (hsa:05164). These regions generally 40 

play an essential role in regulating antiviral innate immunity responses to foreign 41 

pathogens and in responding to many inflammatory diseases. We believe that to some 42 

extent, as an acute inflammatory disease, Covid-19 is also affected by these inborn 43 

errors of immunity. We hope that the identification of these rare genetic factors will 44 

provide new insights into the genetic architecture of Covid-19. 45 
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Introduction 47 

Since the December of 2019, the coronavirus diseases 2019 (Covid-19) (Gorbalenya et 48 

al. 2020) caused by the SARS-CoV-2 virus (Severe Acute Respiratory Syndrome 49 

Coronavirus 2) (N. Zhu et al. 2020) has spread rapidly across the world. By January 50 

2022, the ongoing SARS-CoV-2 pandemic has caused more than three hundred and 51 

sixty million confirmed cases and more than five million deaths. Host genetic factors 52 

have been shown to play critical roles in the disease susceptibility and severity. The 53 

Covid-19 Host Genetics Initiative (Covid-19 HGI, https://www.covid19hg.org/) is an 54 

international initiative to share the results of host genome-wide associations study 55 

(GWAS) meta-analysis of Covid-19 disease. The most recent Covid-19 HGI release 6 56 

has reported 24 lead SNPs (P < 5e-8) mapped to nearly 136 genes, such as LZTFL1, 57 

ABO, OAS1, DPP9, IFNAR2 (Initiative and Ganna 2021). The estimated heritability of 58 

Covid-19 symptoms explained by these common variants was 6.5% (Pairo-Castineira 59 

et al. 2021). A twin study with participants from the TwinsUK cohort reported that 31% 60 

of phenotypic variance of predicted Covid-19 is due to host genetic factors (Williams 61 

et al. 2020). This leads to a large proportion of unexplained heritability (nearly 25%), 62 

commonly referred to as “missing heritability”. There is increasing evidence that rare 63 

variants also make a major contribution to missing heritability of many complex 64 

diseases and traits (Zuk et al. 2014; Hunt et al. 2013; Misawa et al. 2020). 65 

Recently, the rare variants attracted researchers’ attention in elucidating the missing 66 

heritability of Covid-19 susceptibility and severity. For example, Zhang et al. found 67 

that the rare predicted loss-of-function (pLoF) variants in the IRF7- and TLR3-68 

dependent type I interferon (IFN) pathway were enriched in patients who developed 69 

risky Covid-19 (Q. Zhang et al. 2020). Smieszek et al. reported that pLoF variant in 70 

gene IFNAR2 (c.966C>A/p.Y322X) might play a role not only in clinical manifestation 71 

of Covid-19 but also in the response to vaccination (Smieszek et al. 2021). In addition, 72 

Mantovani et al. found that pLoF variants in TLR7 (c.3094G>A/p.A1032T, 73 

c.901T>C/p.S301P) occurred in severely affected male patients and downregulated the 74 

expression of TLR7 pathway (Mantovani et al. 2021). As previously reported, the rare 75 

variants were more likely to be functional and tended to have stronger effects on 76 

complex diseases (Gorlov et al. 2011). The study of genetic effects of rare variants is 77 

necessary to elucidate the severity of Covid-19. 78 

To explore the genetic contributions of rare variants in Covid-19 patients with 79 

inborn errors of immunity, we recruited and investigated nearly 500 hospitalized 80 

patients from Union hospital of Tongji Medical College of Huazhong University of 81 

Science and Technology (abbr. Union hospital) (H. Zhu et al. 2021). Based on patients’ 82 

genomic data and clinical information, we carried out three major analyses to 83 

investigate the effects of host rare variants: (a) gene- and pathway-level tests of these 84 

rare variants between severe and non-severe patients; (b) examination of the 85 

significance of previously reported rare variants and genes in our dataset; and c) rare 86 

mutation accumulation analysis and protein-protein interaction (PPI) network analysis 87 
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in only severe patients. From these analyses, we (a) identified candidate functional 88 

pathways that are responsible for innate immune disorders and respiratory diseases, 89 

such as Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and 90 

Influenza A (hsa:05164); (b) successfully replicated two Covid-19 associated SNPs 91 

(rs780744847 and rs541048548) mapped on genes TLR3 and ICAM3, respectively; and 92 

(c) suggested several candidate genes, including IL12RB1, TBK1, and TLR3, which 93 

might be involved in SARS-CoV-2 cell entry, host immune responses, and Covid-19 94 

disease severity.  95 

Until now, literatures based on Chinese population have replicated and discovered 96 

some Covid-19-associated common variants (Wang et al. 2020; H. Zhu et al. 2021; P. 97 

Wu, Chen, et al. 2021; P. Wu, Ding, et al. 2021), but genetic background of rare variants 98 

is currently insufficiently understood in Chinese population. Our work is an effort to 99 

fill this gap. We hope that it will serve as useful scientific reference to assess the genetic 100 

mechanism of rare variants in Covid-19 and advance our understanding of disease 101 

etiology.   102 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.09.22270766doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.09.22270766
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Materials and Methods 103 

Patient Recruitment and Quality Control 104 

All subjects in this study were collected from the Union hospital. We used PLINK 2.0 105 

(Chang et al. 2015) to infer sex of individuals from SNP genotypes and VerifyBamID 106 

(F. Zhang et al. 2020) to assess the level of DNA contamination. Individuals were 107 

excluded if their PLINK inferred sex was inconsistent with that of clinical recorded. 108 

We also removed individuals with estimated contamination rates greater than 0.05. 109 

After sample quality control, there were 451 unrelated individuals with 159 mild and 110 

moderate patients, and 292 severe and critical patients. The severity classification 111 

criteria were made by the National Health Commission of P.R. China (Z. Wu and 112 

McGoogan 2020). We reclassified the mild/moderate patients as non-severe patients 113 

and the severe/critical patients as severe patients. 114 

Genotype Calling 115 

The blood samples of some patients were collected at different time points during 116 

hospitalization. To increase the average depth of study, sequence fastq files of each 117 

patient were merged together to generate one GVCF file by BWA and Sentieon 118 

Genomics software (Freed et al. 2017). Joint variant calling was then performed on 119 

GVCF files of all participants using the Sentieon GVCFtyper algorithm. The resulting 120 

VCF file was used for subsequent genomic analyses. After the application of excessHet 121 

(<54.69) filter, Variant Quality Score Recalibration (VQSR) was completed by using 122 

the Genome Analysis Toolkit (GATK version 4.1.2) (DePristo et al. 2011). To improve 123 

the genotyping accuracy, we used the Beagle 4.0 software (Browning and Browning 124 

2016) to perform LD-based genotype refinement by taking genotype likelihoods as 125 

inputs. Low-quality variants with dosage imputation score R2 < 0.3 by Beagle4.0 were 126 

filtered out. 127 

Principal Component Analysis 128 

Principal component analysis (PCA) was performed using a subset of autosomal bi-129 

allelic SNPs by applying PLINK 2.0 (Chang et al. 2015). Several restrictions were 130 

applied to select SNPs for PCA analysis, including keeping SNPs with minor allele 131 

frequency (MAF) ≥ 5%, Hardy–Weinberg Equilibrium P ≥ 1e-6, and removing one of 132 

a pair of SNPs if the LD was greater than 0.5 (in a window of fifty SNPs with a stop of 133 

five SNPs). 134 

Functional Annotation 135 

We annotated rare variants (MAF < 0.5%) in our final call set by using the Ensembl 136 

Variant Effect Predictor (VEP, build 103, GRCh38) (McLaren et al. 2016) with default 137 

parameters. The databases for annotation included dbSNP (Sherry et al. 2001), 138 

gnomAD (Karczewski et al. 2020), and 1000 Genomes Project (Clarke et al. 2012). In 139 

addition, we used Combined Annotation Dependent Depletion (CADD) score to predict 140 
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missense variants that had potential effects on protein function. The CADD score was 141 

annotated by CADD plug-in (Kircher et al. 2014). Missense variants with CADD score > 142 

MSC (Mutation Significance Cut-off) score (95% confidence interval) (Itan et al. 2016) 143 

were predicted as likely-deleterious missense variants. We also used LOFTEE 144 

(Karczewski et al. 2020) plugin to identify high-confidence pLoF (HC-pLoF) for stop-145 

gained, frameshift, and splice site disrupting variants. Finally, we focused on the likely-146 

deleterious missense and HC-pLoF variants in the subsequent analyses. 147 

Rare Variants Analyses 148 

To investigate the cumulative effects of multiple rare variants, we performed gene-149 

based association analysis using KGGSeq 1.0 (Li et al. 2017) with the sequence kernel 150 

association test (SKAT) (M. C. Wu et al. 2010), the Optimized SKAT (SKAT-O) (Lee, 151 

Wu, and Lin 2012), and Burden test. We further carried out pathway-based analysis by 152 

testing the Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets (Kanehisa 153 

and Goto 2000). The adjusted covariates included age, sex, and the top six principal 154 

components. The gene-based and pathway-based p-values were then multiple testing 155 

corrected by Benjamini-Hochberg method. We defined the suggestive significance 156 

threshold for gene-based association test as 1e–6 and for pathway-based association test 157 

as 0.05. 158 

We also focused on 13 type I IFN genes (denoted as IFN-genes) that were found 159 

an enrichment in life-threatening Covid-19 study (Q. Zhang et al. 2020) and 136 genes 160 

located in 50kb of risk lead SNPs reported by the Covid-19 Host Genetics Initiative 161 

(release 6, denoted as HGI-genes) (Initiative and Ganna 2021). The mutation accuracy 162 

of variants in these 148 candidate genes (one overlap between 13 IFN-genes and 136 163 

HGI-genes) was manually checked by using Samtools 1.10 (Danecek et al. 2021). 164 

Finally, we performed an analysis of rare variant accumulation in genes identified 165 

by two approaches. The first approach detected genes if there was one variant met the 166 

following two conditions: (a) the mutations occurred in only severe patients, and (b) the 167 

variant harbored no less than three effect allele counts. We denoted these genes as 168 

“individual variant-driven genes”. The second approach determined genes if (a) all 169 

mutations in the gene occurred in only severe patients, and (b) the total number of 170 

mutations in the gene is at least three. We denoted these genes as “all variant-driven 171 

genes”. We note that, genes identified by the two methods may have some overlaps. 172 

Each of the two gene sets was then used for network analysis of protein-protein 173 

interactions (PPI) with the above 148 known candidate genes. We used the STRING 174 

version 10.5 (Search Tool for the Retrieval of Interacting Genes/Proteins) (Szklarczyk 175 

et al. 2019) to build the PPI network. The minimum required interaction score to highest 176 

confidence was set to 0.900. 177 

  178 
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Result 179 

Participant Characteristics 180 

In this study, participants included 451 Covid-19 patients aged from 23 to 97 years old 181 

and all declared Han Chinese population. In Table 1, we provided participant 182 

characteristics for non-severe and severe patients, respectively. A total of 159 (35.25%), 183 

292 (64.75%) patients were grouped as non-severe and severe, respectively. The same 184 

as previously reported (Cummings et al. 2020; Yang et al. 2020), older age (severe: an 185 

average of 64 y/o vs. non-severe: an average of 58 y/o, t-test p = 4.6e-05) and male sex 186 

(severe 52.74% vs. non-severe 42.14%, Fisher’s exact test p = 0.04) were at a higher 187 

risk of developing severe symptoms. 188 

Data Quality 189 

After quality control, the dataset consisted of 22,107,585 and 680,522 variants from 190 

autosomes and X chromosome, respectively (Figure 1). Then we compared chip array 191 

sequencing results with genotype after LD-based refinement by Beagle 4.0 on 218 192 

individuals. The heterozygote concordance rate increased from an average of 94.4% to 193 

97.4%, and the improvement is more dramatic for samples with lower sequencing depth 194 

(Figure 2A). After filtering in variants by imputation score DR2 > 0.3, the final dataset 195 

for further analyses had a total of 22,532,360 variants, and the PCA on 575,888 196 

autosome SNPs detected no outlier samples (Figure 2B).  197 

Rare Variants Statistics 198 

After filtering by MAF, we obtained a total of 13,934,341 rare variants for VEP 199 

annotation. Among the resulting annotations, there were 88,790 missense variants and 200 

4,881 pLoF variation (including stop-gained, frameshift, and splice site disrupting 201 

variants). Damaging effects of these missense and pLoF variants were then predicted 202 

by CADD and LOFTEE plug-in, respectively. About 43.41% missense variants were 203 

predicted as likely-deleterious missense variants (38,548) and 85.68% pLoF variants 204 

were predicted as HC-pLoF variants (4,182). Thus, in total, 42,730 predicted likely 205 

damaging variants were applied for further analysis. For both likely-deleterious 206 

missense variants and HC-pLoF variants, we first tested the difference of their numbers 207 

between non-severe and severe patients and found no significant difference 208 

(Supplementary Table S1).  209 

Gene- and Pathway-level Analysis of Rare Variants 210 

The gene-level analysis of rare variants was performed between severe and non-severe 211 

patients via KGGSeq. We performed the gene-based tests for genes mapped by all rare 212 

variants, likely-deleterious missense variants, and HC-pLoF variants, respectively. The 213 

gene-based analyses did not identify putative genes that passed the significance 214 

threshold of 1e-6 (Supplementary Figure S1A-C).  215 

Furthermore, we leveraged the biological knowledge that sets of genes acting 216 
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together in pathways. In total, we tested 307 KEGG pathways and detected 217 

Tuberculosis (hsa:05152, p.adjust = 0.036) between severe and non-severe patients on 218 

likely-deleterious missense and HC-pLoF variants (Supplementary Table S2). 219 

Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium 220 

tuberculosis (Mtb). It first attacks the lungs, then other parts of the body through 221 

circulatory system. This transmission characteristics is very similar to that of Covid-19. 222 

As previously reported, Tuberculosis pathway was significant with acute respiratory 223 

distress syndrome and lung injury in mice and human (Sweeney et al. 2017). The 224 

TB/Covid-19 Global Study Group observed a phenomenon that TB and SARS-CoV-2 225 

might be co-infected, i.e., TB was often diagnosed concurrently or after Covid-19 226 

infection and the co-infection might account for increased case fatality rate (Group 227 

2021). Our finding brought up a possible explanation that patients with rare mutations 228 

enriched in Tuberculosis pathway were more likely to develop severe Covid-19 229 

symptoms. When focused on only pLOF variants enriched on KEGG, two significant 230 

pathways highlighted: Primary immunodeficiency (hsa:05340, p.adjust = 0.014) and 231 

Influenza A (hsa:05164, p.adjust = 0.021) (Supplementary Table S2). Primary 232 

immunodeficiencies (PID) are a group of potentially serious disorders that can cause 233 

increased susceptibility to severe infections, autoimmune diseases, and malignancy. 234 

Several studies revealed that patients with PID displayed higher morbidity and 235 

mortality from Covid-19 (Shields et al. 2021; Ho et al. 2021; Babaha and Rezaei 2020). 236 

Influenza is an infectious respiratory disease caused by influenza virus. Bibert et al. 237 

observed that gene pathways involved in the detection of Influenza A overlapped with 238 

those involved in the detection of SARS-CoV-2 virus (Bibert et al. 2021). In these two 239 

biological pathways, three functional genes, IKBKG, IRF7, and IFNAR1, were 240 

previously identified to have an effect on Covid-19 severity (Q. Zhang et al. 2020).  241 

Tested on 148 Candidate Genes 242 

In addition to uncovering unknown possibly associated genes or pathways, we also 243 

tested 148 previously reported candidate genes, with 13 in the type I IFN pathway (Q. 244 

Zhang et al. 2020) and 136 located within 50kb of significant common variants in the 245 

Covid-19 HGI (Initiative and Ganna 2021). Specifically, we focused on likely-246 

deleterious missense and HC-pLOF variants to aggregate potential effects of rare 247 

variants. For missense variants in both IFN- and HGI-genes, we did not detect 248 

significant difference between severe and non-severe patients. In the 13 IFN-genes, we 249 

found one HC-pLoF variant rs780744847 (c.1180C>T/p.R394*) on TLR3 mutated in 250 

only severe patients but no mutations in non-severe patients. It was reported that the 251 

TLR3 deficiency may lead to increased incidences of viral infections and impair the 252 

production of type I IFN throughout SARS-CoV-2 infection (Q. Zhang et al. 2020). 253 

Moreover, mutations of inborn errors of TLR3-dependent type I IFN immunity more 254 

often occurred in highly critical patients than in mild patients and healthy controls. For 255 

the 136 HGI-genes, we found that the number of HC-pLoF mutations occurred in severe 256 

group was more than that of non-severe groups (16 in severe and 2 in non-severe 257 
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patients, Fisher’s exact test p = 0.043) (Table 2). We also detected a HC-pLoF variant 258 

rs541048548 (c.1053del/p.A352fs) on ICAM3 only mutated in severe patients. The 259 

gene ICAM3 played an important role in the immunopathogenesis of SARS virus (Chan 260 

et al. 2007) and had been reported that its expression was downregulated in 261 

asymptomatic Covid-19 cases compared with symptomatic patients (Masood et al. 262 

2021).  263 

Mutation Accumulation Analyss 264 

In the mutation accumulation analysis, we first investigated whether there were 265 

potentially functional mutations unique to severe patients. We filtered in rare variants 266 

mutated in only severe patients and with minor allele count (MAC) greater than or equal 267 

to three. This resulted in 756 rare variants mapped to 700 genes. Among these variants, 268 

we observed a very rare mutation rs777044791 in gene CCR3 at locus 3p21.31 (Table 269 

3). The physical distance between rs777044791 and rs11385942 is 0.43MB (GRCh38), 270 

a distance typically flanked into the same genomic region (Casto and Feldman 2011). 271 

The variant rs11385942 is a common variant located at locus 3p21.31 and was first 272 

identified to be associated with respiratory failure due to Covid-19 from GWAS 273 

analysis in the Italian and Spanish population (Ellinghaus et al. 2020). This finding was 274 

repeated in other studies based on European populations (Ellinghaus et al. 2020; Pairo-275 

Castineira et al. 2021; Shelton et al. 2021), verifying its effects on Covid-19 disease. In 276 

Chinese population, common variant studies at this locus did not replicate significance 277 

(P. Wu, Chen, et al. 2021; H. Zhu et al. 2021; Wang et al. 2020), and no rare variant 278 

studies had been conducted. Our work filled this gap and revealed 3p21.31 as the 279 

Covid-19 risk locus.  280 

Then, we performed PPI network analysis for the 700 “individual variant-driven” 281 

genes with the 148 known genes (Figure 3A). From the results, we found two candidate 282 

genes IL12RB1 and TRAF3IP3 that had extensive interactions with IFN- and HGI-283 

genes. Gene IL12RB1 (Interleukin 12 Receptor Subunit Beta 1) encodes a type I 284 

transmembrane protein that binds to interleukin-12 (IL12) and is involved in IL12 285 

transduction. Mutations in IL12RB1 damage the development of IL17-producing T 286 

lymphocytes and increase the susceptibility to Salmonella and mycobacterial infections 287 

(van de Vosse et al. 2013). Our PPI network analysis indicated that IL12RB1 and TYK2 288 

had experimentally determined interactions, which were compiled from a set of public 289 

databases and were more likely to be credible (Q. C. Zhang et al. 2013). Gene TYK2 290 

had been previously identified to be associated with Covid-19 critical illness (Pairo-291 

Castineira et al. 2021), implying the potential effects of IL12RB1 to the aggravation of 292 

Covid-19. The gene TRAF3IP3 (TRAF3 Interacting Protein 3) encodes a protein that 293 

plays essential roles in both innate and adaptive immunity. Knockout mouse 294 

experiments of this gene observed a decrease in white blood cell count in males and an 295 

increased susceptibility to bacterial infection (GARDIN and WHITE 2011). In our 296 

results, TRAF3IP3 was experimentally determined with protein TRAF3 encoded by 297 

gene TRAF3, which was included in a newly created pathway “Activation of NLRP3 298 
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inflammasome by SARS-CoV-2” (WP4876) (Siu et al. 2019). In response to viral 299 

infection, TRAF3IP3 bridges TRAF3 and MAVS leading to interferon production, 300 

indicating its probably strong relationship with Covid-19 disease. 301 

We also performed PPI network analysis for the 778 “all variant-driven” genes with 302 

the 148 known genes (Figure 3B), from which two genes, TBK1 and TLR3, were 303 

highlighted. Specifically, TBK1 (TANK Binding Kinase 1) encodes a protein that plays 304 

important roles in antiviral innate immune response and in regulating inflammatory 305 

response to foreign agents (Fitzgerald et al. 2003; Mori et al. 2004). A previous study 306 

observed colocalization of TBK1 with the M protein of SARS-CoV-2, which might 307 

hinder the dsRNA-induced IFN production at the step or upstream of TBK1 (Zheng et 308 

al. 2020). The gene TLR3 (Toll Like Receptor 3) encodes a member of TLR family that 309 

plays a primary role in recognition of pathogen and innate immunity activation. It 310 

recognizes dsRNA participated in multiple viral infections and induces type I IFNs 311 

production (Kawai and Akira 2007). 312 

In summary, our mutation accumulation analyses and PPI network analyses 313 

suggested that locus 3p21.31, IL12RB1, TRAF3IP3, TBK1, and TLR3 as key regions in 314 

severe Covid-19 patients compared with non-severe, implying their functions and 315 

associations with Covid-19 severity. 316 

 317 

  318 
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Discussion 319 

SARS-CoV-2 is a strain of coronavirus and is highly pathogenic and transmissible. 320 

After exposure to the virus, ordinary people may do not develop noticeable symptoms 321 

or develop mild to moderate symptoms, while people with inborn errors of immunity 322 

tend to suffer severe and critical symptoms, or even death (S.-Y. Zhang et al. 2020). 323 

There is increasing evidence that the host genetic variants in genes related to 324 

immunodeficiency or inflammasomes might attribute to Covid-19 clinical 325 

manifestations (Elhabyan et al. 2020). A bunch of clinical drug treatments for Covid-326 

19 were cultivated from this finding, including type I IFNs (e.g., IFN-𝛼1b ), TNF 327 

inhibitors, anti-IFN-γ antibodies, JAK1 inhibitors, and STAT1 inhibitors (Ku, Chen, 328 

and Lai 2021). 329 

In this work, we carried out the first study of rare variants in inborn errors of 330 

immunity genes associated with Covid-19 severity in Chinese population. The 331 

identified functional candidate pathways Tuberculosis, Primary Immunodeficiency, and 332 

Influenza A were previously known to be part of antiviral immune responses and viral 333 

eradication, and we discovered their potential influences in Covid-19. We also 334 

suggested several putative genetic regions probably involved in susceptibility and 335 

severity of Covid-19, including locus 3p21.31, genes IL12RB1, TRAF3IP3, TBK1, and 336 

TLR3. 337 

Despite the many compelling and significant findings of our work, there are still a 338 

few limitations to be noted. First, the sample size we used is relatively small, and the 339 

limited sample size limits the statistical power for identifying rare variants. More 340 

studies with large sample sizes are demanded to validate our results and uncover more 341 

candidate variants. Second, even though our work has suggested several candidate 342 

genes and pathways potentially related to Covid-19 severity, the true underlying genetic 343 

mechanisms of how they affect disease progression need to be explored by more 344 

persuasive experimental designs.  345 

Covid-19 is assessed as a complex infectious disease and affected many risk factors. 346 

Symptoms of Covid-19 are highly variable, ranging from unnoticeable to severe and 347 

even death. The host genetic background is only partly responsible for the phenotypic 348 

heterogeneity. In recent years, multi-omics studies have proven a powerful and 349 

successful strategy to provide a broader perspective in understanding disease 350 

development and biological phenomena. Several multi-omics analyses of Covid-19 351 

have been proposed to integrate multiple “omes” data to unravel disease mechanisms 352 

at multiple omics levels (Overmyer et al. 2021; Su et al. 2020; Montaldo et al. 2021; P. 353 

Wu, Chen, et al. 2021; Stephenson et al. 2021). The integrative analyses of rare genome 354 

and other “omes” data (e.g., proteome, transcriptome, epigenome, metabolome, and 355 

microbiome) may inspire us to discover new risk factors for severe Covid-19 disease. 356 
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Figures 649 

Figure 1. The flow diagram of rare variants analysis. A total of 32,232,865 variants 650 

were identified from the 451 Covid-19 patients with whole genome sequencing. After 651 

filtering by VQSR and MAF, 13,934,341 rare variants were annotated by VEP, and 652 

42,730 candidate variants were included. 653 

 654 

Figure 2. Quality estimate of the cohort. (A). Heterozygote concordance rate versus 655 

sequencing depth for 218 array-genotyped individuals. (B). PCA of 159 non-severe 656 

and 292 severe patients. 657 

 658 

Figure 3. The results of protein-protein interaction network analysis. The plot of 659 

PPI network (A) between the 700 “individual variant-driven” genes with the 148 660 

known genes. (B) between the 778 “all variant-driven” genes with the 148 known 661 

genes. 662 

 663 

Supplementary Figure S1. Gene-based tests. (A). The QQ plots of gene-based  664 

association analyses between severe and non-severe patients for (A) . 42,730  665 

candidate rare variants ; (B) 38,548 rare likely-deleterious missense variants, and (C)  666 

4,182 high-confidence pLoF variants 667 

 668 

 669 
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Tables 

Table 1. Participant Characteristics 

 Number, n (%) 
Male gender, 

n (%) 

Age, average 

(sd) 

Depth, 

average (sd) 

All patients 451   21.67 

Non-Severe 159 (35.25%) 67 (42.14%) 58.33 (14.62) 19.04 (8.94) 

Severe 292 (64.75%) 154 (52.74%) 64.11 (13.31) 23.1 (10.43) 
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Table 2. The pLoF variants identified in covid-19 patients in 148 candidate genes 

GENE SNP 
Variant 

Annotation 
HGVSc / HGVSp Genotype SampleID Sex 

Age 

Range 
Phenotype Category 

TLR3 rs780744847 stop gained 
c.1180C>T / 

p.Arg394Ter 
Het U312 F 70-79 Severe IFN-genes 

THBS3 rs748584696 stop gained 
c.853C>T / 

p.Arg285Ter 
Het U088 F 80-89 Severe HGI-genes 

THBS3 
chr1_155206198

_A_C 

splice donor 

variant 
c.286+2T>G Het U359 F 70-79 Severe HGI-genes 

TAC4 rs372635644 
splice acceptor 

variant 
c.124-1G>A Het U429 F 60-69 Severe HGI-genes 

TYK2 rs770927552 
frameshift 

variant 

c.209_212del / 

p.Cys70SerfsTer21 
Het U422 F 80-89 Severe HGI-genes 

C6orf15 
chr6_31112292_

C_T 

splice acceptor 

variant 
c.68-1G>A Het U107 M 60-69 Severe HGI-genes 

CAT rs777641795 
splice donor 

variant 
c.1195+1G>A Het U012 M 40-49 Non-severe HGI-genes 

CDH15 
chr16_89179469

_C_G 
stop gained c.96C>G / p.Tyr32* Het U174 F 50-59 Severe HGI-genes 

CDSN 
chr6_31116133_

G_GA 

frameshift 

variant 

c.1481dup / 

p.Cys496LeufsTer20 
Het U021 F 50-59 Non-severe HGI-genes 

ICAM3 rs541048548 
frameshift 

variant 

c.1053delC / 

p.Ala352ArgfsTer11 
Het U225 M 70-79 Severe HGI-genes 

ICAM3 rs541048548 frameshift c.1053delC / Het U047 F 70-79 Severe HGI-genes 
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variant p.Ala352ArgfsTer11 

MYDGF rs745851558 
splice donor 

variant 
c.174+1G>T Het U071 M 70-79 Severe HGI-genes 

PLEKHA4 
chr19_48853718

_CA_C 

frameshift 

variant 

c.1289delT / 

p.Leu430ArgfsTer4 
Het U261 F 60-69 Severe HGI-genes 

PLEKHA4 
chr19_48853720

_GCCGGT_G 

frameshift 

variant 

c.1283_1287delACC

GG / 

p.Asp428AlafsTer76 

Het U261 F 60-69 Severe HGI-genes 

PPP1R15

A 
rs768756506 

frameshift 

variant 

c.1535_1536delAT / 

p.Tyr512CysfsTer14 
Het U309 M 60-69 Severe HGI-genes 

PSORS1C

2 
rs79153019 

frameshift 

variant 

c.281delC / 

p.Pro94LeufsTer35 
Het U075 M 60-69 Severe HGI-genes 

PSORS1C

2 
rs79153019 

frameshift 

variant 

c.281delC / 

p.Pro94LeufsTer35 
Het U150 M 60-69 Severe HGI-genes 

PSORS1C

2 
rs79153019 

frameshift 

variant 

c.281delC / 

p.Pro94LeufsTer35 
Het U144 M 60-69 Severe HGI-genes 

TULP2 
chr19_48881045

_T_TC 

frameshift 

variant 

c.1528_1529insG / 

p.Gln510ArgfsTer17 
Het U176 F 70-79 Severe HGI-genes 
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Table 3. The comparison of allele frequency for two loci 
 

rs777044791 rs11385942 

CHROM chr3 chr3 

POS (hg38) 46,266,186 45,834,967 

ALT T GA 

REF C G 

Variant Annotation Missense Variant Intron Variant 

Allele frequency   

Severe (N = 292) 0.005 0 

Non-severe (N = 159) 0 0 

ChinaMAP 0.002 0.004 

1000G_EAS 0 0.005 

1000G_EUR 0 0.0805 

1000G_SAS 0 0.296 

1000G_AFR 0 0.053 

gnomAD_EAS 0.0005 0.0006 
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Autosomal and X chromosome 

variants (32,232,865 )

Passed bi-allelic variants

(22,788,107)

VQSR

Variants after QC

(22,532,360)

Rare variants

(13,934,341)

Missense variants

(88,790)

Stop-gained, frameshift, splice 

site disrupting variants (4,881)

CADD & MSC

Likely-deleterious missense 

variants (38,548)

High-confidence pLoF variants

(4,182)

Candidate rare variants

(42,730)

LOFTEE

DR2>0.3 by Beagle 4.0 refinement

MAF < 0.005

VEP annotation

Figure 1. The flow diagram of rare variants analysis. A total of 32,232,865

variants were identified from the 451 Covid-19 patients with whole genome

sequencing. After filtering by VQSR and MAF, 13,934,341 rare variants were

annotated by VEP, and 42,730 candidate variants were included.
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Figure 2. Quality estimate of the cohort. (A). Heterozygote concordance rate versus

sequencing depth for 218 array-genotyped individuals. (B). PCA of 159 non-severe

and 292 severe patients.
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Figure 3. The results of protein-protein interaction network analysis. The plot of

PPI network (A) between the 700 “individual variant-driven” genes with the 148

known genes. (B) between the 778 “all variant-driven” genes with the 148 known

genes.
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