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ABSTRACT 

 

Background: Nearly 150 million children under-5 years of age were stunted in 2020. We aimed 

to develop a clinical prediction rule (CPR) to identify children likely to experience additional 

stunting following acute diarrhea, to enable targeted approaches to prevent this irreversible 

outcome. 

 

Methodology: We used clinical and demographic data from the Global Enteric Multicenter Study 

(GEMS) study to build predictive models of linear growth faltering (decrease of ≥0.5 or ≥1.0 in 

height-for-age z-score [HAZ] at 60 day follow-up) in children ≤59 months presenting with 

moderate-to-severe diarrhea (MSD), and community controls, in Africa and Asia. We screened 

variables using random forests, and assessed predictive performance with random forest 

regression and logistic regression using 5-fold cross-validation. We used the Etiology, Risk 

Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child 

Health and Development (MAL-ED) study to A) re-derive, and B) externally validate our 

GEMS-derived CPR. 

 

Results: Of 7639 children in GEMS, 1744 (22.8%) experienced severe growth faltering (≥0.5 

decrease in HAZ). In MAL-ED, we analyzed 5683 diarrhea episodes from 1322 children, of 

which 961(16.9%) episodes experienced severe growth faltering. Top predictors of growth 

faltering in GEMS were: age, HAZ at enrollment, respiratory rate, temperature, and number of 

people living in the household. The maximum AUC was 0.75 (95% CI: 0.75, 0.75) with 20 

predictors, while 2 predictors yielded an AUC of 0.71 (95% CI: 0.71, 0.72). Results were similar 

in the MAL-ED re-derivation. A 2-variable CPR derived from children 0-23 months in GEMS 

had an AUC=0.63 (95% CI 0.62, 0.65), and AUC=0.68 (95% CI: 0.63, 0.74) when externally 

validated in MAL-ED. 

 

Conclusions: Our findings indicate that use of prediction rules could help identify children at risk 

of poor outcomes after an episode of diarrheal illness. 
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INTRODUCTION 1 

 Despite recent advances in the prevention and treatment of childhood malnutrition, nearly 2 

150 million children under-5 years of age were stunted in 2020(1). Stunting is defined as a 3 

length- or height-for-age z-score 2 or more standard deviations below the population median(2), 4 

and is considered both an indicator of underlying deficits (i.e. chronic malnutrition(3)), as well as 5 

a potential contributor to future health problems (e.g. through poor immune system maturation(4, 6 

5)). Furthermore, stunting has been consistently associated with increased risk of morbidity and 7 

mortality, delayed or deficient cognitive development, and reduced educational attainment(6-12). 8 

Timely and accurate identification of children most likely to experience stunting offers an 9 

opportunity to prevent such negative health outcomes. 10 

 Stunting has been linked with diarrheal diseases across many settings(13). An estimated 11 

10.9% of global stunting is attributable to diarrhea(14), and a child with diarrhea is more likely 12 

to have a lower HAZ score or to die than age-matched controls(15). Given the 1.1 billion 13 

episodes of childhood diarrhea that occur globally every year(16), assessment of children 14 

seeking healthcare for diarrhea treatment provides an opportunity to identify those at increased 15 

risk for negative outcomes, including stunting and death. Once identified, these children could be 16 

specifically targeted for intensive interventions, thereby more efficiently allocating public health 17 

resources. 18 

In this study, we aimed to develop parsimonious, easy to implement clinical prediction 19 

rules (CPRs) to identify children under-5 most likely to experience linear growth faltering among 20 

community-dwelling children presenting to care for acute diarrhea. CPRs are algorithms that aid 21 

clinicians in interpreting clinical findings and making clinical decisions(17). Linear growth 22 

faltering, or falling below standardized height/length growth trajectory projections, captures 23 

children whose growth has slowed precipitously and is a precursor of stunting. A number of prior 24 
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studies have identified risk factors for linear growth faltering(14, 18-26), but many of these were 25 

single-site studies using traditional model building approaches, some of which lacked 26 

appropriate assessments of model discrimination and calibration. Building on this body of 27 

literature, we used machine learning methods on data from two large multi-center studies to 28 

derive and externally validate prediction models for growth faltering, with the hopes of reliably 29 

identifying children that would most benefit from additional nutritional intervention after care for 30 

acute diarrhea. 31 

METHODS 32 

Study Population for Derivation Cohort 1 (GEMS) 33 

 We used data from The Global Enteric Multicenter Study (GEMS) to derive CPRs for  34 

growth faltering. The GEMS study has been described elsewhere in-depth(15, 27). Briefly, 35 

GEMS was a prospective case-control study of acute moderate to severe diarrhea (MSD) in 36 

children 0-59 months of age. Data were collected in December 2007 – March 2011 from 7 sites 37 

in Africa and Asia, including those in Mali, The Gambia, Kenya, Mozambique, Bangladesh, 38 

India, and Pakistan. MSD was defined as diarrhea accompanied by one or more of the following: 39 

dysentery, dehydration, or hospital admission. Diarrhea was defined as new onset (after ≥7 days 40 

diarrhea-free) of 3 or more looser than normal stools in the previous 24 hours lasting 7 days or 41 

less. Cases were enrolled at initial presentation to a sentinel hospital or health center, and 42 

matched within 14 days to 1-3 controls without diarrhea enrolled from the community. 43 

Demographics, epidemiological, and clinical information was collected from caregivers of both 44 

cases and controls via standardized questionnaires, and clinic staff conducted physical exams and 45 

collected stool samples which have undergone conventional and molecular testing to ascertain 46 

the pathogen that caused the diarrhea. Approximately 60 days (up to 91) after enrollment, 47 
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fieldworkers visited the homes of both cases and controls to collect standardized clinical and 48 

epidemiological information and repeat anthropometry.  49 

 Children were excluded if follow-up observations occurred <49 or >91 days after 50 

enrollment, or if HAZ measurements were implausible (28), defined as: a) HAZ>6 or HAZ<-6; 51 

b) change in HAZ>3; c) >1.5cm loss of height from enrollment to follow-up; d) growth of >8cm 52 

or >4cm at 49-60 day follow-up for children ≤6 months and >6 months old, respectively; e) 53 

growth >10cm or >6cm at 61-91 day follow-up for children ≤6 months and >6 months old, 54 

respectively.   55 

 Parents or caregivers of participants provided informed consent, either in writing or 56 

witnessed if parents or caregivers were illiterate. The GEMS study protocol was approved by 57 

ethical review boards at each field site and the University of Maryland, Baltimore, USA. 58 

Study Population for Derivation Cohort 2 (MAL-ED) 59 

 We used the Etiology, Risk Factors, and Interactions of Enteric Infections and 60 

Malnutrition and the Consequences for Child Health and Development (MAL-ED) study to A) 61 

re-derive the best full model, and B) externally validate a 2-variable parsimonious version of our 62 

GEMS-derived CPR for growth faltering. MAL-ED is a longitudinal birth cohort study, and 63 

study details have been described elsewhere (29-32). In brief, healthy children were enrolled 64 

within 17 days of birth and followed prospectively through 24 months of age. Children were 65 

enrolled from October 2009 – March 2012 from 8 countries in Asia, Africa, and South America, 66 

including Tanzania, South Africa, Pakistan, India, Nepal, Bangladesh, Peru, and Brazil. 67 

Information on household, demographic, and clinical data from mother and child were collected 68 

at enrollment and reassessed periodically, and illness and feeding information was collected at 69 

twice-weekly household visits.  70 
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In MAL-ED, diarrhea was defined as maternal report of three or more loose stools in a 24 71 

hour period, or one loose stool with blood. Each diarrhea episode had to be separated by at least 72 

2 days without diarrhea in order to qualify as distinct diarrhea episodes. To match MAL-ED 73 

longitudinal cohort active surveillance data to GEMS, in which children were enrolled upon 74 

presentation to clinic with acute diarrhea, we linked anthropometric measurements and other 75 

predictor variables with diarrhea episodes in MAL-ED using the following methods 76 

(https://github.com/LeungLab/CPRgrowthfaltering): First, each episode of diarrhea was linked to 77 

the closest HAZ measurement from before the onset of diarrhea symptoms, but no more than 31 78 

days beforehand. Each diarrhea episode was also linked with the HAZ measurement closest to 75 79 

days after the onset of diarrhea symptoms, but within 49 and 91 days inclusive. Second, each 80 

diarrhea episode was linked to the closest observation of each potential predictor variable. Each 81 

dietary intake variable had to be observed within 90 days of the diarrhea episode, and each 82 

household descriptor variable had to be observed within 6 months of the onset of diarrhea in 83 

order to be eligible, otherwise those predictors were considered missing for that specific diarrhea 84 

episode. Finally, data were split into age categories, and only one diarrhea episode per enrolled 85 

child per model was randomly selected without replacement for analysis. 86 

 The same inclusion/exclusion criteria were applied as listed above for the GEMS growth 87 

faltering analysis, with the exception that the allowed follow-up period extended up to and 88 

including 95 days.  89 

 Parents or caregivers of participants provided informed consent. The MAL-ED study 90 

protocol was approved by ethical review boards at each field site and the Johns Hopkins 91 

Institutional Review Board, Baltimore, USA. 92 

Outcomes 93 
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 We defined growth faltering as a decrease in height-for-age z-score (HAZ) of ≥0.5 HAZ 94 

within 49-91 days of enrollment in GEMS, or within 49-95 days in MAL-ED.  95 

Predictive Variables 96 

 In GEMS, potential predictors included over 130 descriptors of the child, household, and 97 

community, collected at enrollment (Supplemental Table S1). Collinear or conceptually similar 98 

predictors were removed from consideration to maximize model utility (e.g. HAZ, but not 99 

MUAC was considered in the main model). We considered individual components of household 100 

wealth, but did not explore the composite wealth variable used in other reports (28) since its 101 

utilization in a CPR would require collecting multiple parameters that were already being 102 

considered individually. 103 

 In MAL-ED, we considered 60 potential predictors of growth faltering (Supplemental 104 

Table S1). We limited possible predictor variables to those that would be easily assessable upon 105 

presentation to clinic in a low-resource setting (i.e. did not consider characteristics that required 106 

diagnostic testing), and again only considered individual components of combination indicators 107 

(e.g. wealth index, Vesikari score).   108 

Statistical Analysis 109 

 We screened variables using variable importance measures from random forests to 110 

identify the most predictive variables. Random forests are an ensemble learning method whereby 111 

multiple decision trees (1000 throughout this analysis) are built on bootstrapped samples of the 112 

data with only a random sample of potential predictors considered at each split, thereby 113 

decorrelating the trees and reducing variability(33). Throughout this analysis, the number of 114 

variables considered at each split was equal to the square root of the total number of potential 115 

variables, rounded down. Variables were ranked by predictive importance based on the reduction 116 
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in mean squared prediction error achieved by including the variable in the predictive model on 117 

out-of-bag samples (i.e. observations not in the bootstrapped sample). 118 

 Generalizable performance was assessed using 5-fold repeated cross-validation. In each 119 

of 100 iterations, random forests were fit to a training dataset (random 80% sample of analytic 120 

dataset), and variable were ranked using the random forest importance measure as above. 121 

Separate logistic regression and random forest regression models were then fit to a subset of the 122 

top predictive variables in the training dataset. Subsets examined were the top 1-10, 15, 20, 30, 123 

40, and 50 predictors. Each of these models were then used to predict the outcome (growth 124 

faltering) on the test dataset. Model performance was assessed using the receiver operating 125 

characteristic (ROC) curves and the cross-validated C-statistic (area under the ROC curve 126 

(AUC)), a measures which describes how well a model can discriminate between the two 127 

outcomes, from the cross-validation. 128 

We assessed model calibration both quantitatively and graphically (“weak” and 129 

“moderate” calibration, respectively(34)). First, we assessed calibration-in-the-large, or 130 

calibration intercept, by using logistic regression to estimate the mean while subtracting out the 131 

estimate (model the log-odds of the true status, offset by the CPR-predicted log-odds). Next, we 132 

used calibration slope to assess the spread of the estimated probabilities, whereby we fit a 133 

logistic regression model with log-odds of the true status as the dependent variable and CPR-134 

predicted log-odds as the independent variable. Finally, we assessed moderate calibration 135 

graphically, whereby we calculated the predicted probability of growth faltering for each child in 136 

a given analysis using each iteration of each n-variable model fit. These predicted probabilities 137 

were then binned into deciles, and the proportion of each decile who truly experienced the 138 

outcome was calculated for each iteration of each n-variable model. The mean predicted 139 
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probability and observed proportion was calculated for each decile across iterations. These 140 

average observed proportions were then plotted against averaged deciles for each n-variable 141 

model fit (see https://github.com/LeungLab/CPRgrowthfaltering for full analytic code). 142 

 Based on top predictors available in both GEMS and MAL-ED (see Results), the 2-143 

variable GEMS-derived CPR of growth faltering was externally validated in MAL-ED data. A 144 

logistic regression was fit to all diarrhea cases age 0-23 months in GEMS data, with predictors 145 

chosen based on random forest. This model was then used to predict growth faltering in diarrhea 146 

cases in MAL-ED (age in MAL-ED converted from days to months), and discrimination and 147 

calibration were assessed as described above.  148 

Sensitivity and Subgroup Analyses 149 

 We undertook additional sensitivity and subgroup analyses to explore if our ability to 150 

predict growth faltering improved in specific patient populations or with additional predictors 151 

within GEMS data. First, we explored age-strata specific CPRs for children 0-11months, 12-152 

23months, 0-23months, and 24-59 months. Second, we explored the predictive ability of MUAC 153 

instead of and in addition to HAZ. Third, we attempted to account for potential seasonal 154 

variation by adding a predictor for month of diarrhea. Fourth, we added indicator variables for 155 

the use of antibiotics before presentation (enrollment), while at clinic, prescription to take home 156 

after care, and ever. Fifth, we limited our outcome to only very severe growth faltering, defined 157 

as a decrease ≥1.0 HAZ (as opposed to ≥0.5 HAZ in the main analysis). Sixth, we explored the 158 

impact diarrhea etiology had on growth faltering prediction. We added variables for the 159 

presence/absence of Shigella, Cryptosporidium, Shigella + Cryptosporidium infections, and any 160 

viral etiology (defined as infection of any of the following: astrovirus, norovirus GII, rotavirus, 161 

sapovirus, and adenovirus 40/41). Etiology-specific infection were defined as an episode-specific 162 

attributable fraction (AFe) greater than or equal to a given cutoff (0.3, 0.5, and 0.7 were 163 
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considered)(15). Finally, we explored the prevalence of growth faltering in healthy controls, and 164 

identified top predictors and their ability to predict growth faltering in controls. Potential 165 

predictors related to diarrhea were not considered amongst controls (e.g. number of days with 166 

diarrhea at presentation). 167 

RESULTS 168 

Growth faltering in children following acute diarrhea in GEMS and MAL-ED 169 

 There were 9439 children with acute diarrhea enrolled in GEMS. In the analysis of the 170 

primary outcome (growth faltering), 110 observations were dropped for having follow-up 171 

measurements taken <49 or >91 days after enrollment, and 1276 were dropped for having 172 

implausible or missing HAZ measurements, leaving an analytic sample of 8053. An addition 414 173 

observations were dropped for having missing predictor data, as random forest analysis requires 174 

complete cases. Of the remaining 7639 children, 1744 (22.8%) experienced severe growth 175 

faltering (≥0.5 decrease in HAZ), and 357 (4.7%) experienced very severe growth faltering (≥1.0 176 

decrease in HAZ) (Supplemental Figures S1). Growth faltering rates differed by country, with 177 

Mozambique and The Gambia having the highest rates of growth faltering (34.5% and 31.9% 178 

experienced severe growth faltering, respectively) and Mali having the lowest rate (14.9%, 179 

Supplemental Table S2). Growth faltering rates also varied by child’s age, with a higher 180 

proportion of younger children experiencing growth faltering than older children (Supplemental 181 

Table S3). 182 

In the analysis of MAL-ED data, we started with 6617 diarrhea episodes from 1390 183 

children. In order to align with GEMS inclusion criteria and limit to acute onset diarrhea, 566 184 

diarrhea episodes were dropped for having prolonged or persistent diarrhea (>7 days duration). 185 

An additional 125 episodes were dropped for having missing HAZ measurements or an HAZ 186 

follow-up measurement <49 or >95 days from diarrhea onset, and 138 episodes were dropped for 187 
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having implausible HAZ measurements, leaving 5788 diarrhea episodes from 1350 children. An 188 

additional 105 observations were dropped for having missing predictor data. Of the remaining 189 

5683 observations from 1322 children, 961(16.9%) episodes experienced severe growth faltering 190 

(≥0.5 decrease in HAZ) and 161(2.8%) episodes experienced very severe growth faltering (≥1.0 191 

decrease in HAZ, Figure S1). 192 

Derivation of a CPR to identify children who went on to severe growth faltering following acute 193 

diarrhea using GEMS data 194 

After random forest screening of variables, logistic regression models consistently had 195 

higher AUCs than random forest regression models (Supplementary Figure S2), therefore we 196 

only present the easier to interpret logistic regression results moving forward. In Table 1, we 197 

show the top-10 most predictive variables ranked from most to least important, for severe growth 198 

faltering (≥0.5 decrease in HAZ) and death, respectively. The top predictive variables for severe 199 

growth faltering were: age, HAZ at enrollment, respiratory rate, temperature, number of people 200 

living in the household, number of people sleeping in the household, number of days of diarrhea 201 

at presentation, number of other households that share same fecal waste disposal facility (e.g. 202 

latrine), whether the child was currently breastfed at time of diarrhea, and the number of children 203 

<60 months old living in the household. The maximum AUC attained with the model was 0.75 204 

(94% CI: 0.75, 0.75) with a model of 20 variables, while an AUC of 0.71 (95% CI: 0.71, 0.72), 205 

0.72 (95% CI: 0.72, 0.72), and 0.72 (95% CI: 0.72, 0.72) could be obtained with a CPR of 2, 5, 206 

and 10 variables, respectively (Supplemental Figure S2). When limited to children 0-23 months 207 

of age, AUC decreased to 0.64 (95% CI: 0.64, 0.64) for 10 variables. In the full 10-variable 208 

model, we achieved a specificity of 0.47 at a sensitivity of 0.80 (Figure 1). The average predicted 209 

probability of growth faltering was consistently close to the average observed probability 210 

(calibration-in-the-large, or intercept), and the spread of predicted probabilities was similar to the 211 
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spread of observed probabilities (calibration slope) for models including 1 to 10 predictor 212 

variables (Table 2, Figure 2). 213 
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Table 1: GROWTH FALTERING: Variable importance ordering and cross-validated average overall AUC and AUC by patient 214 

subset and 95% confidence intervals for a 5 (bold) and 10 (italicized) variable logistic regression model for predicting growth faltering 215 

in children in 7 LMICs derived from GEMS data (≥0.5 decrease in HAZ in children with acute diarrhea) 216 

 GEMS   MAL-ED 

Variable/ 

Patient 

Subset 

0-59mo 

(main text 

model) 

0-23mo (for 

external 

validation) 

Healthy 

controls 

0-23mo 

AUCs 0.72 (0.72, 

0.72) 

0.64 (0.63, 

0.65) 

0.79 (0.78, 

0.79) 

0.67 (0.67, 

0.68) 

 0.72 (0.72, 

0.72) 

0.64 (0.64, 

0.64) 

0.79 (0.79, 

0.79) 

0.68 (0.67, 

0.69) 

1 Age 

(months) 

HAZ Age 

(months) 

HAZ 

2 HAZ Age 

(months) 

HAZ Age (days) 

3 Respiratory 

rate 

Temperature Respiratory 

rate 

Total days 

breastfeeding 

4 Temperature Respiratory 

rate 

Temp 

 

Total days in 

all diarrheal 

episodes to 

date 

5 Num. 

people 

living in 

household 

Num. 

people 

living in 

household 

Num. 

people 

living in 

household 

Mean 

number of 

people per 

room 

6 Num. rooms 

used for 

sleeping 

Num. rooms 

used for 

sleeping 

Breastfed Days with 

diarrhea so 

far in this 

episode 

7 Num. days 

of diarrhea 

at 

presentation 

Num. days 

of diarrhea 

at 

presentation 

Num. 

rooms used 

for 

sleeping 

Maternal 

education 

(years) 
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8 Num. other 

households 

that share 

same fecal 

waste 

facility 

Num. other 

households 

that share 

same fecal 

waste 

facility 

Num. 

children 

<60months 

live in 

household 

Days since 

last diarrhea 

episode 

9 Breastfed Num. 

children <60 

months live 

in 

household 

Caregiver 

education  

People 

sleeping in 

house 

10 Num. 

children 

<60months 

live in 

household 

Caregiver 

education 

Num. other 

households 

share 

latrine 

Max loose 

stools in this 

episode 

 217 

Table 2: Calibration intercept and slope 218 

Number 

of 

predictor 

variables 

GEMS 0-

59mo 

Intercept 

(95% CI) 

Slope (95% 

CI) 

GEMS 0-

23mo (for 

external 

validation) 

Intercept 

(95% CI) 

Slope (95% 

CI) 

MAL-ED 0-

23mo 

Rederivation 

Intercept 

(95% CI) 

Slope (95% 

CI) 

GEMS-

derived 

model 

applied to 

MAL-ED 

data 

Intercept 

(95% CI) 

Slope (95% 

CI) 

1 2.9 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.82, 1.2) 

-1.0 x10-2  

(-0.14, 0.12) 

0.97 

(0.62, 1.3) 

9.6 x10-3 

(-0.32, 0.32) 

1.0 

(0.35, 1.7) 

  

2 3.6 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.84, 1.2) 

-1.1 x10-2 

(-0.14, 0.12) 

0.98 

(0.70, 1.3) 

1.1 x10-2 

(-0.33 0.33) 

1.0 

(0.51, 1.5) 

-0.32  

(-0.54, -0.11) 

1.5 

(1.0, 2.1) 
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3 3.6 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.84, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.97 

(0.70, 1.2) 

1.1 x10-2 

(-0.33 0.33) 

0.99  

(0.51, 1.5) 

  

4 4.1 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.84, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.97 

(0.71, 1.2) 

1.1 x10-2 

(-0.33, 0.33) 

0.97  

(0.49, 1.5) 

  

5 4.2 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.83, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.96 

(0.70, 1.2) 

1.1 x10-2 

(-0.33, 0.33) 

0.95  

(0.48, 1.5) 

  

6 4.2 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.83, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.96 

(0.70, 1.2) 

1.2 x10-2 

(-0.33, 0.33) 

0.94  

(0.47, 1.5) 

  

7 4.3 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.83, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.96 

(0.70, 1.2) 

1.2 x10-2 

(-0.33, 0.33) 

0.92  

(0.47, 1.4) 

  

8 4.4 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.83, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.95 

(0.69, 1.2) 

1.2 x10-2 

(-0.33, 0.33) 

0.92  

(0.47, 1.4) 

  

9 4.7 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.83, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.95 

(0.69, 1.2) 

1.2 x10-2 

(-0.33, 0.33) 

0.91  

(0.47, 1.4) 

  

10 4.8 x10-3 

(-1.2 x10-1,  

1.3 x10-1) 

1.0 

(0.83, 1.2) 

-1.2 x10-2 

(-0.14, 0.12) 

0.93 

(0.69, 1.2) 

1.2 x10-2 

(-0.33, 0.33) 

0.89  

(0.46, 1.4) 

  

 219 

 220 
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Figure 1: ROC curves: Average ROC curves from the cross-validated logistic regression models predicting 

growth faltering with 2, 5, and 10 predictors. The faded dashed lines represent specificity (1- false positive rate) 

achievable with a sensitivity (true positive rate) of 0.80 for prediction of the outcome. 

 

 

Figure 2: 2-Variable CPR for growth faltering: Calibration curve and discriminative ability of 2-varaible 

(age, HAZ at enrollment) model predicting growth faltering (≥0.5 decrease in HAZ) in children presenting for 

acute diarrhea in LMICs. 
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Rederivation and external validation of a CPR to identify children who went on to severe growth faltering 

following acute diarrhea using MAL-ED data 

We then derived a CPR for growth faltering using MAL-ED data, and found that the top predictors were 

similar to those identified using GEMS data, with age and HAZ at diarrhea being the top two predictors. Other 

top predictors in MAL-ED included breastfeeding, total days in all diarrhea episodes, mean number of people 

per room of home, days with diarrhea so far in this episode, number of years of maternal education, days since 

last diarrhea episode, number of people sleeping in house, and loose stools in this diarrhea episode (Table 1). 

The discriminative performance of the full model was similar to that found with GEMS (0.72 (95% CI: 0.72, 

0.72) in GEMS, 0.68 (95% CI: 0.67, 0.69) in MAL-ED). The average predicted probability of growth faltering 

was consistently close to the average observed probability (calibration-in-the-large, or intercept). The spread of 

predicted probabilities (calibration slope) was slightly more extreme than observed probabilities, but there was 

no evidence they were different than 1.0 for models including 1 to 10 predictor variables (slope point estimates 

all 95% CI include 1.0, see Table 2, Supplemental Figure S3). 

Due to a lack of overlap in variables between datasets, we were unable to externally validate the 10-

variable version of our growth faltering CPR. However, the top two predictors were available in both the GEMS 

and MAL-ED dataset. Therefore, we took the 2-variable CPR of growth faltering derived from children 0-23 
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months of age in GEMS, including HAZ at enrollment and age (the top two predictors), and externally validated 

it in MAL-ED data. The CPR had marginal discrimination in the GEMS data (AUC=0.64, 95% CI 0.64, 0.64), 

and a slight increase in discriminative ability at external validation in MAL-ED data (AUC=0.68, 95% CI: 0.63, 

0.74). On average, the CPR overestimated probability of growth faltering (calibration intercept -0.32, 95% CI: -

0.54, -0.11), and predictions tended to be too moderate (calibration slope 1.5, 95% CI: 1.0, 2.1) (Table 2, Figure 

2). Odds ratios for the 10-variable model predicting severe growth faltering in MAL-ED are shown in 

Supplemental Table S4. 

Addition of MUAC, diarrhea etiology, and antibiotic use did not meaningfully impact discriminative 

performance of CPR to identify children who went on to severe growth faltering following acute diarrhea in 

GEMS 

Table 1 and Supplemental Table S5 present the results of the growth faltering sensitivity analyses. Top 

predictor variables were highly consistent across models and included patient demographics, patient symptoms, 

and indicators of household wealth. CPR’s of higher age strata had higher AUCs (0.76 (95% CI: 0.75, 0.77) in 

24-59mo in GEMS versus 0.60 (95% CI: 0.59, 0.60) in 0-11mo in GEMS).  

When MUAC was considered as a potential predictor (instead of HAZ), MUAC replaced HAZ as a top 

predictor, all other top-10 predictors remained the same, and AUC decreased (down to 0.70, 95% CI: 0.70, 

0.70). When both HAZ and MUAC were considered as potential predictors, both were top predictors, but AUC 

remained unchanged compared to the main model that considered only HAZ (0.72, 95% CI: 0.72, 0.73). The 

predictors of very severe growth faltering (≥1.0 decrease in HAZ) were similar to the predictors of severe 

growth faltering (≥0.5 decrease in HAZ), though predictive ability was better (AUC 0.80 (95% CI: 0.79, 0.80) 

for ≥1.0 versus 0.72 (95% CI: 0.71, 0.73) for ≥0.5). 

Accounting for seasonality did not meaningfully improve the CPR, and antibiotic use and diarrhea 

etiology were consistently not ranked as top predictors of growth faltering (Supplemental Table S5). Finally, 

including more predictor variables only marginally improved AUCs.  

Derivation of a CPR to identify children without diarrhea (controls) who went on to severe growth faltering 

using GEMS data 
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Top predictors of growth faltering were similar in non-diarrhea controls compared to cases in GEMS 

(Table 1), but predictive ability was higher (AUC 0.79 (95% CI: 0.78, 0.79) in controls versus 0.72 (95% CI: 

0.72, 0.72) in cases). Again, top predictors were consistent with previous models and included age, HAZ at 

enrollment, respiratory rate, temperature, number of people living in household, breastfed, number of rooms 

used for sleeping, number of children under 60 months old who live in household, education level of primary 

caregiver, and number of other households that share same fecal waste disposal facility (e.g. latrine). The 

maximum AUC attained with the model was 0.79 (95% CI: 0.79, 0.80) with a model of 15 variables, while an 

AUC of 0.79 (95% CI: 0.78, 0.79) and 0.79 (95% CI: 0.79, 0.79) could be obtained with a CPR of 5 and 10 

variables, respectively (Supplemental Figure S2). 

DISCUSSION 

By utilizing data from two large multi-center clinical studies of pediatric diarrhea, we used a 

combination of machine learning and conventional regression methods to derive and validate clinical prediction 

rules for linear growth faltering. The discriminative performance of our CPR for growth faltering was 

remarkably similar between the two datasets (AUC=0.72, 95% CI: 0.72, 0.72, based on GEMS 0-59 months; 

0.68, 95% CI: 0.67, 0.69 based on MAL-ED 0-24 months). We were then able to externally validate a 2-

variable version, which also had similar discriminative ability between the datasets (AUC 0.64 to 0.68 for 0-23 

and 0-24 months in GEMS and MAL-ED respectively). Our findings suggest the potential for a parsimonious 

prediction rule-guided algorithm to identify young children with acute diarrhea for appropriate triage and 

follow-up. 

The limited number of studies that aim to identify children most likely to growth falter after acute 

diarrhea have resulted in CPRs with varying discriminative and generalizability. Our full CPRs were better at 

identifying growth faltering than Brander et al (28) (AUC=0.67, 95% CI: 0.64, 0.69), which was not externally 

validated, and worse than Hanieh(35) et al (AUC: 0.85, 95% CI 0.80, 0.90), which only used data from a single 

country. The top predictors of growth faltering identified by random forests in our analysis were consistent with 

existing knowledge of the drivers of growth faltering – child demographics, child symptoms, and indicators of 
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household wealth. The top two variables (used in our parsimonious externally validated CPR) were age and 

baseline HAZ. However, despite the inclusion of markers of disease severity (temperature, respiratory rate, 

number of days of diarrhea), overall ability to predict growth faltering was moderate, and consideration of 

additional factors related to nature of disease (etiology, antibiotics) did not improve discriminative ability. This 

is consistent with previous analysis in GEMS data that found treating diarrhea with antibiotics generally did not 

prevent growth faltering (except for Shigella infections(36)).  

Furthermore, the similar incidence of growth faltering in diarrhea cases and matched controls 

(particularly in the youngest children), as well as the almost identical predictive variables and similar AUCs, 

suggests that the impact of a single episode of acute diarrhea on growth trajectory may be relatively low. It is 

possible that the entire diarrheal history of a child (e.g. frequency and severity of acute diarrhea), or subclinical 

enteric infections that do not result in diarrhea, are more important to their growth trajectory than a single 

diarrheal episode, though evidence is mixed(13, 26, 37). Indeed, the average baseline HAZ at enrollment was 

0.5 HAZ lower in children who did not experience growth faltering than in children who did (Supplemental 

Figure S4), suggesting the possibility that children need to have high enough HAZ in order to have the potential 

to falter. It is also possible that the underlying cause(s) of stunting are complex and interrelated, and relatively 

simple predictive models are not able to accurately parse apart which children do and do not experience 

sufficient causes.  

While effective interventions exist for treating acute malnutrition (e.g. exclusive breastfeeding for the 

first 6 months of life, inpatient- and community-based management of acute malnutrition using corn-soy blend 

or ready-to-use therapeutic food (38-40)), there are few evidence-based guidance on how to reverse the effects 

of chronic malnutrition once a child is stunted(39, 41-44)). We found that approximately 1 in 5 children 

experience severe growth faltering subsequent to acute diarrhea, that is, an additional ≥0.5 decrease in HAZ in 

the 2-3 months after acute diarrhea. Currently, presenting to care for an acute illness, such as diarrhea, offers an 

opportunity for medical personnel to assess and treat children for acute malnutrition through intensive feeding 

programs. Our CPR provides a tool for identifying patients likely to experience additional growth faltering after 
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acute diarrhea. This would allow clinicians to connect patients with community-based nutrition interventions 

(e.g. maternal support for safe introduction of weening foods, small quantity lipid nutrient supplements (SQ-

LNS), etc.(45-48)) to prevent additional effects of chronic malnutrition, namely irreversible stunting. 

 Our study has a number of strengths and limitations. We derived CPRs for growth faltering from two 

multi-site, prospective studies that included longitudinal follow-up with extensive etiologic testing. Unlike 

previous work in this area, we used random forests for variable selection which do not require assumptions 

about the underlying variables and generally outperform(49) conventional model building techniques. We were 

able to re-derive the 10-variable version in two distinct datasets with similar results. While we were only able to 

externally validate a 2-variable version of our growth faltering CPR, its discriminative performance was similar 

to the full 10-variable version, and was robust to external validation. Furthermore, while the observation 

windows were large for many variables in the MAL-ED dataset used for external validation (up to 90 days for 

dietary variables, and up to 6months for household descriptors), the variables of interest in the 2-variable CPR 

were observed no more than 31 days from the start of diarrhea. In addition, we considered all diarrhea as an 

outcome of interest in MAL-ED, whereas the analysis in GEMS was limited to MSD. When limiting the MAL-

ED analysis to MSD as defined in GEMS, the top predictors and discriminative ability were very similar. 

Finally, we explored a range of AFe cutoffs for etiology, with consistent results.  

In conclusion, we used data from two large multi-country studies to derive and validate a clinical 

prediction rule for growth faltering in children presenting for diarrhea treatment. Our findings indicate that use 

of prediction rules, potentially applied as clinical decision support tools, could help to identify children at risk 

of poor outcomes after an episode of diarrheal illness. In settings with high mortality and morbidity in early 

childhood, such tools could represent a cost-effective way to target resources towards those who need it most.
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