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ABSTRACT 

Genome-wide association studies (GWAS) have identified hundreds of risk loci for 

breast cancer, but identifying causal variants and candidate target genes remains 

challenging. Since most risk loci fall in active gene regulatory regions, we developed a novel 

approach to identify variants with greater regulatory potential in the disease’s tissue of origin. 5 

Using genome-wide differential allelic expression (DAE) analysis on microarray data from 64 

normal breast tissue samples, we mapped over 54K variants associated with DAE 

(daeQTLs). We then intersected these with GWAS data to reveal candidate risk regulatory 

variants and analyzed their cis-acting regulatory potential. We found 122 daeQTLs in 41 loci 

in active regulatory regions that are in strong linkage disequilibrium with risk-associated 10 

variants (risk-daeQTLs). We also identified 65 new candidate target genes in 29 of these loci 

for which no previous candidates existed. As validation, we identified and functionally 

characterized five candidate causal variants at the 5q14.1 risk locus targeting the ATG10 

and ATP6AP1L genes, likely acting via modulation of alternative transcription and 

transcription factor binding. Our study demonstrates the power of DAE analysis and daeQTL 15 

mapping to understand breast cancer genetic risk, including in complex genetic regulatory 

landscapes. It additionally provides a genome-wide resource of variants associated with 

DAE for future functional studies. 

 

 20 

Keywords: cis-regulation; polymorphism; cancer predisposition; breast cancer

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2022.03.08.22271889doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22271889
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

1 

INTRODUCTION 

Genome-wide association studies (GWAS) for breast cancer (BC) have identified 

hundreds of risk-associated loci and have generated long lists of candidate loci requiring 

further validation (Wendt and Margolin, 2019). Nevertheless, the identification of the causal 

variants and their target genes, as well as understanding the underlying biological 5 

mechanisms, remain challenging. This is because disease risk loci often have many variants 

in high linkage disequilibrium (LD) with the risk-associated variant, harbor multiple genes, 

and mainly fall in noncoding genome regions (Gallagher and Chen-Plotkin, 2018). However, 

the overrepresentation of potential causal variants at active gene regulatory regions (Fachal 

et al., 2020; Maurano et al., 2012) indicates that variants regulating gene expression levels 10 

likely influence BC genetic predisposition, both proximally and over a long range (Darabi et 

al., 2015; Dunning et al., 2016; Ghoussaini et al., 2016; Meyer et al., 2011, 2008; Michailidou 

et al., 2017; Udler et al., 2010). These variants have commonly been mapped by expression 

quantitative trait loci (eQTL) analysis, but this approach is impacted by the effects of 

negative feedback control and environmental factors (Pastinen et al., 2006). An increasingly 15 

popular alternative approach is to detect imbalances in allelic transcript levels - differential 

allelic expression (DAE). By comparing the relative expression of the two alleles in a 

heterozygous individual, each allele will serve as an internal standard for the other, thus 

controlling for trans-regulatory and environmental factors affecting both alleles (Forton et al., 

2007; Ge et al., 2009). Consequently, this directly indicates regulatory variants acting in cis - 20 

cis-acting regulatory SNPs or rSNPs. 

Given the importance of cis-regulatory variants for BC susceptibility, a genome-wide 

map of cis-regulatory variants would be key to interpreting GWAS results and identifying 

causal variants of risk. Studies in various healthy tissues showed that DAE is a relatively 

common event (Aguet et al., 2017; Bjornsson et al., 2008; Gao et al., 2012; Ge et al., 2009; 25 

Przytycki and Singh, 2020; Romanel et al., 2015). Given that gene expression regulation is 

tissue-specific, performing these studies in the tissue from which the disease arises, namely, 

normal breast tissue, is essential. Although others have used allelic expression analysis to 

identify BC risk, this was carried out in tumor tissue or lymphoblastoid cells (Hamdi et al., 

2014; Zhang et al., 2018). This study proposes an integrative approach to identify causal 30 

variants of risk that have a cis-regulatory role (Figure 1): to combine GWAS results with 

SNPs associated with DAE levels in normal breast tissue. Hence, we first carried out DAE 

analysis in normal breast tissue samples at a genome-wide level, then mapped the 

candidate risk regulatory variants for GWAS loci, and finally functionally unveiled the 

mechanisms underlying BC risk at a selected locus.  35 
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Figure 1 - Strategy framework used to identify causal variants and target genes 
associated with breast cancer risk. Legend: aeSNP - an SNP that passed quality control and at 

which allelic expression (AE) was measured; daeSNP - an aeSNP showing differential AE (DAE); 5 
Genotyped SNP - an SNP with genotype information (either genotyped in the study or imputed) and 

tested for association with AE ratios; daeQTL - an SNP associated with AE ratios measured for a 

daeSNP; risk-daeQTL - a daeQTL with a r2 ≥ 0.4 with a GWAS hit variant; candidate risk rSNP - a 

variant with a r2 ≥ 0.95 with the risk-daeQTL. 

 10 
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MATERIAL AND METHODS  

SNP and call filtering at the gDNA and cDNA levels 

We used an Illumina Infinium Exon510S-Duo arrays dataset of normal breast tissue 

available from Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) under 

accession number GSE35023 (Liu et al., 2012). It consists of 66 samples of DNA and cDNA 5 

(derived from total RNA) run on Illumina Infinium Exon510S-Duo arrays. These exon-centric 

microarrays contain probes for 511,354 SNPs, with more than 60% of the markers located 

within 10 kb of a gene and targeting more than 99.9% of human RefSeq genes. Sample 

filtering and normalization were performed as described previously, and 12 samples were 

removed from further analysis (Liu et al., 2012). We performed extensive quality control after 10 

microarray data normalization and before allelic expression analysis. First, a minimum cut-off 

of average log2 RNA intensity values ≥ 9.5 for each probe was applied to remove non-

expressed SNPs. Then, SNPs for which the RNA log2 ratios could not discriminate between 

homozygous and heterozygous genotypes (t Test > 0.05) were eliminated. Third, to 

guarantee high-quality genotyping data, a minimum call rate ≥ 90%, a Hardy-Weinberg 15 

equilibrium p-value > 1.0E-05, and at least five heterozygotes were requested for each SNP. 

Finally, we only kept SNPs uniquely mapped in the genome, not flagged as suspected in 

dbSNP149 GRCh38p7 and located in autosomes. 

Genome-wide DAE analysis 

Allelic expression was measured in the filtered dataset of SNPs and samples in a 20 

varying number of individuals heterozygous (AB) for each transcribed SNP (aeSNP). As 

cDNA was prepared from total RNA, without selection for poly-A mRNAs, AE was measured 

for variants in fully processed and unspliced primary transcripts. Allelic expression ratios (AE 

ratios) were defined as the log2 of the ratio between the levels of allele A transcript and the 

levels of allele B transcript (heterozygote ratio), normalized by the same heterozygote ratio 25 

calculated for genomic DNA (gDNA) (Figure S1), to account for copy number variation and 

correct for technical biases. Differential allelic expression (DAE) was called at the sample 

level when AE ratios were greater than 0.58 or less than -0.58 (corresponding to the log2 of a 

1.5-fold difference between alleles). 

aeSNPs were classified as monoallelically expressed SNPs (maeSNPs) (Gimelbrant 30 

et al., 2007) when presenting more extreme AE ratios and a random distribution of 

heterozygotes above 0.58 and below -0.58 ratios, suggesting the expression of only one 

allele with a random choice between alleles. Genes with at least one maeSNP were labeled 

maeGenes. 
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After filtering out maeSNPs, the remaining aeSNPs were tested with the Equal or 

Given Proportions test (prop.test function in R), with the alternative hypothesis that the 

proportion of heterozygotes with absolute AE ratios ≥ 0.58 is greater than 10% for any given 

SNP. The resulting p-values were corrected using a false discovery rate of 5% to define 

daeSNPs (Figure S1, Figure 1 – Step 1). Genes with at least one daeSNP were henceforth 5 

denominated daeGenes. 

Validation of nine daeSNPs was performed by TaqMan® PCR technology, as 

described previously (Maia et al., 2009), in 25 independent normal breast tissue samples 

heterozygous for a variable number of individuals per SNP using the following TaqMan® 

Genotyping Assays predesigned by Applied Biosystems: C___8354687_10; 10 

C__29939330_20; C__31232634_10; C___3133316_10; C__11844169_10; 

C___2627792_10; C___1517694_1_; C____787630_20; C___3108259_10. The prop.test 

was equally applied to confirm the presence of differential allelic expression. 

Annotation of variants 

Variants were annotated according to hg38/GRCh38 with biomaRt v 2.40.5. aeSNP 15 

consequence types were categorized as follows: UTR if classified as 3_prime_UTR_variant 

or 5_prime_UTR_variant; coding if classified as coding_sequence_variant, 

incomplete_terminal_codon_variant, missense_variant, stop_retained_variant, 

synonymous_variant, stop_lost, start_lost, stop_gained, splice_region_variant, 

splice_acceptor_variant or splice_donor_variant; intronic if classified as intron_variant; and 20 

noncoding_transcript_variant if classified as noncoding_transcript_variant, 

noncoding_transcript_exon_variant or mature_miRNA_variant. We classified aeSNPs further 

according to gene biotype as follows: pseudogene if located in IG_C_pseudogene, 

processed_pseudogene, transcribed_unprocessed_pseudogene, 

transcribed_unitary_pseudogene, translated_unprocessed_pseudogene, 25 

unprocessed_pseudogene, unitary_pseudogene, transcribed_processed_pseudogene, 

polymorphic_pseudogene or rRNA_pseudogene; protein-coding gene if located in 

protein_coding, IG_V_gene, TR_C_gene, TR_J_gene, TR_V_gene or TEC; and 

noncoding_rna if located in lncRNA, miRNA, misc_RNA, snRNA, snoRNA, scaRNA or 

ribozyme. 30 

To test whether classes of consequence type and gene biotype were 

overrepresented (i.e., enriched) in the list of daeSNPs, we applied a one-tailed Fisher’s 

exact test (alternative = “greater”). Information from imprinted genes was retrieved from a 

comprehensive study of genomic imprinting in the breast (Goovaerts et al., 2018) and from 

the geneimprint database (http://www.geneimprint.com) searching for Imprinted Genes: by 35 

Species: Human. 
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Genotype imputation 

Imputation was run on the Illumina Exon 510 Duo germline genotype data from the 

64 samples that passed microarray quality control filters. Before imputation data, quality 

control was applied to the genotyping data, and SNPs with call rates < 85%, minor allele 

frequency < 0.01, and Hardy-Weinberg equilibrium with p-value < 1.0E-05 were excluded 5 

from the analysis. Imputation was performed using MACH1.0 (Li et al., 2010) and the 

phased haplotypes for HapMap3 release (HapMap3 NCBI Build 36, CEU panel - Utah 

residents with Northern and Western European ancestry) as a reference panel. We applied 

the recommended two-step imputation process: model parameters (crossover and error 

rates) were estimated before imputation using all haplotypes from the study subjects and 10 

running 100 iterations of the Hidden Markov Model (HMM) with the command option - 

greedy and -r 100. Genotype imputation was then carried out using the model parameter 

estimates from the previous round with command options of -greedy, -mle, and -mldetails 

specified. Imputation results were assessed by the platform-specific measures of imputation 

uncertainty for each SNP (rq Score) and filtered for an rq-score≥0.3, as suggested in the 15 

author webpage (http://csg.sph.umich.edu/abecasis/mach/tour/) and MAF ≥ 0.01. 

Candidate rSNP mapping 

Mapping of candidate rSNPs associated with the DAE observed - henceforth 

designated as daeQTLs (differential allelic expression quantitative trait loci) (Figure S1, 

Figure 1 - Step 2) - took into consideration the pattern of AE ratio distribution displayed by 20 

each daeSNP, as this is highly dependent on the LD between the daeSNP and the rSNP 

acting upon the gene (Xiao and Scott, 2011). 

To test the association between candidate SNP zygosity and the allelic expression of 

a daeSNP, henceforth designated daeQTL analysis (differential allelic expression 

quantitative trait loci analysis), we considered the pattern of the allelic expression (AE) ratio 25 

distribution displayed at each daeSNP, as this is dependent on the linkage disequilibrium 

between the daeSNP and the rSNP. When a single rSNP is in strong LD (r2 ~1) with the 

daeSNP, the normalized AE ratios for all heterozygotes will be unidirectional, with all 

samples preferentially expressing the same allele (i.e., all samples exhibiting either positive 

AE ratios or negative AE ratios). In this case, a one-sample Wilcox test was used to 30 

compare the mean normalized AE ratios for samples heterozygous for the candidate rSNP 

to 0. When the rSNP is not in r2 ~1 with the daeSNP, the distribution of the AE ratios will 

depend on the rSNP-daeSNP haplotypes present in the analyzed samples, and we applied a 

two-sample Wilcox test for the null hypothesis that the absolute AE ratios at the samples 

heterozygous for the candidate rSNP are higher than the absolute AE ratios at the samples 35 
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homozygous for the tested rSNP. These tests were performed for rSNP-daeSNP pairs 

located within 500 kb of each other. P-values were adjusted with the Benjamini‒Hochberg 

method (Hochberg and Benjamini, 1990), using all daeSNP/tested SNP pairs, with the 

distance between them as a covariate (package ihw, R) (Ignatiadis et al., 2016) and reported 

as significant when the false discovery rate was below 5%. 5 

Breast cancer GWAS data retrieval 

Nine hundred and sixty-eight GWAS-significant risk-associated SNPs for BC 

published until April 2018 were retrieved from the NHGRI-EBI Catalog of published genome-

wide association studies (GWAS Catalog) (MacArthur et al., 2017) using the gwasrapidd R 

package (Magno and Maia, 2019). Filters included a significance level cut-off p-value ≤ 1.0E-10 

05 and the reported traits: “Breast cancer”, “Breast cancer (early onset)”, “Breast cancer 

(estrogen-receptor negative)”, “Breast cancer (male)”, “Breast cancer in BRCA1 mutation 

carriers”, “Breast cancer in BRCA2 mutation carriers”, “Breast cancer male”, and “Breast 

cancer and/or colorectal cancer”. The complete list of SNPs is presented in Table S1. 

Proxy SNP retrieval 15 

Variants in LD with index SNPs were retrieved from Ensembl (Yates et al., 2015) 

using the function get_ld_variants_by_window() from the ensemblr R package 

(https://github.com/ramiromagno/ensemblr) using the 1000 GENOMES project data 

(phase_3) for the CEU population and a genomic window size of 500 kb (250 kb upstream 

and downstream of the queried variant). The r2 cut-off used varied between 0.2 and 0.95 20 

depending on the analysis and is indicated in each analysis description. 

Retrieval of previously suggested BC target genes 

Genes previously suggested as targets of cis-acting regulatory variation in post-

GWAS studies for BC, with extensive fine-scale mapping and in silico prediction or functional 

analysis, and those classified as Inquisit 1 by Fachal and colleagues (Fachal et al., 2020) 25 

are indicated in Table S2. 

 

GTEx eQTL and gene expression data retrieval 

The Genotype-Tissue Expression (GTEx) project identified expression quantitative 

trait loci (eQTL) using normal mammary tissue samples (Consortium et al., 2015). eGenes 30 

(genes with at least one SNP in cis significantly associated, at a false discovery rate (FDR) 

of ≤0.05, with expression differences of that gene) and significant variant-gene associations 
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based on permutations were downloaded from GTEx Analysis V8 (dbGaP Accession 

phs000424.v8.p2, available on 18/07/2019). 

All SNP-gene associations tested for breast mammary tissue, including 

nonsignificant and gene expression levels (TPM), were downloaded from GTEx Analysis V7 

(available on 2016-01-15). 5 

Comparison of daeGenes, eGenes and gwasGenes 

First, the list of publicly available eGenes was compared with the daeGenes 

identified in our study, restricting this comparison to genes analyzed in both datasets. Then, 

we investigated the percentage of gwasGenes, defined as genes containing variants in 

moderate to strong LD (r2≥0.4) with GWAS index SNPs, displaying evidence of cis-10 

regulation by either DAE or eQTL analysis. 

Functional characterization of candidate risk SNPs 

Candidate risk rSNPs were examined for regulatory potential by assessing the 

overlap of the variant’s location with epigenetic marks derived from the ENCODE (Dunham 

et al., 2012) and NIH Roadmap Epigenomics project data (Kundaje et al., 2015) using the R 15 

package haploR. Candidate causal variants (variants overlapping with DNase I 

hypersensitivity sites and H3K4me1 or H3K4me3 or histone modifications in normal breast 

or breast tumor cell lines) at the 5q14.1-14.2 locus were further analyzed regarding their 

genomic context and transcription factor (TF) binding using the UCSC Genome Browser 

(Gonzalez et al., 2021; Kent et al., 2002), HaploReg v4.1 (Ward and Kellis, 2012) and 20 

RegulomeDB v1.1 (Boyle et al., 2012) tools. Emphasis was given to overlapping with 

transcription factor (TF) binding identified in breast myoepithelial cells (BR. MYO, E027), 

human mammary epithelial cells (HMECs, E119), variant human mammary epithelial cells 

(vHMECs, E028) and two BC cell lines (MCF-7 and T47D). Allele-specific epigenetic 

modifications (H3k4me3 and DNase I), RNA polymerase II (POL2), and transcription factors 25 

(TF) binding with alignment data available in HMEC, MCF-7 and MCF-10A breast cancer cell 

lines from ENCODE were retrieved and visualized with the Integrative Genomics Viewer 

(IGV Version 2.3.71) tool (Thorvaldsdóttir et al., 2013), to analyze protein‒DNA interactions 

and allelic preferential binding. Differential allelic binding was analyzed in heterozygous 

candidate risk rSNPs located within TF binding peaks in experiments with a read coverage 30 

at the SNP site ≥ 20. We applied a two-tailed binomial test with the null hypothesis assuming 

no bias (balanced binding of the protein to the two alleles of the variant). The p-value was 

corrected for multiple testing using the R package qvalue (Storey et al., 2021). When 

multiple tracks for the same SNP, trait, and cell line existed, only the p-value for the 

experiment with higher total read counts was reported in the main manuscript. 35 
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Analysis related to alternative transcription at the 5q14.1-14.2 locus was carried out 

in three ways. First, sQTLseekeR (v1.4) (Monlong et al., 2014) was used to test the 

association of genetic variants with alternative isoform expression in both normal breast and 

tumor tissue using total read counts derived from RNA-seq data from the TCGA (TCGA-

BRCA, hg19) and GTEx (phs000424.v6.p1, hg38) projects. Only ATG10 displayed sufficient 5 

alternative transcription dispersion to allow sQTL analysis. Additionally, all SNPs within 5 kb 

upstream or downstream of ATG10 were included in the analysis, not only the candidate risk 

rSNPs, to increase the stringency of the association exercise. P-values for all SNPs tested 

for ATG10 sQTL analysis were controlled for multiple testing using a 5% FDR. Correlation 

analyses between -log10 (FDR q-value) and LD (r2) with rs7707921 were performed using 10 

Pearson’s test. Then, the overlapping of variant location with RNA processing-associated 

proteins was assessed using CLIP data retrieved from POSTAR2 

(http://lulab.life.tsinghua.edu.cn/postar/) (Zhu et al., 2019) and from RBP-Var 

(http://www.rbp-var.biols.ac.cn/) (Mao et al., 2016), which additionally informed on riboSNitch 

potential (Corley et al., 2015). Finally, allele-specific RBP binding predictions were 15 

performed with RBPmap (Paz et al., 2014) using the analyzed variant flanking sequence (30 

nucleotides on each side, with the variant at index 31) using all available human RBP motifs. 

Haplotype analysis 

Haplotypes in the 5q14.1-14.2 region were analyzed on Haploview 4.2 using the 

imputed genotypes from the 64 normal breast tissue samples (Barrett et al., 2005). For 20 

candidate risk SNPs whose genotype was not possible to determine (because it was neither 

genotyped nor imputed), a proxy SNP in strong LD (r2 ≥ 0.95) was used instead. Haplotype 

blocks were generated using the default algorithm. 

TCGA-BRCA gene expression analysis 

Processed gene expression and isoform expression from RNA-Seq data for 113 25 

normal solid tissues and 1102 primary solid tumors from the TCGA-BRCA project, together 

with corresponding clinical data, were retrieved from the Genomic Data Commons archive 

using the R package TCGAbiolinks (Colaprico et al., 2016) accessed in October 2018. 

Isoform expression was annotated according to the genome assembly hg19, and total gene 

expression was annotated according to hg38. We applied two-sample Wilcoxon tests to 30 

compare the mean expression of ATG10 isoforms between normal-solid tissues (normal-

matched) and breast tumors, correcting for multiple testing with the Benjamini and Hochberg 

(BH) procedure. We applied Pearson’s test to correlate gene expression among ATG10, 

RPS23, and ATP6AP1L. Spearman’s test was applied to correlate ATG10, RPS23, and 

ATP6AP1L with MYC and MAX gene expression.  35 
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RESULTS 

Cis-regulatory variation is common in normal breast tissue 

Genome-wide allelic expression (AE) analysis was performed using microarray data 

from 64 normal breast tissue samples. Normalized allelic expression ratios were calculated 

for SNPs in coding and noncoding regions upon filtering for the cDNA signals’ expression 5 

level and allelic discrimination potential. Overall, we identified 91,467 autosomal allelic-

expressed SNPs (aeSNPs) located in 21,527 annotated Ensembl genes (median of three 

aeSNPs per gene) (Figure S2). Unsurprisingly, the number of aeSNPs analyzed per gene 

correlated with the annotated gene length (rho = 0.60, p-value < 2.2e-16, Figure S3). 

We found that almost one-third of the aeSNPs (26,266 out of 91,467) displayed 10 

biallelic differential expression (daeSNPs, q-value ≤ 0.05) (Table 1, Table S3), while 84 

SNPs displayed monoallelic expression (maeSNPs). TaqMan PCR validated seven out of 

nine daeSNPs (Figure S4) that showed significant DAE and concordant preferential 

expression (Fisher’s exact test p-value > 0.05). 

 15 

Table 1. Summary of the genome-wide breast tissue allelic expression analysis results 
 

Set of SNPs n Ensembl Gene IDs 
All aeSNPs 91467 21527 
maeSNPs 85 44 
daeSNPs 26,266 13,689 

 

The daeSNPs are distributed across the genome, with low interchromosomal 

variability (ranging from 26 to 35%, Figure S5). They overlapped 13,688 (65%) annotated 20 

genes (daeGenes), of which 3,666 (17%) harbored three or more daeSNPs (Figure 2a, 

Table 1, Table S3). When considering daeSNPs mapping exclusively to one gene, we 

identified 8,193 daeGenes (out of 12,944) that showed evidence of being under the control 

of allele-specific cis-acting factors, either genetic or epigenetic. In terms of consistency of 

DAE detection across the length of these genes, we found that in the majority of daeGenes, 25 

the frequency of daeSNPs was higher than 40% (7476 in 13,688), with 3894 daeGenes 

presenting imbalances in all the analyzed aeSNPs (Figure 2b). The aeSNPs showed a large 

distribution of mean |AE ratios|, with daeSNPs centered at 0.60 (corresponding to a 

difference between alleles of 1.5) and non-daeSNPs centered at 0.26 (corresponding to a 

difference of 1.2). Twelve percent of daeSNPs showed average absolute AE ratios between 30 

1 and 5, corresponding to average allelic fold changes ranging from 2 to 34 (Figure 2c, Table 
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S3). The amplitude of the imbalances measured at aeSNPs correlated negatively with the 

average expression level of both alleles (rho = -0.4, p-value < 2.2e-16) (Figure 2d) but not 

with the standard deviation across individuals (Figure S6). The aeSNPs are located mainly in 

intronic regions and noncoding transcript genes, but non-daeSNPs and daeSNPs showed 

differences in class distribution for consequence type, with daeSNPs enriched at 5 

unannotated regions (p-value < 0.01, Figure 2e). Although most of the aeSNPs analyzed 

were in protein-coding genes, daeSNPs were relatively more common in noncoding genes 

and pseudogenes when compared to non-daeSNPs (p-value < 0.01, Figure 2f). 

 

Monoallelic expression in breast tissue 10 

Regarding monoallelic expression, maeSNPs were annotated to 44 Ensembl genes 

(Table 1, Table S4, Figure S7), the majority of which were previously reported as imprinted 

in breast tissue (e.g., IGF2 or ZDBF2) or in other tissues (e.g., KCNQ1, KCNQ1OT1, RTL1, 

NAA60, ZIM2, and L3MBTL1), validating our AE analysis. Interestingly, we detected 

maeSNPs in a region containing the lncRNA MEG9 and a cluster of miRNA genes that had 15 

only previously been reported as imprinted in nonhuman species (Hagan et al., 2009; Seitz 

et al., 2003; Tierling et al., 2006). Additionally, we found unreported monoallelic expression 

at an intergenic region (22q11.23), suggesting the existence of unannotated transcripts in 

this region. Notably, we observed two groups of heterozygotes preferentially expressing 

opposite alleles of rs17122278, an intronic variant of ARCN1, suggesting the latter as a 20 

candidate novel monoallelically expressed protein-coding gene in breast tissue. 
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Figure 2 - Characterization of aeSNPs. a) Histogram of the rank number of daeSNPs 

identified per gene across 17135 annotated genes. b) Histogram of the rank proportion of daeSNPs 

per aeSNPs identified per gene. c) Box plot with the distribution of the mean of the absolute values of 5 
AE ratios across heterozygous individuals measured at non-daeSNPs and daeSNPs. d) Distribution 

of the mean absolute values of AE ratios at aeSNPs according to the average intensity of both alleles 

at aeSNPs in the microarray Spearman’s results of a Spearman’s correlation test are shown. e) and f) 

Relative frequency of aeSNPs and daeSNPs according to consequence type and gene biotype, 
respectively. (*) denotes the classes for which daeSNPs were enriched (p<0.01). 10 
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Mapping of daeQTLs in normal breast tissue 

Evidence of DAE supports that a gene’s expression is controlled by cis-regulatory 

variation, which can be mapped using AE ratios as a quantitative trait – in what we termed 

DAE quantitative trait loci (daeQTL) analysis. Here, we found a minority of daeSNPs (6928 

out of 26266) for which all the heterozygotes preferentially expressed the same allele. This 5 

pattern indicates moderate to strong linkage disequilibrium between the daeSNP and the 

rSNPs acting on it (Xiao and Scott, 2011) [27]. Hence, our mapping approach considered the 

allelic expression (AE) ratio distribution pattern displayed at each daeSNP, and one-sample 

or two-sample Wilcox tests were applied accordingly. We identified 54357 daeQTLs (5% 

FDR) for 6761 (26%) daeGenes (Table S5), primarily located within 20 kb from the 10 

corresponding daeSNP but as far as the 500 kb window used for the analysis (Figure 3a). 

daeQTLs for MROH8 and ZNF132, two coding genes located on chromosomes 19 and 20, 

respectively, were among the most significant ones found, but we identified other highly 

significant daeQTLs (adjusted p-values smaller than 5.0E-04) for 2507 genes. 

 15 

 
 

Figure 3 - Mapping of variants associated with differential allelic expression. a) 
Empirical cumulative distribution for the distance between the daeSNP and corresponding mapped 

daeQTL. b) and c) daeQTL mapping result for the most significant daeQTL identified for MROH8 20 
using a one-sample Wilcox test and for ZNF132 using a two-sample Wilcox test. The AE ratios 

calculated at the daeSNPs are represented on the y-axis in the two panels and stratified according to 

genotype at the candidate SNP (black dots represent heterozygous individuals, and red dots 

represent homozygous individuals). 

 25 

Identification of target genes within BC risk loci 

To pinpoint the most likely candidate target genes within BC risk loci, a main post-

GWAS challenge, we identified the genes within previously reported GWAS loci 

(gwasGenes) displaying the most robust evidence of being under the control of cis-

regulatory variation, provided either by DAE (daeGenes) or eQTL (eGenes) analysis. We 30 
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found that most gwasGenes (783 out of 948) showed such evidence, with 69% of these with 

evidence via DAE analysis (358 genes identified solely by DAE and 300 by both analyses) 

(Table S6). Compared to all genes studied, gwasGenes presented a significant enrichment 

of Fisher’s significance of DAE (Fisher’s exact test = 2.48e-05). Finally, we successfully 

mapped daeQTLs for 385 gwasGenes (Figure 4, Table S6). 5 

Next, we verified our ability to identify 178 previously proposed breast cancer target 

genes (Table S2). We found that 44% of these genes were exclusively daeGenes (e.g., ELL, 

TOX3, RNF115), 23% were both daeGenes and eGenes (e.g., CASP8, POU5F1B, STXBP4) 

and 14% were exclusively eGenes (e.g., RMND1, HELQ, PRKRIP1). However, we did not 

find evidence supporting other genes, such as CITED4, IGFBP5, and MYC. (Table S2). As 10 

total levels of gene expression may confound the ability to identify daeGenes and eGenes, it 

is noteworthy that eGenes showed higher median levels overall than daeGenes and only 

4.7% of exclusive daeGenes showed low median levels (<0.1 TPM) (Figure S8). 

 

Identification of causal variants within BC risk loci 15 

Another post-GWAS challenge we addressed was the identification of the causal 

variants within risk loci. We first identified 1431 daeQTLs in moderate to strong LD (r2 ≥ 0.4) 

with GWAS index SNPs (Figure 1 – Step 3) (GWAS p-value < 1.0E-05), henceforth referred 

to as risk-daeQTLs. These were distributed across 93 loci in 19 chromosomes, primarily in 

introns, followed by intergenic regions (Table S7, Figure S9). Then, we assessed these risk-20 

daeQTLs plus their proxies (r2 ≥0.95) for their cis-acting regulatory potential. We started by 

identifying 425 variants located in DNase I hypersensitivity sites (DHS), of which the majority 

(69%) mapped to regions with histone marks associated with active regulatory elements 

(Figure 4b, Figure S10). More specifically, 149 risk-daeQTLs co-localized with both active 

promoter (H3K4me3 and H3K9ac) and active enhancer-associated (H3K4me1 and 25 

H3K27ac) histone marks, 76 co-localized exclusively with active enhancer-associated marks 

and another 67 exclusively co-localized with active promoter-associated marks. Of these, 

122 risk-daeQTLs also showed protein binding evidence, thus representing strong candidate 

causal variants within 41 of the initial 93 BC risk loci (Table S8). 

Among these 41 risk loci, we detected 47 novel candidate target genes in 29 loci with 30 

no previous report of target genes, such as SMC2 in 9q31.1, MLLT10 in 10p12.32, and 

MAN2C1 and PTPN9 in 15q24.2. We confirmed previously reported target genes in nine loci 

and identified eight novel genes, including NASP and IPP in 1p34.1 and ATP6AP1L in 

5q14.1. Finally, we identified strong candidate causal variants at six loci but could not 

discern the target gene due to a lack of genomic annotation (Table 2). 35 
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Notably, 2222 daeQTLs were also in lower LD with GWAS hits (0.2 ≤ r2 <0.4), 

representing a valuable dataset warranting further exploration (Table S9). 

 

 

5 
Figure 4 – Summary of colocalization analyses for daeGenes and risk-daeQTLs. a) UpSet plot 

for 15,706 genes tested for DAE and eQTL (GTEx breast mammary tissue). Legend: daeGenes - 

genes identified as having differential allelic expression in normal breast tissue; eGenes - genes 

reported as being eQTL genes in GTEx mammary tissue data (q-value ≤ 0.05); gwasGenes - genes 

where GWAS index SNPs or proxies (r2 ≥ 0.4) are located; daeGenes with daeQTL mapping - 10 
daeGenes for which daeQTLs were identified. b) UpSet plot for 425 variants located in DHSs, 

according to the presence of protein binding and location in active promoters and/or enhancers in 
breast cell lines. 
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Table 2. Loci with candidate risk rSNPs and novel suggested target genes. 

Chr_band GWAS variant 
GWAS nearest 
gene 

Candidate causal 
variants daeQTL gene Regulatory Feature 

A. Loci with novel suggested target genes 
1p36.23 rs225132 ERRFI1-DT rs12757968 ERRFI1-DT Active enhancer 
1q22 rs10796944, rs7524950 ASH1L, PKLR rs1046188 FDPS, RUSC1-AS1 Active promoter and active enhancer 

1q22 
rs348196, rs10796944, rs12091730, 
rs7524950 

DAP3, ASH1L, 
MSTO1, DAP3P1, 
PKLR rs2048431 FDPS, RUSC1-AS1 Active promoter and active enhancer 

1q22 rs348196 DAP3 rs3841838 ARHGEF2, RIT1 Active promoter and active enhancer 
1p23.2 rs67073037 WDR43 rs4407214 WDR43 Active promoter and active enhancer 
4p12 rs199501877 NIPAL1, TXK rs98270 NIPAL1 Active promoter and active enhancer 
5q11.1 rs145106188 EMB rs4865698 EMB Active enhancer 
5q11.1 rs145106188 EMB rs4865699 EMB Active enhancer 
5q11.1 rs145106188 EMB rs28528780 EMB Active promoter and active enhancer 
5q31.1 rs6860806 SLC22A4 rs1979981 SLC22A4, MIR3936HG, SLC22A5 Active promoter and active enhancer 
5q31.1 rs6860806 SLC22A4 rs162887 SLC22A4, MIR3936HG, SLC22A5 Active promoter and active enhancer 
5q31.1 rs6860806 SLC22A4 rs460089 SLC22A4, MIR3936HG, SLC22A5 Active promoter and active enhancer 
5q31.1 rs6860806 SLC22A4 rs460271 SLC22A4, MIR3936HG, SLC22A5 Active promoter and active enhancer 
5q31.1 rs6860806 SLC22A4 rs367805 SLC22A4, MIR3936HG, SLC22A5 Active enhancer 
5q31.1 rs6860806 SLC22A4 rs2631369 SLC22A4, MIR3936HG, SLC22A5 Active promoter and active enhancer 
5q31.1 rs6860806 SLC22A4 rs2631368 SLC22A4, MIR3936HG, SLC22A5 Active promoter and active enhancer 
5q31.1 rs736801 ENSG00000283782 rs2070721 ENSG00000283782 Active promoter and active enhancer 
5q31.1 rs736801 ENSG00000283782 rs2548998 ENSG00000283782 Active promoter and active enhancer 
6p22.2 rs17598658, rs13195401 H2BC6, BTN2A1 rs9467701 BTN3A2 Active promoter and active enhancer 
6p22.2 rs17598658, rs13195401 H2BC6, BTN2A1 rs6923139 BTN3A2 Active promoter and active enhancer 
6p22.2 rs17598658, rs13195401 H2BC6, BTN2A1 rs6903015 BTN3A2 Active promoter and active enhancer 
6p22.2 rs17598658, rs13195401 H2BC6, BTN2A1 rs68112369 BTN3A2 Active promoter 
6p22.2 rs17598658, rs13195401 H2BC6, BTN2A1 rs66827971 BTN3A2 Active promoter 
6p22.2 rs13195401 BTN2A1 rs9379873 BTN3A2 Active promoter and active enhancer 

6p22.2 rs71557345, rs13195401 
ENSG00000285571, 
BTN2A1 rs36162392 BTN3A2 Active promoter and active enhancer 

6p22.1 rs3094146, rs1611579 
ZNRD1ASP, 
ENSG00000285799 rs707910 HLA-A Active promoter and active enhancer 

6p22.1 rs3094146, rs1611579 
ZNRD1ASP, 
ENSG00000285799 rs415137 HLA-A Active promoter and active enhancer 

6p22.1 rs3094146, rs1611579 
ZNRD1ASP, 
ENSG00000285799 rs438610 HLA-A Active promoter and active enhancer 

6p22.1 rs3094054, rs3094146, rs3132615 

UBQLN1P1, 
ZNRD1ASP, 
ENSG00000288805 rs2188100 HCG17, HLA-L Active promoter and active enhancer 

6p22.1 
rs3129984, rs3132610, rs9262142, 
rs3132615 

ENSG00000288805, 
HCG20, ABCF1, 
PPP1R18 rs9262142 C6orf136 Active promoter and active enhancer 
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7q21.3 rs847577 LMTK2 rs1874343 TECPR1 Active promoter and active enhancer 
9q31.1 rs4742903, rs718857 SMC2 rs3818625 SMC2 Active promoter 
9q31.1 rs4742903, rs718857 SMC2 rs3818626 SMC2 Active promoter 
9q31.1 rs4742903, rs718857 SMC2 rs10820599 SMC2 Active promoter 
9q31.1 rs4742903, rs718857 SMC2 rs10820600 SMC2 Active promoter 
9q31.1 rs4742903, rs718857 SMC2 rs4742903 SMC2 Active promoter 

10p12.31 

rs7072776, rs10828247, 
rs11012730, rs10828249, 
rs7098100 MLLT10, SKIDA1 rs10828247 MLLT10 Active promoter 

10p12.1 rs7918232 ANKRD26 rs7907988 YME1L1 Active promoter and active enhancer 

10q21.2 rs10822013 
ENSG00000285837, 
ZNF365 rs10822013 ENSG00000285837 Active enhancer 

11p11.2 rs11039183 MADD rs7947450 SPI1 Active promoter 
11q13.1 rs617791 DRAP1, TSGA10IP rs14157 SART1 Active promoter 
11q13.1 rs617791 DRAP1, TSGA10IP rs12794370 SART1 Active promoter and active enhancer 
11q13.2 rs1783730 TMEM151A rs33981819 ENSG00000254458 Active promoter and active enhancer 
11q13.2 rs11344495, rs55908905 CTSF, SPTBN2 rs11110 DPP3-DT, B4GAT1-DT Active promoter and active enhancer 
11q13.2 rs11344495, rs55908905 CTSF, SPTBN2 rs55853079 DPP3-DT, B4GAT1-DT Active promoter and active enhancer 
11q22.3 rs11374964 POGLUT3 rs228589 NPAT Active promoter 
11q22.3 rs11374964 POGLUT3 rs189037 NPAT Active promoter 
11q23.1 rs505372 SIK2 rs541198 NA Active promoter and active enhancer 
11q23.1 rs505372 SIK2 rs7107213 CRYAB Active promoter and active enhancer 
14q13.2 rs58327846 PRORP rs1056879 PRORP Active promoter and active enhancer 
14q13.2 rs58327846 PRORP rs2236167 PRORP Active promoter and active enhancer 
14q32.33 rs60226654 COA8 rs3759586 KLC1, XRCC3 Active enhancer 
15q21.1 rs1876206 FBN1 rs8029993 FBN1 Active enhancer 
15q24.2 rs60381548, rs8027365 SIN3A, PTPN9 rs11637068 MAN2C1, PTPN9 Active promoter and active enhancer 
15q24.2 rs60381548, rs8027365 SIN3A, PTPN9 rs75219778 MAN2C1, PTPN9 Active promoter 
15q24.2 rs60381548, rs8027365 SIN3A, PTPN9 rs62027209 MAN2C1, PTPN9 Active promoter and active enhancer 

15q26.1 rs77554484 
PRC1, 
ENSG00000284946 rs867468 

PRC1, PRC1-AS1, 
ENSG00000284946 Active promoter and active enhancer 

15q26.1 rs77554484 
PRC1, 
ENSG00000284946 rs2001216 

PRC1, PRC1-AS1, 
ENSG00000284946 Active promoter and active enhancer 

15q26.1 rs77554484 
PRC1, 
ENSG00000284946 rs12905855 

PRC1, PRC1-AS1, 
ENSG00000284946 Active promoter and active enhancer 

16q12.2 
rs17817449, rs62033406, 
rs7193144, rs62048402 FTO rs9940128 FTO Active enhancer 

16q12.2 
rs17817449, rs62033406, 
rs7193144, rs62048402 FTO rs11642015 FTO Active enhancer 

16q12.2 
rs17817449, rs62033406, 
rs7193144, rs62048402 FTO rs17817497 FTO Active enhancer 

16q12.2 
rs17817449, rs62033406, 
rs7193144, rs62048402 FTO rs8050136 FTO Active enhancer 

16q13 rs2303282, rs2432539 BBS2, AMFR rs2440467 AMFR Active enhancer 
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17q21.31 rs2732699 ARL17B rs76594404 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter and active enhancer 

17q21.31 rs2732699 ARL17B rs80233201 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter and active enhancer 

17q21.31 rs2732699 ARL17B rs62056778 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter and active enhancer 

17q21.31 rs2732699 ARL17B rs11575895 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs62056779 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs74548327 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs111972148 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs242561 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs2316951 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active enhancer 

17q21.31 rs2732699 ARL17B rs11079733 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs2696633 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs143625699 ARL17B, KANSL1 Active promoter 

17q21.31 rs2732699 ARL17B rs113417378 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active promoter 

17q21.31 rs2732699 ARL17B rs143191191 

CRHR1, KANSL1, LINC02210, 
LINC02210-CRHR1, MAPT, MAPT-
AS1, ARL17B Active enhancer 

22q13.31 rs28512361 ENSG00000235091 rs134847 ATXN10 Active promoter 
22q13.31 rs28512361 ENSG00000235091 rs2071872 ATXN10 Active promoter and active enhancer 
B. Loci with previously suggested target genes 
1p34.1 rs12077974 MAST2 rs6697821 NASP#, IPP# Active promoter and active enhancer 
1p34.1 rs12077974, rs1707302 MAST2, PIK3R3 rs1707303 NASP#, IPP#, PIK3R3 Active promoter and active enhancer 
1p34.1 rs12077974 MAST2 rs1707302 NASP#, IPP#, PIK3R3 Active enhancer 
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2q33.1 
rs10931936, rs1035142, rs1830298, 
rs700635, rs3769821 CASP8 rs3769823 CASP8 Active promoter and active enhancer 

3q12.1 rs9837602, rs9833888, rs9289981 CMSS1, FILIP1L rs793463 CMSS1#, FILIP1L Active enhancer 
3q12.1 rs9837602, rs9833888 CMSS1, FILIP1L rs28714363 CMSS1#, FILIP1L Active enhancer 

5q14.1 

rs7707921, rs111549985, 
rs2407064, rs146817970, 
rs2407156 ATG10, ATP6AP1L rs111549985 ATG10, ATP6AP1L Active promoter and active enhancer 

5q14.1 
rs7707921, rs2407064, 
rs146817970, rs2407156 ATG10 rs226198 ATG10, ATP6AP1L Active promoter and active enhancer 

5q14.1 
rs7707921, rs2407064, 
rs146817970, rs2407156 ATG10 rs6880209 ATG10, ATP6AP1L Active promoter and active enhancer 

5q14.1 
rs7707921, rs2407064, 
rs146817970, rs2407156 ATG10 rs11325430 ATG10, ATP6AP1L Active promoter and active enhancer 

5q14.1 
rs7707921, rs2407064, 
rs146817970 ATG10 rs17247678 ATG10, ATP6AP1L Active enhancer 

7q21.2 
rs6964587, rs10644111, 
rs35417517 

AKAP9, LRRD1, 
CYP51A1-AS1 rs1011372 AKAP9 Active promoter and active enhancer 

7q21.2 
rs35522438, rs35417517, 
rs10644111, rs6964587 

AKAP9, LRRD1, 
CYP51A1-AS1, KRIT1 rs5885795 AKAP9 Active promoter and active enhancer 

7q21.2 
rs35522438, rs35417517, 
rs10644111, rs6964587 

AKAP9, LRRD1, 
CYP51A1-AS1, KRIT1 rs4727266 AKAP9 Active promoter and active enhancer 

7q21.2 
rs35522438, rs35417517, 
rs10644111, rs6964587 

AKAP9, LRRD1, 
CYP51A1-AS1, KRIT1 rs4727267 AKAP9 Active promoter and active enhancer 

7q21.2 
rs35522438, rs35417517, 
rs10644111, rs6964587 

AKAP9, LRRD1, 
CYP51A1-AS1, KRIT1 rs6465339 AKAP9 Active promoter and active enhancer 

7q21.2 
rs35522438, rs35417517, 
rs10644111, rs6964587 

AKAP9, LRRD1, 
CYP51A1-AS1, KRIT1 rs4279 AKAP9 Active promoter and active enhancer 

7q21.2 
rs35522438, rs35417517, 
rs10644111, rs6964587 

AKAP9, LRRD1, 
CYP51A1-AS1, KRIT1 rs12704637 AKAP9 Active promoter and active enhancer 

11p15.5 rs6597981 PIDD1 rs7942564 GATD1 Active promoter and active enhancer 
11p15.5 rs6597981 PIDD1 rs7948070 GATD1 Active promoter and active enhancer 
11q13.1 rs3903072 SNX32, OVOL1 rs4621 CFL1, SNX32# Active promoter and active enhancer 
11q13.1 rs3903072 SNX32, OVOL1 rs7125986 CFL1, SNX32# Active promoter 
11q13.1 rs3903072 SNX32, OVOL1 rs7947929 CFL1, SNX32# Active promoter 
11q13.1 rs3903072 SNX32, OVOL1 rs7947741 CFL1, SNX32# Active promoter 
11q13.1 rs3903072 SNX32, OVOL1 rs13817 CFL1, SNX32# Active promoter and active enhancer 
19p13.11 rs8170 BABAM1 rs3745187 ABHD8 Active promoter 
19p13.11 rs2965183, rs2304098 GATAD2A, YJEFN3 rs3934667 MAU2 Active promoter 
19p13.11 rs2965183, rs2304098 GATAD2A, YJEFN3 rs2916068 MAU2 Active promoter 

19p13.11 rs2965183, rs2304098 GATAD2A, YJEFN3 rs80007081 
YJEFN3#, CILP2#, 
ENSG00000258674# Active promoter and active enhancer 

19p13.11 rs2965183, rs2304098 GATAD2A, YJEFN3 rs17684164 
YJEFN3#, CILP2#, 
ENSG00000258674# Active promoter and active enhancer 

19p13.11 rs2965183, rs2304098 GATAD2A, YJEFN3 rs77254326 
YJEFN3#, CILP2#, 
ENSG00000258674# Active promoter and active enhancer 
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C. Loci for which no target gene could be pointed 
6p22.1 rs9257408 KRT18P1 rs209174 NA Active promoter and active enhancer 
6p22.1 rs9257408 KRT18P1 rs209173 NA Active promoter and active enhancer 
6p22.1 rs9257408 KRT18P1 rs3135315 NA Active promoter and active enhancer 
6p22.1 rs9257408 KRT18P1 rs184093 NA Active promoter and active enhancer 
6p22.1 rs9257408 KRT18P1 rs209138 NA Active promoter 
6p22.1 rs9257408 KRT18P1 rs3131102 NA Active promoter 
17q23.1 rs61495451 VMP1 rs3803863 chr17:59852174 Active promoter 
17q23.1 rs61495451 VMP1 rs2333562 chr17:59852174 Active promoter and active enhancer 
17q23.1 rs61495451 VMP1 rs138148328 chr17:59852174 Active enhancer 
19p13.11 rs4808801, rs172032, rs7258465 ELL, SSBP4 rs28375303 chr19:18416447 Active promoter 
19p13.11 rs4808801, rs172032, rs7258465 ELL, SSBP4 rs271621 chr19:18416447 Active promoter and active enhancer 
 

 
Legend: * Reported as rs116095464 in the original GWAS 
# Linkage disequilibrium (LD) values r2 between the daeQTL and the GWAS risk variant in the European population 
§ Gene not expressed in breast mammary tissue or without expression information in GTEx 5 
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Mapping of cis-regulatory risk variants at the 5q14.1-14.2 locus 

To further show the potential use of our integrated approach, we focused our follow-

up studies on the BC risk locus 5q14.1-14.2, where some of the most significant risk-

daeQTLs and candidate causal variants were identified. In this locus, rs7707921 was 

previously associated with BC risk in two meta-analyses (OR for alternative A allele = 1.07, 5 

95% CI = [1.05-1.1], p=5E-11) (Michailidou et al., 2017, 2015). The region containing this 

intronic variant of ATG10, its proxy variants (r2 ≥ 0.4), and other risk-associated variants 

reported in this locus spans three genes (ATG10, RPS23, and ATP6AP1L), hindering the 

identification of the causal variant(s) and their target gene(s) in this locus. 

First, all three genes showed DAE, supporting their regulation by cis-regulatory 10 

variants: 10 daeSNPs out of 37 aeSNPs at ATG10, one daeSNP out of two aeSNPs at 

RPS23, and three daeSNPs out of five aeSNPs at ATP6AP1L (Figure S11). The highest 

mean |AE ratios| detected at daeSNPs in these genes was 1.27 (2.4-fold) at RPS23, 

followed by 0.92 (1.9-fold) at ATP6AP1L (Figure 5 - panel 2, Figure S11). By daeQTL 

mapping analysis, we identified daeQTLs for all three genes: 56 for ATG10 (spreading along 15 

the ATG10-ATP6AP1L region), 4 for RPS23 (limited to RPS23-ATP6AP1L) and 26 for 

ATP6AP1L (spreading along the ATG10-ATP6AP1L region) (Figure 5 - panels 3 to 5). 

Additionally, we classified as risk-daeQTLs the 38 ATG10 daeQTLs and 24 ATP6AP1L 

daeQTLs (22 of which are common to the two genes) in moderate to strong LD (r2 ≥ 0.4) 

with the risk-associated variants. Furthermore, both ATG10 and ATP6AP1L daeQTL 20 

analysis results strongly correlated with the corresponding LD with the GWAS lead-SNP 

rs7707921 (Figure S12), further supporting the role of variants regulating the expression of 

these two genes in the risk for breast cancer. 

 

  25 
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Cis-regulatory risk variants act via two different mechanisms on genes in the 5q14.1-
14.2 locus 

The overlap analysis of the risk-daeQTLs with epigenetic marks in breast cell lines 

identified seven candidate causal variants for ATG10 and ATP6AP1L (Table S8, Table S10). 

We investigated these variants further for allelic differences in transcription factor binding 5 

and association with histone modifications and DHSs. One of these SNPs, rs111549985, 

overlies the active promoter of ATG10 (Figure S13), and its minor G-allele is preferentially 

associated with the H3K4Me3 modification in HMECs (2.7-fold, p = 3.7e-03) and shows 

robust preferential binding by POL2 in MCF7 cells (9-fold, p = 4.0E-04). However, DHS was 

more significantly associated with the major/reference C allele in T47D cells (0.5-fold, p = 10 

4.6e-05) (Figure 6a, Table S11). Another two candidate causal variants, rs226198 (intronic 

to RPS23) and rs688025’UTR (located at RPS23 5’UTR) overlay the shared promoter of 

RPS23 and ATP6AP1L and a predicted enhancer interacting with the ATG10 promoter 

(Figure S14). The minor C-allele of rs226198 showed preferential binding by MYC and MAX 

transcription factors, which are known to cooperate in cancer (Dang, 2012) (12.6-fold and 15 

7.9-fold difference, respectively, p < 2.2e-16) and preferential H3K4me3 marking (2.7-fold, p 

= 1.4e-02) in MCF-7 cells (Figure 6b, Table S11). It would be interesting to elucidate 

whether rs226198 impacts the binding of both factors and H3K4me3 deposition or whether 

this epigenetic mark is a consequence of altered transcription, as previously suggested 

(Floc’hlay et al., 2020; Howe et al., 2017). The minor T-allele of rs6880209 also showed 20 

preferential binding by MYC (4.8-fold, p < 2.2e-16) and MAX (2.4-fold, p = 2.7e-03), with 

smaller fold-change differences than rs226198, and additional preferential binding by POL2 

(2.6-fold, p = 1.27e-06) in MCF7 cells. However, similar to rs111549985, DHS preferentially 

occurred in the major/reference C-allele in T47D cells (5.3-fold, p = 9.1e-04) (Figure 6c, 

Table S11). Interestingly, the expression of MAX correlated with ATG10, RPS23, and 25 

ATP6AP1L, and the expression of MYC correlated with the expression of ATG10 (Figure 

S15). Furthermore, the expression levels of ATG10 and ATP6AP1L were positively 

correlated in breast tissue from healthy women (top 2.5% quantile of 500,000 pairwise tests) 

and in normal-matched tissue from patients with BC (Figure S16). The observation that 

ATG10 and ATP6AP1L are in different topologically associating domains (TADs) and that 30 

the candidate causal variants rs226198 and rs6880209 fall on the boundary between them 

(Figure S17) suggests that a shared pattern of chromatin condensation does not drive the 

correlated gene expression but instead by a shared cis-regulatory sequence. 

 

 35 
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Figure 5 - Evidence of DAE and daeQTL analysis at the 5q14.1 BC risk locus. The top track 

shows the mean values of the absolute AE ratios measured at aeSNPs across the region, with the 

non-daeSNPs shown in grey, the daeSNPs in black, and the daeSNPs with mapped daeQTLs in red. 

The subsequent tracks show the daeQTL mapping corrected p-values for ATG10, RPS23, and 5 
ATP6AP1L. 

 

 

Since genetic variants affecting mRNA decay or alternative splicing (Robles-

Espinoza et al., 2021) can cause allelic expression imbalances, we aimed to explore further 10 

the role of alternative transcription in gene expression regulation and in driving risk at the 

5q14.1 locus. To accomplish this, we performed an sQTL analysis for ATG10 that was not 
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restricted to the candidate risk rSNPs but included all SNPs located within 5 kb upstream 

and downstream of ATG10 to increase the stringency of the exercise. 

We identified six sQTLs (FDR ≤ 5%) in the tumor data, whose minor alleles were 

associated with changes in the expression of two protein-coding isoforms: decreased 

expression of ENST00000458350 (one extra exon) and increased expression of 5 

ENS3’UTR0282185 (longer 3’UTR) (Figure 7, Figure S18a, Table S12). Interestingly, 

ENST00000282185 is expressed at significantly lower levels in tumors than in normal-

matched tissue, in line with the reported oncogenic effect of UTR length (Mayr and Bartel, 

2009), although with a small effect size (fold-change = 1.20) (Figure S19). The strong 

correlation between sQTL q-values and LD with the lead GWAS SNP rs7707921 (r=0.94, p-10 

value = 3.15E-12, Figure S17b) supports the contribution of alternative transcription of 

ATG10 to BC risk. Although no sQTL was detected for ATG10 in normal breast data (Table 

S12), sQTL nominal p-values and LD with rs7707921 were still correlated in normal matched 

breast samples (r = 0.59, p-value = 0.002) (Figure S20). ATP6AP1L did not display sufficient 

alternative transcription dispersion to allow the sQTL analysis. Subsequent functional 15 

analysis of ATG10’s sQTLs, and their proxy SNPs (LD r2 ≥ 0.95), revealed the prediction of 

rs111549985 (5’UTR) and rs6884232 (3’UTR) to cause a riboSNitch (a functional RNA 

structure disrupted by an SNP (Corley et al., 2015)). Although RBP binding data for breast 

tissue do not exist, these variants have been reported to disrupt the binding of Xrn2 

(involved in termination by RNA polymerase II) and of Igf2bp1 (a translation regulator) in 20 

K562 cells (Table S13, Table S14), which would require confirmation in breast cells. 

 

 

 
Figure 6 - Variants at the 5q14.1 risk locus associated with differential transcription factor 25 

binding. Allele-specific analysis of the effect of three candidate risk rSNPs — (a) rs111549985, (b) 
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rs226198, and (c) rs6880209 — on RNA polymerase II (POL2) and transcription factor (TF) binding, 

DNase I targeting (DHS) and H3K4me3 modification in different heterozygous cell lines. An asterisk 

indicates statistically significant imbalances (two-sided binomial test, p-value ≤ 0.05). Legend: HMEC - 

human mammary epithelial cells; MCF7 - human breast (adenocarcinoma) cell line; T47D - human 
breast tumor cell line; MCF10A - human breast epithelial cell line. 5 

 

 

 

Figure 7 - Variants at the 5q14.1 risk locus associated with alternative transcription. Six sQTLs 

in high LD with rs7707921 were identified for ATG10. The -log10(q-value) for the sQTL analysis (y-10 
axis) is shown for the 5q14.1-14.2 region (hg38). Color intensity represents the LD (r2) between the 

analyzed variants and the GWAS lead SNP rs7707921. Below are two ATG10 transcripts whose 

expression ratios are associated with the sQTLs. 

Risk model for 5q14.1 links higher expression of ATG10 and ATP6AP1L with 
protection against BC 15 

Haplotype analysis of the samples included herein revealed two common haplotypes: 

one harboring the major alleles of all proposed risk-rSNPs and the GWAS lead SNP 

rs7707921 (frequency of 71.1%) and another with the corresponding minor alleles 

(frequency of 21.9%) (Figure S21). The proposed risk-rSNPs are among the most significant 

eQTLs for the two genes: rs111549985 for ATG10 and rs6880209 for ATP6AP1L (Figure 20 

S22) (Lonsdale et al., 2013). Therefore, the most common haplotype is associated with an 

increased risk for BC and lower expression of ATG10 and ATP6AP1L (Figure S21). 

Our proposed model for risk at 5q14.1 (Figure 8) establishes that the minor alleles of 

rs111549985, rs226198, and rs6880209 confer protection against BC by (1) increasing the 
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binding of POL2 II to the promoter of ATG10 (driven by rs111549985), (2) the binding of 

POL2 to the shared promoter of RPS23/ATP6AP1L (driven by rs6880209), and (3) the 

binding of cMYC and MAX to a regulatory region (possible enhancer) (driven by rs226198), 

increasing the expression of ATG10 and ATP6AP1L. These results reveal a complex 

regulatory landscape at the 5q14.1-14.2 locus, with multiple independent causal variants. 5 

 
 

Figure 8 - Complex risk regulatory landscape of the 5q14.1 locus. a) Levels of expression of 

ATG10 and ATP6AP1L genes differ between the haplotypes containing either the minor alleles of 

rs111549985, rs226198, and rs6880209 (above) or the major ones (below). Colored arrows indicate 10 
the direction of transcription of the individual genes, the saturation of the corresponding colors 

indicates the strength of protein binding, the number of green circles indicates the level of H3K4me3, 

and the colored curvy lines indicate the relative levels of transcript produced. b) Schematic 

representation of the proposed model for the positive correlation between ATG10 and ATP6AP1L via 
a shared regulatory region. 15 
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DISCUSSION 

Here, we present the first genome-wide map of differentially expressed allelic genes 

(daeGenes) in normal breast tissue and their genetic determinants (daeQTLs). We found 

widespread differential allelic expression (DAE) across the genome and identified daeQTLs 

for 26% of daeGenes. By intersecting this map with GWAS data, we identified risk-daeQTLs 5 

and target genes for 93 BC risk loci. Next, we retrieved epigenetic regulatory annotations on 

all candidate risk-rSNPs (risk-daeQTLs and their proxies in high LD) to prioritize variants 

with regulatory potential for further functional analysis. We identified 406 variants with strong 

regulatory potential annotated to 55 different chromosomal bands and candidates for 

regulating the expression levels of 96 genes. Our results represent a practical and valuable 10 

resource for prioritizing loci for follow-up GWASs. As a proof of concept, we functionally 

characterized the 5q14.1-14.2 BC risk locus in depth and proposed four causal regulatory 

variants targeting the genes ATG10 and ATP6AP1L acting via multiple allele-specific 

mechanisms. Our results suggest a complex regulatory landscape underlying BC etiology. 

We show that cis-acting variants regulate the expression of 65% of genes in normal 15 

breast tissue, with some genes displaying extreme allelic differences of up to 32-fold. 

Notably, we identified a novel gene with monoallelic expression, ARCN1, which warrants 

further inspection to confirm its imprinting status. An enrichment of daeSNPs at intergenic 

and intronic regions, as well as noncoding transcripts, noncoding genes, and pseudogenes, 

concurs with previous reports of predominant allelic imbalances of expression at gene-20 

depleted regions and genes under fewer evolutionary constraints (Campbell et al., 2008; 

Tung et al., 2009). 

To overcome the lack of phasing information, we applied two different tests in the 

daeQTL mapping, according to the AE ratio distribution, which led to the identification of 

54357 variants associated with AE ratios for 6761 genes, both coding and noncoding for 25 

proteins. The stringent statistical correction and the use of distance as a covariate in the 

second mapping approach increased its confidence level but limited the statistical power to 

identify regulatory variants in lower LD with the daeSNP or located more distally. 

We found evidence of expression regulation by cis-acting variants for most reported 

GWAS loci and believe that alternative mechanisms are at play in the remainder. We 30 

identified risk-daeQTLs at 93 different loci, including 72 loci with novel candidate risk target 

genes (including NEK10 at 3p24.1 and ZBED6 and ZC3H11A at 1q32.1). Moreover, the 

initial daeQTL map in normal breast tissue can be further mined whenever new risk variants 

are identified through GWAS. These results offer a resource platform for functional studies of 

causal variants and target genes and can help uncover the role of cis-regulatory variation in 35 

BC risk. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2022.03.08.22271889doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22271889
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

8 

Finally, we conducted an in silico functional analysis of the 5q14.1-14.2 BC risk locus 

and identified three strong candidate causal variants: rs111549985, rs226198, and 

rs6880209. We predict that these variants functionally impact TF binding, chromatin state, 

and gene expression levels of ATG10 and ATP6AP1L. A similar involvement of diverse 

regulatory mechanisms has been suggested previously for other BC risk loci (Cox et al., 5 

2011; Fachal et al., 2020; Maia et al., 2012). Both ATG10 (involved in autophagy) and the 

ATP6AP1L pseudogene have been suggested to have roles in cancer (Jo et al., 2017, 2012; 

Ma et al., 2021; Wang et al., 2014). A variant at ATG10 (rs7313473) was previously 

associated with BC risk by regulating promoter activity, and ATG10 was suggested to act as 

a tumor suppressor gene in breast tissue (Guo et al., 2018). For ATP6AP1L, another variant 10 

(rs10514231) was reported to lead to ATP6AP1L downregulation by decreasing the binding 

affinity of TCF7L2 in an intronic regulatory region (Ma et al., 2021). Although we did not find 

supporting evidence for the same variants, our results show an indirect association between 

the lower expression of ATG10 and ATP6AP1L and BC risk, suggesting that the 

downregulation of these two genes may contribute to tumorigenesis. 15 

The advantages of our analysis compared to previous reports of AE in normal breast 

and tumor tissue (Aguet et al., 2017; Gao et al., 2012; Przytycki and Singh, 2020; Zhang et 

al., 2009) include using the most significant number of normal breast tissue samples, the 

genome-wide approach, and the mapping of candidate regulatory variants. We found a 

similar frequency of daeSNPs to previous reports in other tissues/cell lines but a higher 20 

frequency of daeGenes (Ge et al., 2009; Ma et al., 2018; Przytycki and Singh, 2020; 

Romanel et al., 2015). This higher frequency of daeGenes could be due to our ability to 

identify genes regulated by common cis-acting variants with weak to large effect sizes 

(Aguet et al., 2017), a consequence of the imposed conditions to call DAE (allelic change 

difference of 1.5-fold and the minimum number of heterozygotes). Additionally, we did not 25 

integrate the AE ratios of multiple daeSNPs in the same gene due to the absence of phase 

data and to maximize the information withdrawn from daeSNPs that might be located in 

different LD blocks. The complex regulatory landscape we identified at the 5q14.1 locus, with 

multiple cis-acting variants located in the same haplotypes and AE likely resulting from the 

sum of the effects of each variant, supports this analysis approach. Furthermore, as we 30 

propose, a global measure of the AE imbalance at each gene would impair the mapping of 

daeQTLs at individual daeSNPs and restrict the analysis to genes with multiple daeSNPs. 

Finally, besides the more commonly studied protein-coding genes, we analyzed noncoding 

genes and pseudogenes, such as ATP6AP1L. 

Our results confirm the advantage of using DAE analysis to detect the effect of 35 

rSNPs compared to eQTL analysis, as shown by the higher number of daeGenes than 

eGenes among gwasGenes (Adoue et al., 2014; Almlöf et al., 2012; Pastinen and Hudson, 
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2004). As a minority of gwasGenes were exclusively eGenes, we believe that DAE and 

eQTL analyses are complementary and should be used in parallel when possible. 

Our use of microarray data could be seen as a limitation compared to RNA-seq data, 

which have more extensive transcriptome coverage and high quantification accuracy for 

more extreme allelic imbalances. However, microarrays are a widely used and precise 5 

technology for measuring AE (Gao et al., 2012; Ge et al., 2009; Liu et al., 2012), as we 

confirmed with our validated monoallelic expression of known imprinted genes and with 

independent PCR analysis. The only RNA-seq dataset with normal breast tissue publicly 

available is from the GTEx project. However, our approach presents several advantages: 1) 

we processed and hybridized the DNA and RNA samples in parallel to minimize technical 10 

issues, 2) we used total RNA, which includes coding/noncoding genes and spliced/unspliced 

transcripts, and 3) we showed that the range of gene expression levels of daeGenes was 

comparable to that of the eGenes from the GTEx dataset. The following steps will be to carry 

out matched RNA-seq and DNA-seq to combine all the advantages mentioned above and 

expand the discovery of daeGenes and rSNPs. 15 

Here, we provide a genome-wide list of variants with strong regulating potential for 

normal breast tissue, a valuable resource for researchers prioritizing GWAS results for 

functional characterization and those interested in other BC-related traits. The extensive 

characterization of the regulatory landscape at the 5q14.1 BC risk locus identified candidate 

causal variants and revealed the multiple mechanisms involved. Further studies of this locus 20 

will elucidate the mechanisms involved and the relative contributions of each variant and 

target gene to the genetic risk. Overall, our results reinforce the importance of cis-regulatory 

variation as a major player in BC susceptibility and the power of identifying these variants in 

the disease’s tissue of origin - normal breast tissue. They also show that multiple causal 

variants may co-occur and act via independent cis-regulatory mechanisms at BC risk loci, 25 

supporting a broader approach to functional studies. 
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FIGURES 

Mapping of cis-regulatory variants by differential allelic expression analysis 

identifies candidate causal variants and target genes of 41 breast cancer 

risk loci 

Joana M. Xavier, et al. 
 
 
 
 
 

 
 
Figure 1 - Strategy framework used to identify causal variants and target genes associated with 
breast cancer risk. Legend: aeSNP - an SNP that passed quality control and at which allelic expression 

(AE) was measured; daeSNP - an aeSNP showing differential AE (DAE); Genotyped SNP - an SNP with 

genotype information (either genotyped in the study or imputed) and tested for association with AE ratios; 

daeQTL - an SNP associated with AE ratios measured for a daeSNP; risk-daeQTL - a daeQTL with an r2 

≥ 0.4 with a GWAS hit variant; candidate risk rSNP - a variant with an r2 ≥ 0.95 with the risk-daeQTL. 
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Figure 2 - Characterization of aeSNPs. a) Histogram of the rank number of daeSNPs identified per 
gene across 17135 annotated genes. b) Histogram of the rank proportion of daeSNPs per aeSNPs 

identified per gene. c) Box plot with the distribution of the mean of the absolute values of AE ratios across 

heterozygous individuals measured at non-daeSNPs and daeSNPs. d) Distribution of the mean absolute 

values of AE ratios at aeSNPs according to the average intensity of both alleles at aeSNPs in the 

microarray Spearman’s results of a Spearman’s correlation test are shown. e) and f) Relative frequency of 

aeSNPs and daeSNPs according to consequence type and gene biotype, respectively. (*) denotes the 

classes for which daeSNPs were enriched (p<0.01). 
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Figure 3 - Mapping of variants associated with differential allelic expression. a) Empirical 

cumulative distribution for the distance between the daeSNP and corresponding mapped daeQTL. b) and 

c) daeQTL mapping result for the most significant daeQTL identified for MROH8 using a one-sample 

Wilcox test and for ZNF132 using a two-sample Wilcox test. The AE ratios calculated at the daeSNPs are 

represented on the y-axis in the two panels and stratified according to genotype at the candidate SNP 

(black dots represent heterozygous individuals, and red dots represent homozygous individuals). 
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Figure 4 – Summary of colocalization analyses for daeGenes and risk-daeQTLs. a) UpSet plot for 

15,706 genes tested for DAE and eQTL (GTEx breast mammary tissue). Legend: daeGenes - genes 

identified as having differential allelic expression in normal breast tissue; eGenes - genes reported as 

being eQTL genes in GTEx mammary tissue data (q-value ≤ 0.05); gwasGenes - genes where GWAS 
index SNPs or proxies (r2 ≥ 0.4) are located; daeGenes with daeQTL mapping - daeGenes for which 

daeQTLs were identified. b) UpSet plot for 425 variants located in DHSs, according to the presence of 

protein binding and location in active promoters and/or enhancers in breast cell lines. 
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Figure 5 - Evidence of DAE and daeQTL analysis at the 5q14.1 BC risk locus. The top track shows the 

mean values of the absolute AE ratios measured at aeSNPs across the region, with the non-daeSNPs 

shown in grey, the daeSNPs in black, and the daeSNPs with mapped daeQTLs in red. The subsequent 

tracks show the daeQTL mapping corrected p-values for ATG10, RPS23, and ATP6AP1L. 
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Figure 6 - Variants at the 5q14.1 risk locus associated with differential transcription factor binding. 
Allele-specific analysis of the effect of three candidate risk rSNPs — (a) rs111549985, (b) rs226198, and 
(c) rs6880209 — on RNA polymerase II (POL2) and transcription factor (TF) binding, DNase I targeting 
(DHS) and H3K4me3 modification in different heterozygous cell lines. An asterisk indicates statistically 
significant imbalances (two-sided binomial test, p-value ≤ 0.05). Legend: HMEC - human mammary 
epithelial cells; MCF7 - human breast (adenocarcinoma) cell line; T47D - human breast tumor cell line; 
MCF10A - human breast epithelial cell line. 
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Figure 7 - Variants at the 5q14.1 risk locus associated with alternative transcription. Six sQTLs in 

high LD with rs7707921 were identified for ATG10. The -log10(q-value) for the sQTL analysis (y-axis) is 

shown for the 5q14.1-14.2 region (hg38). Color intensity represents the LD (r2) between the analyzed 

variants and the GWAS lead SNP rs7707921. Below are two ATG10 transcripts whose expression ratios 
are associated with the sQTLs. 
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Figure 8 - Complex risk regulatory landscape of the 5q14.1 locus. a) Levels of expression of ATG10 

and ATP6AP1L genes differ between the haplotypes containing either the minor alleles of rs111549985, 

rs226198, and rs6880209 (above) or the major ones (below). Colored arrows indicate the direction of 

transcription of the individual genes, the saturation of the corresponding colors indicates the strength of 

protein binding, the number of green circles indicates the level of H3K4me3 and the colored curvy lines 

indicate the relative levels of transcript produced. b) Schematic representation of the proposed model for 

the positive correlation between ATG10 and ATP6AP1L via a shared regulatory region. 
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