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Abstract 
 
Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based 
disorders and malignancies. While this is an effective treatment, it can result in serious 
adverse events, such as the development of acute graft-versus-host disease (aGVHD). This 
study aimed to develop a donor-specific epigenetic classifier that could be used in donor 
selection in HCT to reduce the incidence of aGVHD. 
 
The discovery cohort of the study consisted of 288 donors from a population receiving HLA-
A, -B, -C and -DRB1 matched unrelated donor HCT with T cell replete peripheral blood stem 
cell grafts for treatment of acute leukaemia or myelodysplastic syndromes after 
myeloablative conditioning. Donors were selected based on recipient aGVHD outcome; this 
cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD 
that survived at least 100 days post-HCT matched for sex, age, disease and GVHD 
prophylaxis.  
 
Genome-wide DNA methylation was assessed using the Infinium Methylation EPIC 
BeadChip (Illumina), measuring CpG methylation at >850,000 sites across the genome. 
Following quality control, pre-processing and exploratory analyses, we applied a machine 
learning algorithm (Random Forest) to identify CpG sites predictive of aGVHD. Receiver 
operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an 
encouraging area under the ROC curve (AUC) of 0.91.   
 
To test this classifier, we used an independent validation cohort (n=288) selected using the 
same criteria as the discovery cohort. Different attempts to validate the classifier using the 
independent validation cohort failed with the AUC falling to 0.51. These results indicate that 
donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting 
involving unrelated donors, despite the initial promising results in the discovery cohort.  
 
Our work highlights the importance of independent validation of machine learning classifiers, 
particularly when developing classifiers intended for clinical use.  
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Introduction 
 
In the past six decades, allogeneic hematopoietic cell transplantation (HCT) has become a 
cornerstone of treatment for haematological malignancies and is still often considered the 
only curative option1. Despite advances in the precision of HLA matching in unrelated donor 
selection and supportive care leading to ongoing improvements in HCT outcomes, severe 
graft versus host disease (GVHD) regularly occurs, increasing the risk of morbidity and 
mortality2. Acute GVHD occurs when the donor immune cells attack healthy tissue in the 
graft recipient, causing a range of inflammatory lesions which primarily affect the skin and 
digestive organs. Acute GVHD (aGVHD) typically occurs within 100 days of transplant. 
While the incidence has decreased in the last decade due to better HLA matching of donors, 
aGVHD still affects ~30-50% of allogeneic HCT recipients3, making the prevention of 
aGVHD an important area of research. 
 
DNA methylation is a stable modification of the DNA which can influence gene expression 
without altering the underlying genetic sequence. DNA methylation has an emerging role in 
precision medicine due to the environmental and developmental exposures it can capture. 
Several factors associated with the development of aGVHD are also known to influence the 
epigenome, including age4,5, sex6 and viral infections7. Despite the relative infancy of the 
field, DNA methylation classifiers predictive of clinical outcome are now being used in the 
clinic, notably in oncology to guide treatment of brain tumours8,9. The development of 
machine learning algorithms and increasing size of datasets has also allowed improvement 
in the development of such classifiers for early diagnosis and determining subtypes of 
disease10. 
 
In 2015, we published a pilot study investigating DNA methylation as a potential classifier of 
aGVHD in HCT of HLA matched sibling pairs11. In that study, we assessed DNA methylation 
in a cohort of 85 HCT donors selected based on recipient outcome, identifying 31 DNA 
methylation markers associated with aGVHD severity in graft recipients. In internal cross-
validation these markers showed strong predictive performance (AUC=0.98) indicating the 
potential utility of DNA methylation in improving donor selection in sibling HCT. The purpose 
of the current study was to investigate if DNA methylation is also predictive of outcome in 
HLA matched unrelated donor-recipient pairs, which constitute a much greater proportion of 
HCTs. To do this, we assessed genome-wide DNA methylation of 576 individuals recruited 
from the Center for International Blood and Marrow Transplant Research (CIBMTR). The 
scale and quality of annotation of the CIBMTR donor collection allowed us to use stringent 
selection criteria to minimise confounding and increase our power to detect methylation 
differences which were predictive of the development of aGVHD following HCT. 
 
 
 
 
Methods 
 
Study population  
The discovery study cohort consisted of 288 HLA-A, -B, -C and -DRB1 matched, unrelated 
donor transplants reported to the CIBMTR that had pre-transplant donor peripheral blood 
samples available through the CIBMTR Research Repository. Patients received a transplant 
between 2002 to 2017 for acute lymphoblastic leukemia (ALL), acute myelogenous leukemia 
(AML) and myelodysplastic syndromes (MDS) using T-cell replete peripheral blood stem cell 
grafts, myeloablative conditioning and tacrolimus with methotrexate or mycophenylate 
mofetil based GVHD prophylaxis. The population was selected as a case-control cohort with 
144 cases that developed aGVHD III-IV and controls with no aGVHD. Cases and controls 
were matched for sex, age, disease and GVHD prophylaxis. Donors were all self-reported as 
Caucasian.  
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The validation cohort (n=288) was selected using the same criteria. Using a previously 
described method12, power calculations for the discovery study using the EPIC array for 
genome-wide methylation measurement were performed with genome-wide significance set 
at 1x10-6. Sample groups of 140 donors matched to recipients with grade III-IV aGvHD, and 
140 donors matched to recipients with no aGVHD, would give us 88% power to detect a 
methylation difference of 10% between the groups, and 100% power to detect methylation 
differences of 25%. Several additional samples for each group were profiled to ensure 
adequate power even if samples were removed during quality control. 
 
Samples 
Genomic DNA was extracted from whole blood samples obtained from CIBMTR using the 
QIAamp DNA Blood Mini Kit (Qiagen) at the UCL Pathology Department (discovery study) 
and the UCL Genomics facility (validation study). The quality and concentration of DNA was 
assessed using NanoDrop and Qubit (Thermo Fisher).  
 
Genome-wide DNA methylation profiling 
For each sample, 500ng high-quality DNA was bisulphite converted using the EZ DNA 
methylation kit (Zymo Research), using alternative incubation conditions recommended for 
Illumina methylation arrays. Methylation was subsequently analysed using the Infinium 
MethylationEPIC array (Illumina) measuring CpG methylation at >850,000 sites across the 
genome. Array preparation was performed at the UCL Genomics facility using standard 
operating procedures. Discovery and validation cohorts were processed independent at 
different timepoints, but within each cohort batches were minimised by distributing 
comparison groups evenly across BeadChips and position on BeadChip.  
 
Analysis overview 
All analyses were performed in R version 3.6. Samples remaining following quality control 
(n=282 for discovery cohort and 288 for validation cohorts) were normalised using SWAN, 
then problematic probes were removed including those with a detection P value >0.01, 
probes with a beadcount <3 in more than 5% of samples13, non-cg probes, probes 
containing any common SNPs in dbSNP14 and probes mapping to the X or Y chromosomes. 
Singular variable decomposition (SVD)15 and principal components analysis (PCA) were 
used to assess batch effects in the data, which were subsequently adjusted for using 
Combat16. Cell composition was estimated and adjusted for using the Houseman method17 
as implemented in ChAMP18,19, estimating cell proportions using the Reinius reference 
dataset20. Differentially methylated positions (DMPs) were assessed using a linear model in 
Limma21.  
 
Machine learning analysis was performed using the random forest method22 as implemented 
in the RandomForest package. Instead of using all CpG sites as input for the RandomForest 
analysis, a subset of 10,000 CpG sites were selected through feature selection.  
 
A supervised approach was used, where DMPs were identified in the discovery cohort using 
a linear model and the top 10,000 ranked probes were used as input for the random forest 
analysis. An alternative unsupervised approach was also carried out where the top 10,000 
probes with the largest overall beta variance across all samples in the discovery cohort were 
used as input for the random forest analysis.  
 
In both cases, the classifiers were then tested on matched probe sets from the validation 
cohort, and sensitivity and specificity of the classifiers were calculated.   
 
 
 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 10, 2022. ; https://doi.org/10.1101/2022.03.08.22272071doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22272071
http://creativecommons.org/licenses/by-nd/4.0/


Data availability 
The participants involved in the study had been recruited under different consents which 
require different levels of data access. According to consent given, the corresponding data 
are being made available in a three-tiered data access approach: 

1. Processed data (beta matrix) for all individuals (n=570) are available from the open 
access ‘Gene Expression Omnibus’ under accession number GSE196696. To 
reduce the chance of reidentification, all non-cg probes, including SNP targeting rs 
probes have been removed. The data are provided in both raw (unnormalized) and 
SWAN normalised formats. 

2. Raw data (IDAT files) are available for individuals with appropriate consent (n=403 in 
total) from the controlled access ‘European Genome-Phenome Archive’ under 
accession number EGAS00001006033.  

3. Raw data (IDAT files) and associated phenotype information are available for all 
individuals included in this study (n=570) directly from CIBMTR. Data are available 
under controlled access release upon reasonable request and execution of a data 
use agreement. Requests should be submitted to CIBMTR at info-request@mcw.edu 
and include the study reference IB17-04. 

 
 
 
 
Results 
 
Study Design 
Unrelated donor-recipient pairs undergoing HCT were selected from the CIBMTR Research 
Repository, based on the aGVHD outcomes in recipients (Figure 1). Blood-based DNA 
methylation from donors was assessed using the Illumina EPIC arrays. Methylation 
differences were assessed, and random forest analysis was used to test for the presence of 
a classifier of aGVHD outcome. 
 
Study population 
Unrelated donor-recipient pairs were selected by CIBMTR using stringent criteria as 
described in methods, resulting in 282 individuals in the discovery cohort following initial 
data quality control, and 288 individuals in the validation cohort. The resulting cohorts were 
well matched for characteristics that can influence DNA methylation profile, including age 
and sex (as shown in Tables 1 and 2).  
 
The discovery cohort was well matched for disease, with no significant difference in 
proportion of AML, ALL and MDS between comparison groups (p=0.339). Median recipient 
ages for the no/severe aGVHD groups were 45 (range 19-76) and 47 (range 18-72), 
respectively. There was no significant difference for recipient sex (p=0.716) or ethnicity 
(p=0.113) across comparison groups. Donors were well matched across comparison groups 
for sex (p=0.585), however, there was a difference in median age (p=0.003), though this was 
not apparent when individuals were stratified into age brackets (p=0.090). There were no 
significant differences across comparison groups for donor/recipient ABO type, blood type, 
Rh factor, CMV status or sex match. 
 
The validation cohort had a significant difference in proportions of these diseases across 
comparison groups (p=0.02). The median recipient ages for the no/severe aGVHD groups in 
the validation cohort was 49 (range 20-75) and 50 (range 19-71). There was no significant 
difference in the recipient age distribution across comparison groups (p=0.998). There was 
no difference in recipient sex across the comparison groups (41% female recipients, p=1.0).  
Donors were well matched across comparison groups for sex (p=0.063) and median age 
(p=0.076). There were no significant differences in ethnicity, donor/recipient ABO type, blood 
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type, Rh factor, CMV status or sex match across groups. There were differences in 
conditioning regimen across comparison groups (p<0.001). 
 
Data exploration and pre-processing  
Following sample removal, quality control plots showed that the 282 individuals remaining in 
the discovery dataset and 288 individuals remaining in the validation dataset had very high 
quality methylation profiles (Supplementary Figure 1). Following probe filtering, 661,114 
probes remained in the discovery dataset. Singular Value Decomposition (SVD) and 
principal components analysis (PCA) indicated that estimated ‘cell composition’, 
‘Slide/BeadChip’ and ‘Array’ batch effects were having the largest impact on the data 
(Supplementary Figures 2-3), which were subsequently adjusted for using ChAMP cell 
composition correction and ComBat adjustment respectively. Cell type proportions were 
estimated for each group using the DNA methylation profiles and were found to be well 
balanced in each cohort with no significant difference between groups (Supplementary Table 
1). 
 
Differential methylation analysis 
No CpG sites passed a false discovery rate adjusted p-value significance threshold of 0.05 
during DMP analysis when comparing the ‘no aGVHD’ group to the ‘severe aGVHD’ group. 
As the main batch and confounding effects of slide, array and cell composition had been 
previously adjusted in the dataset, no additional covariates were included during linear 
regression. 
 
Classifier generation from discovery data 
Random forest analysis was performed on two sets of probes; the unsupervised analysis 
using the top-ranked 10,000 most variable probes, which all had a beta variance of >33% 
across all samples. The supervised analysis used the top 10,000 probes resulting from the 
linear model DMP analysis, though none passed statistical significance these were 
considered sites with putative methylation differences. Random forest analysis was run with 
500 trees, with 100 variables tested at each split for both analysis approaches.  
 
The high variability classifier showed very poor performance, with an out-of-bag (OOB) 
estimate of error rate of 45.39% and area under the curve (AUC) of 0.516 during internal 
cross-validation of the discovery dataset (Supplementary Figure 4). The differential 
methylation dataset produced an initially promising classifier with an OOB estimate of error 
rate of 14.89% and an AUC of 0.913 (Figure 2). 
 
During validation analysis, the matched CpG sites used as input to the original random 
forest training analysis were extracted from the validation dataset as all probes present in 
training analyses are required as input for validation. Validation analyses indicated that the 
differential methylation classifier had a sensitivity of 90.97% but a specificity of just 6.25%, 
and an AUC of 0.508. This is driven by an over-prediction of the ‘severe aGVHD’ group in 
the independent validation cohort, resulting in many false positive predictions. The 
unsupervised differential variability classifier also had an extremely poor performance in the 
validation cohort, with a sensitivity of just 50%, a specificity of 51.39% and an AUC of 0.523. 
As such, neither of these approaches yielded a useful classifier.  
 
 
 
 
Discussion 
 
Recently developed predictors of aGVHD using clinical variables have had modest success 
with an AUC of ~0.623, however this indicated that biological markers of gene expression, 
such as epigenetic markers, could provide additional insight to improve prediction of 
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aGVHD. This was also supported by the recent finding that hypermethylation of the TP53 
gene in HCT recipients was found to correlate with relapse of myelodysplastic syndromes 
following transplantation, indicating recipient-based DNA methylation could be predictive of 
outcomes during HCT24. As DNA methylation levels reflect both the underlying genetic 
sequence and factors known to be associated with aGVHD development (such as donor 
age, sex and cytomegalovirus serostatus), we hypothesised they would be a strong 
candidate for classifier identification. Our initial study focused on sibling donor-recipient 
pairs, in which a DNA methylation classifier of aGVHD development was identified in the 
blood of donors11. In the current study, we tested if DNA methylation as measured by EPIC 
arrays is also predictive of aGVHD in unrelated donor-recipient pairs and found that it is not.  
 
There are several potential technical and biological reasons that a robust classifier of 
aGVHD was not identified in this study. Firstly, while the study performed was shown to 
have power to detect larger methylation differences of >10%, the relatively small sample size 
of the discovery cohort (n=280) and validation cohort (n=288) may have limited our ability to 
detect more subtle methylation differences. In the future, larger scale studies may provide 
increased power to detect such differences. 
 
Secondly, the tissue we investigated was peripheral blood of donors which was intended to 
act as a surrogate tissue reflecting outcome. DNA methylation profiles are known to be 
highly cell type specific25, and while blood based DNA methylation may reflect certain 
exposures and factors associated with aGVHD development, it is possible that a specific 
cellular subtype which is not present in the whole blood of donors is responsible for the 
development of aGVHD and as such would not be reflected in the methylation profile. 
Another possibility is that the specific cell type which is causing aGVHD could be present in 
whole blood, but in small proportions, making the signal significantly diluted by other more 
prominent cell types. Indeed, in the current analysis, cell composition was the biggest driver 
of variation in the data, and though this was balanced overall between the comparison 
groups and adjusted for in the data analysis, it could have been a confounding factor in the 
study, or subtle methylation effects could have been lost during adjustment. In the future, 
methylation analysis of individual cell types isolated from stem cell grafts may provide more 
insight into DNA methylation differences driving the development of aGVHD. While this 
approach would provide a more refined methylation measurement, it would be a significantly 
less practical approach for a clinical test, limiting the utility for optimising donor selection as 
usually these cells would only be collected once a donor is committed.  
 
A classifier of aGVHD development was identified in our previously published work, which 
investigated donor DNA methylation from sibling HCT. A potential reason a similar 
biomarker was not identified in this cohort is that it could have been specific to sibling 
transplants, which generally have a lower incidence of aGVHD which may be driven more by 
extrinsic factors which influence DNA methylation, while aGVHD following HCT from an 
unrelated donor may be driven more by genetic factors. There may also be an issue of 
‘epigenetic compatibility’, with donors and recipients varying in epigenetic profile inciting the 
initiation of aGVHD in certain individuals, without this being driven by a specifically 
differentially methylated gene or pathway. This would explain why a classifier was not 
identified in the current study, as the epigenetic marks conferring risk of aGVHD would be 
different for each individual. In the future, studies investigating the DNA methylation of both 
donors and recipients during HCT could provide more insight into this possibility. 
 
When considering the clinical context of the development of aGVHD, it is likely the end result 
of a complicated clinical setting with multiple donor and recipient factors affecting the 
outcome. If the epigenetic pattern was highly predictive, it might infer that the occurrence of 
severe aGVHD is pre-ordained just by donor factors, which seems biologically unlikely.  
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On a technical level, this study has also demonstrated the importance of careful 
development and testing of analysis pipelines for methylation studies, in particular when 
applying complex machine learning methods to datasets. Our initial findings indicated a 
robust classifier might be present within the dataset, a finding which was amplified when 
data was pre-processed as a single batch with subsequent splitting of the dataset and 
internal cross validation. While our validation dataset was of exceptionally high quality and 
donors included were matched to a very high degree with the discovery cohort, the classifier 
was not validated even with extensive optimisation and testing of alternate pipeline settings. 
This demonstrates that even with the identification of a promising and robust classifier in a 
well-designed study, independent validation is critical26, and such validation datasets need to 
be generated completely independently with unique individuals and pre-processed 
separately to the training/discovery cohort. This also better mimics the experimental realities 
of clinical classifier use, making any findings that do stand up to the validation process more 
robust and clinically useful. 
 
Conclusions 
 
In this study, we performed the definitive investigation of donor-derived blood-based DNA 
methylation as a classifier of aGVHD outcome in HCT and found that donor DNA 
methylation as assessed by methylation arrays is not a strong candidate for prediction of 
aGVHD. It is possible that other methylation signals exist which might improve our 
understanding of the development of aGVHD in these cohorts, which we plan to investigate 
in the future. We have also highlighted the importance of study design and well-designed 
independent validation of methylation differences especially when applying machine learning 
approaches.  
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Figures  
 
Figure 1: Study Design. Unrelated donor-recipient pairs were selected based on the 
outcome of recipients following HCT. DNA methylation levels were assessed in donors 
associated with no (Grade 0) or severe (Grades 3-4) aGVHD in recipients. Donor-recipient 
pairs were HLA matched, and comparison groups were matched for sex, age, disease and 
GVHD prophylaxis. Feature selection reduced the number of probes in the discovery dataset 
to 10,000 for input to random forest analyses, and this classifier was subsequently tested in 
the validation cohort following pre-processing of data and refinement to the same set of 
probes.    
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Figure 2: ROC curve of classifier performance of the unsupervised Random Forest 
Classifier. The figure shows the performance of the differential methylation (supervised 
approach) classifier which used the top 10,000 most differentially methylated CpG sites as 
input, during internal cross validation on the training dataset (blue line) . The performance of 
the differential methylation classifier on the independent validation cohort is indicated by the 
orange line, which had an AUC of 0.508, a sensitivity of 90.97% with a very poor specificity 
of 6.25%. While initially this differential methylation-based classifier appeared encouraging 
with the discovery cohort, the classifier did not perform well during validation analyses.  
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Tables 
Table 1: Discovery and validation cohort characteristics. Characteristics of adult patients 
undergoing first allogeneic PB HCT for acute leukemia or MDS from an 8/8 HLA-matched 
unrelated donor between 2000-2016 with available donor blood samples, as reported to the 
CIBMTR. Restricted to Caucasian donors, myeloablative preparative regimens, no 
ATG/Campath and patients surviving >100 days with no aGVHD or those that developed 
grades III-IV aGVHD at any time post-HCT. Donors were matched between comparison 
groups based on sex and age by decade. 
 

 Discovery cohort Validation cohort 
 No 

aGVHD 
+ 

100-day 
survival 

Grades 
III-IV 

aGVHD 

 No 
aGVHD + 
100-day 
survival 

Grades 
III-IV 

aGVHD 

 

Variable N (%) N (%) p-valuea N (%) N (%) p-valuea 
Number of 
Recipients 

141 141  144 144  

Disease   0.339   0.020 
AML 85 (60) 73 (52)  100 (69) 77 (53)  
ALL 24 (17) 31 (22)  19 (13) 27 (19)  
MDS 32 (23) 37 (26)  25 (17) 40 (28)  

Recipient Age   0.464   1.000 
18-29 28 (20) 28 (20)  18 (13) 18 (13)  
30-39 26 (18) 18 (13)  24 (17) 24 (17)  
40-49 36 (26) 33 (23)  34 (24) 33 (23)  
50-59 33 (23) 38 (27)  39 (27) 40 (28)  
60-69 15 (11) 23 (16)  28 (19) 28 (19)  
70+ 3 (2) 1 (1)  1 (1) 1 (1)  
Median 
(Range) 

45 (19-
76) 

47 (18-
72) 

0.541 49 (20-
75) 

50 (19-
71) 

0.998 

Recipient Sex   0.716   1.000 
Male 82 (58) 85 (60)  85 (59) 85 (59)  
Female 59 (42) 56 (40)  59 (41) 59 (41)  

Recipient 
Race/Ethnicity 

  0.113   1.000 

Caucasian 134 (96) 131 (94)  144 (100) 144 (100)  
African 
American 

2 (1) 1 (1)  0 0  

Native 
American 

2 (1) 0  0 0  

Caucasian, 
Hispanic 

2 (1) 8 (6)  0 0  

Unknown 1 (N/A) 1 (N/A)  0 0  
Recipient ABO 
Type 

  0.767   0.242 

A 54 (45) 52 (42)  14 (40) 24 (53)  
B 13 (11) 15 (12)  7 (20) 3 (7)  
AB 3 (3) 6 (5)  4 (11) 3 (7)  
O 50 (42) 50 (41)  10 (29) 15 (33)  
Unknown 21 (N/A) 18 (N/A)  109 (N/A) 99 (N/A)  

Rh Factor   0.788   0.167 
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Positive 105 (88) 109 (89)  33 (94) 38 (84)  
Negative 15 (13) 14 (11)  2 (6) 7 (16)  
Unknown 21 (N/A) 18 (N/A)  109 (N/A) 99 (N/A)  

Blood Type   0.985   0.277 
A + 46 (38) 46 (37)  14 (40) 20 (44)  
B + 11 (9) 13 (11)  6 (17) 3 (7)  
AB + 2 (2) 4 (3)  4 (11) 2 (4)  
O + 46 (38) 46 (37)  9 (26) 13 (29)  
A - 8 (7) 6 (5)  0 4 (9)  
B - 2 (2) 2 (2)  1 (3) 0  
AB - 1 (1) 2 (2)  0 1 (2)  
O - 4 (3) 4 (3)  1 (3) 2 (4)  
Unknown 21 (N/A) 18 (N/A)  109 (N/A) 99 (N/A)  

Recipient CMV 
Status 

  0.721   0.281 

Negative 65 (46) 65 (46)  59 (41) 69 (48)  
Positive 74 (52) 74 (52)  85 (59) 74 (51)  
Inconclusive 1 (1) 2 (1)  0 1 (1)  
Not tested 1 (1) 0  0 0  

Donor Age   0.090   0.792 
18-29 90 (64) 76 (54)  105 (73) 103 (72)  
30-39 51 (36) 65 (46)  39 (27) 41 (28)  
Median 
(Range) 

26 (19-
40) 

29 (19-
40) 

0.003 26 (19-
39) 

27 (19-
39) 

0.076 

Donor Sex   0.585   0.063 
Male 103 (73) 107 (76)  98 (68) 112 (78)  
Female 38 (27) 34 (24)  46 (32) 32 (22)  

Donor 
Race/Ethnicity 

  1.000   1.000 

Caucasian 141 
(100) 

141 (100)  144 (100) 144 (100)  

Donor ABO 
Type 

  0.081   0.498 

A 69 (49) 51 (36)  65 (45) 60 (42)  
B 15 (11) 14 (10)  13 (9) 8 (6)  
AB 6 (4) 4 (3)  6 (4) 9 (6)  
O 51 (36) 72 (51)  60 (42) 67 (47)  

Donor CMV 
Status 

  0.875   0.090 

Negative 104 (74) 105 (74)  90 (63) 104 (72)  
Positive 33 (23) 32 (23)  53 (37) 38 (26)  
Previously 
reported 
reactive 

1 (1) 0  1 (1) 0  

Not tested 1 (1) 1 (1)  0 2 (1)  
Unknown 2 (1) 3 (2)  0 0  

Donor-
Recipient Sex 
Match 

  0.818   0.072 

Male-Male 62 (44) 69 (49)  69 (48) 69 (48)  
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Male-
Female 

41 (29) 38 (27)  29 (20) 43 (30)  

Female-
Male 

20 (14) 16 (11)  16 (11) 16 (11)  

Female-
Female 

18 (13) 18 (13)  30 (21) 16 (11)  

Recipient Age 
at Diagnosis 

  0.452   0.878 

< 10 0 1 (1)  0 0  
10-17 1 (1) 4 (3)  1 (1) 0  
18-29 29 (21) 27 (19)  20 (14) 19 (13)  
30-39 29 (21) 18 (13)  23 (16) 27 (19)  
40-49 31 (22) 34 (24)  34 (24) 34 (24)  
50-59 36 (26) 38 (27)  39 (27) 37 (26)  
60-69 13 (9) 18 (13)  26 (18) 27 (19)  
70+ 2 (1) 1 (1)  1 (1) 0  
Median 
(Range) 

44 (16-
75) 

46 (11-
72) 

0.450 48 (17-
75) 

49 (18-
70) 

0.867 

MDS Disease 
Status 

  0.465   0.941 

Early 14 (44) 13 (35)  2 (8) 3 (8)  
Advanced 18 (56) 24 (65)  23 (92) 37 (93)  

AML/ALL 
Disease Status 

  0.137   0.009 

Early 51 (47) 43 (40)  67 (56) 67 (64)  
Intermediate 30 (28) 21 (20)  32 (27) 11 (11)  
Advanced 23 (21) 28 (27)  20 (17) 24 (23)  
Unknown 5 (5) 12 (12)  0 2 (2)  

Conditioning 
Regimen 

  0.114   <0.001 

Bu + Cy 49 (35) 56 (40)  53 (37) 54 (38)  
Bu + Mel 1 (1) 3 (2)  0 0  
Bu + Flud 38 (27) 26 (18)  61 (42) 32 (22)  
Mel + Flud 0 1 (1)  7 (5) 10 (7)  
Cy Alone 43 (30) 35 (24)  22 (16) 45(31)  
Others 10 (7) 20 (14)  1 (1) 3 (2)  

TBI Usage   0.806   0.001 
      Yes 53 (38) 55 (39)  23 (16) 48 (33)  

No 88 (62) 86 (61)  114 (79) 86 (60)  
Unknown 0 0  7 (5) 10 (7)  

GvHD 
prophylaxis 

  0.090   0.715 

Tac + MMF 
± others 

24 (17) 32 (23)  16 (11) 18 (13)  

Tac + MTX 
± others 

100 (71) 82 (58)  128 (89) 126 (88)  

CSA + MMF 
± others 

4 (3) 11 (8)  0 0  

CSA + MTX 
± others 

13 (9) 16 (11)  0 0  

Use of ATG or 
Campath 

  1.000   1.000 
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No ATG or 
CAMPATH 

141 
(100) 

141 (100)  144 (100) 144 (100)  

Year of 
Transplant 

  0.585   0.173 

2002 0 1 (1)  0 1 (1)  
2003 5 (4) 4 (3)  0 0  
2004 9 (6) 12 (9)  3 (2) 4 (3)  
2005 10 (7) 13 (9)  1 (1) 6 (4)  
2006 8 (6) 12 (9)  1 (1) 2 (1)  
2007 13 (9) 17 (12)  6 (4) 2 (1)  
2008 17 (12) 12 (9)  10 (7) 10 (7)  
2009 13 (9) 19 (13)  12 (8) 14 (10)  
2010 23 (16) 11 (8)  13 (9) 10 (7)  
2011 5 (4) 6 (4)  13 (9) 22 (15)  
2012 7 (5) 4 (3)  25 (17) 14 (10)  
2013 10 (7) 13 (9)  19 (13) 19 (13)  
2014 9 (6) 9 (6)  21 (15) 14 (10)  
2015 11 (8) 8 (6)  13 (9) 15 (10)  
2016 1 (1) 0  5 (3) 11 (8)  
2017 0 0  2 (1) 0  

 
a The Pearson chi-square test was used for comparing discrete variables; the Kruskal-Wallis test was used for comparing 
continuous variables. 
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