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ABSTRACT

Laparoscopic surgery has evolved as a key technique for cancer diagnosis and therapy. While characterization of the tissue

perfusion is crucial in various procedures, such as partial nephrectomy, doing so by means of visual inspection remains highly

challenging. Spectral imaging takes advantage of the fact that different tissue components have unique optical properties to

recover relevant information on tissue function such as ischemia. However, clinical success stories for advancing laparoscopic

surgery with spectral imaging are lacking to date. To address this bottleneck, we developed the first laparoscopic real-time

multispectral imaging (MSI) system featuring a compact and lightweight multispectral camera and the possibility to complement

the conventional RGB (Red, Green, and Blue) surgical view of the patient with functional information at a video rate of

25 Hz. To account for the high inter-patient variability of human tissue, we phrase the problem of ischemia detection as an

out-of-distribution (OoD) detection problem that does not rely on data from any other patient. Using an ensemble of invertible

neural networks (INNs) as a core component, our algorithm computes the likelihood of ischemia based on a short (several

seconds) video sequence acquired at the beginning of each surgery. A first-in-human trial performed on 10 patients undergoing

partial nephrectomy demonstrates the feasibility of our approach for fully-automatic live ischemia monitoring during laparoscopic

surgery. Compared to the clinical state-of-the-art approach based on indocyanine green (ICG) fluorescence, the proposed

MSI-based method does not require the injection of a contrast agent and is repeatable if the wrong segment has been clamped.

Spectral imaging combined with advanced deep learning-based analysis tools could thus evolve as an important tool for fast,

efficient, reliable and safe functional imaging in minimally invasive surgery.

1 Main

Replacing traditional open surgery with minimally invasive techniques for complicated interventions such as tumor resection is

one of the most important challenges in modern healthcare. Conventionally used RGB (Red, Green, and Blue) camera-based

laparoscopes, however, are ill-suited for these demands. Their mode of operation is based on mimicking the human eye by

collecting light in the aforementioned three broad regions of the optical spectrum; as a consequence, precise tissue differentiation

and assessment of organ function remain largely inaccessible. Yet, obtaining real-time functional tissue information is crucial

for many key procedures in minimally invasive surgery.

A common necessity of laparoscopic surgeries, for example, is stopping the blood flow to a specific organ or tissue region

by clamping the arteries responsible for blood supply. This process, commonly referred to as ischemia induction, prevents

excessive bleeding of patients1 and is performed in various procedures, including partial nephrectomy, organ transplantation
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and anastomosis. After clamping the main arteries, it is highly challenging to assess the perfusion state of the tissue solely based

on the available RGB video stream. This especially holds true for selective clamping of a segmental artery, in which ischemia

is induced only in the cancerous part of the kidney during partial nephrectomy2, 3. The most common approach to ensure

correct clamping is based on indocyanine green (ICG) fluorescence (see Fig. 1): After ICG is injected into the bloodstream, it

binds to plasma proteins. The bound ICG travels through the bloodstream and accumulates in the internal organs, especially in

the kidney and liver, within a minute4, 5. Lack of a fluorescent signal thus corresponds to lack of perfusion. However, due to

long washout periods of about 30 minutes, this test is not easily repeatable if the wrong segment has been clamped5 or if the

clamping procedure was done improperly, as illustrated in Fig. 1. Furthermore, it requires a contrast agent to be injected into

the bloodstream. Even though ICG injection is generally regarded as a safe procedure, cases with severe complications such as

anaphylactic shock have been observed6.

OUR APPROACH: MSI FOR CONTRAST AGENT-FREE REAL-TIME TISSUE ASSESSMENT
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Figure 1. Our multispectral imaging (MSI)-based approach enables continuous, contrast agent-free, real-time

ischemia monitoring in laparoscopic surgery. The clinical state of the art (brown) to verify successful ischemia induction

via clamping of arteries is based on indocyanine green (ICG) imaging: ischemic tissue is characterized by a lack of fluorescent

signal, whereas perfused tissue fluoresces. In the case of unsuccessful clamping, the test can only be repeated after a washout

period of about 30 min. Our approach (green) is based on non-invasive and contrast agent-free MSI at video rate. Deep learning

(DL) models trained on MSI video sequences prior to clamping are capable of detecting ischemic tissue areas as outliers in

real-time, as detailed in Fig. 3.

Spectral imaging is a promising alternative approach to improving surgical vision. This technique removes the arbitrary

restriction of recording only three broad spectral bands (Red, Green and Blue) by capturing an n-dimensional feature vector

for each camera pixel, where each dimension corresponds to a comparatively narrower spectral band. As different tissue

structures possess unique optical scattering and absorption properties, knowledge of these optical properties along with

spectral measurement data can potentially provide important information on tissue morphology7–10 and function11, 12. The term

multispectral imaging (MSI) is used when only a few bands (up to dozens) are recorded, while hyperspectral imaging (HSI)

refers to hundreds of bands being recorded13.

Despite the general success of MSI and HSI13–32, applications in the operating room (OR) have been limited. Some of

the main reasons why spectral imaging has not yet found its way into surgical practice are related to image acquisition time,
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processing time and size of the available devices13. In fact, many available MSI/HSI camera systems are large (14–50 cm)

and/or take several seconds (2–8 s) to record and process one image32–39. To the best of our knowledge, the only laparoscopic

spectral device proposed for clinical use so far34 takes around five seconds to record one hyperspectral image, which prevents

real-time application. In consequence, clinical success stories in spectral imaging for minimally invasive surgery are still

lacking. Specifically, we are not aware of any clinical study in the broader context of real-time perfusion monitoring based on

spectral imaging in laparoscopic surgery.

We address this gap in the literature with the following contributions:

1. Video-rate MSI system (see Fig. 2): We present the first real-time (25 Hz) laparoscopic MSI system applied in patient

studies. It features a compact (26×26×31 mm) and lightweight (32 g) MSI camera that can be connected to standard

laparoscopes via a widely used C-Mount adapter and operates with clinical light sources.

2. Deep learning-based algorithm for real-time ischemia detection (see Fig. 3): To overcome the need of large amounts

of training data required by traditional discriminative machine learning methods, we phrase the problem of ischemia

detection as an out-of-distribution (OoD) detection problem that does not rely on data from any other patient (patent

pending). Using an ensemble of invertible neural networks (INNs) as a core component, our algorithm is trained to

compute the likelihood of ischemia based on a short (several seconds) video sequence acquired at the beginning of each

surgery.

3. First-in-human study: We present the first-in-human study demonstrating that monitoring kidney ischemia in real time

is now possible.

6. Xenon light source

1. Video-rate multispectral camera

2. Bandpass filter

3. C-Mount adapter

4. Laparoscope

5. Light cable

7. USB cable

8. Processing unit

COMPONENTSb)SURGICAL WORKFLOW-COMPATIBLE MSI SYSTEM a)

32 g 26 x 26 x 31 mm 25 Hzeasy mounting

our MSI laparoscope
conventional RGB 

laparoscope

Figure 2. Our multispectral imaging (MSI) system for ischemia monitoring is comparable to current standard

equipment in terms of size and weight. a) Proposed spectral imaging-based laparoscope (left) compared to standard Red,

Green, and Blue (RGB) laparoscope (right). b) Schematic representation of the system developed for spectral tissue analysis in

laparoscopic surgery (see Sec. 5.1). The dimensions of the laptop and the light source have been scaled down for visualization

purposes.

2 Results

First-in-human application of video-rate multispectral laparoscope The proposed system enables us to pioneer clinical

video-rate MSI in laparoscopy. As shown in Fig. 2, it comprises (1) a snapshot MSI camera, (2) a 335–610 nm bandpass filter,

(3) a C-Mount adapter with adjustable focal length, (4) a standard surgical laparoscope, (5) a surgical light cable, (6) a Xenon

light source, and (7) a USB cable to connect the MSI camera to the (8) processing unit (see Sec. 5.1). Due to the compact

(26×26×31 mm) design, the camera does not add hardware complexity to the OR (see Fig. 2 a). Furthermore, the camera is

extremely lightweight (32 g), thus enabling easy handling of the device over long periods of time. The system operates at a

frame rate of 25 Hz. To compensate for tissue and camera motion during image acquisition, we developed a deep learning-based

algorithm capable of tracking regions of interest (ROIs) within an MSI video (see Sec. 5.4). The algorithm was successfully

applied in 10 patients undergoing partial nephrectomy and served as a prerequisite for further analysis and for computing the

deep learning-based ischemia index. The results of our analysis are exemplary illustrated in this video.
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Figure 3. We treat ischemia monitoring based on multispectral imaging (MSI) as an out-of-distribution (OoD) task

which only needs training data from one single patient. Traditional deep learning (DL) methods (brown) require large

amounts of patient data to train a model, while our method (green) only needs data from a single patient. Using an ensemble of

invertible neural networks (INNs) as a core component, our algorithm computes the likelihood of ischemia based on a short

(several seconds) video sequence acquired at the beginning of each surgery. An important feature of our approach is that the

entire training and inference process can be performed during a surgical procedure.

High inter-patient variability for kidney tissue High inter-patient variability generally suggests poor generalizability of

supervised learning algorithms. In a recent porcine study we showed that the greatest source of variability related to spectral

images of organs acquired from healthy animals is the organ under observation rather than the recorded individual or specific

acquisition conditions40. This enabled us to develop a highly accurate supervised deep learning (DL) algorithm for fully-

automatic organ classification41. However, an analogous analysis applied to the data of the clinical study presented here

revealed that kidney tissue of patients undergoing partial nephrectomy is highly heterogeneous. As illustrated in Fig. 4, when

reducing the full spectral information to two dimensions via principal component analysis (PCA)42, the measurements from

different patients gather within clear visual clusters for each state (indicated by a star (perfused) or circle (ischemic) in Fig. 4 a),

while a clustering of different tissue states across patients cannot be observed (circles and stars do not form clear clusters).

Note in this context that the first two principal components (PCs) capture 87 % of the variation. Furthermore, according to a

mixed model analysis, most variability in the measurements can be explained by the individual patient rather than—as would

be desired—the tissue state (see Fig. 4 b)). In consequence, tackling the challenge of ischemia detection with a traditional

supervised algorithm trained on a small data set would come with a high risk of poor generalization capabilities to unseen

individuals. In addition, (slight) changes in the acquisition setup might require complete retraining of the method on the entire

patient database. This motivated our personalized approach to ischemia detection, illustrated in Fig. 3.

Novel deep learning-based ischemia index captures ischemia state To overcome the limitations of supervised approaches

in the presence of high tissue heterogeneity, we developed a personalized approach to ischemia detection that solely requires

data of the patient undergoing surgery (see Fig. 3). Specifically, we phrase the problem of ischemia detection as an OoD

detection problem and assess the perfusion state with a custom-designed ischemia index that relies on an ensemble of INNs

as the core component. As detailed in Sec. 5.2, the ensemble is trained to estimate the density of the distribution of perfused

spectra from a short (several seconds) video sequence acquired at the beginning of each surgery. At inference time, the density

is evaluated on new spectra and the ensemble predictions are aggregated using the Widely Applicable Information Criterion

(WAIC)43. The ischemia index, computed for each image, represents the spatially aggregated WAIC values. According to

our patient study with 10 patients undergoing partial nephrectomy, in which ICG fluorescence served as the gold standard
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Figure 4. High tissue heterogeneity across subjects motivated our personalized approach. Both the a) principal

component analysis (PCA) and b) the mixed model analysis demonstrate the high inter-patient variability of spectral tissue

measurements. a) The fact that different tissue states cluster within a subject but do not form a uniform cluster across subjects

motivated us to phrase the challenge of ischemia detection as an out-of-distribution (OoD) problem. Solid markers show the

cluster centers, transparent markers the raw data points and the axis labels denote the explained variance of the corresponding

principal component (PC). b) Explained variance for the 16 bands of the multispectral imaging (MSI) camera, depicted in Fig. 7

method, our novel ischemia index classifies the perfusion state with high accuracy (see Fig. 5). In fact, in almost all patients,

the data corresponding to ischemic tissue could be perfectly separated from those corresponding to perfused tissue. This led to

a median / mean area under the receiver operating curve (AU-ROC) of 1.0 / 0.9 obtained for the n = 10 patients. While the

patient-individual training took 30 s per network on average, the actual index calculation runs at 120 Hz on the selected ROIs

on the kidney, and thus in real time.
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Figure 5. Our approach is capable of discriminating between ischemic and perfused kidney states. We calculated the

ischemia index for every frame in video sequences of perfused and ischemic kidney separately for each patient (see Sec. 5.2)

and generated corresponding dot and box plots. The boxes show the interquartile range with the median (solid line) and mean

(dashed line) while the whiskers extend up to 1.5 the interquartile range. Min-max-normalization was performed for clarity of

presentation.
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3 Discussion

MSI is on the verge of opening up entirely new avenues in the early detection, diagnosis and monitoring of diseases ranging

from cancer to cardiovascular and inflammatory diseases, particularly when applied in modern interventional healthcare such as

minimally invasive surgery. To the best of our knowledge, this work presents the first ever real-time application and analysis of

MSI in laparoscopic surgery on human subjects and in a clinical setting. Based on a newly developed video-rate multispectral

laparoscopic imaging system, our approach presents three key advantages over the current state of the art in interventional

ischemia detection:

1. No contrast agent: Our method is completely non-invasive and does not require the administration of ICG or any other

contrast agent. This reduces intervention time and costs and enhances patient safety by reducing complication risks (e. g.

anaphylactic shock).

2. Multiple uses per surgery possible: In case of a failed ischemia induction attempt, our method can be reapplied

instantly. There is no washout period.

3. Video-rate ischemia monitoring: The proposed ischemia index can be computed in real time, making continuous

ischemia monitoring feasible, whereas the classical approach allows for only a single measurement per surgery.

In the following sections, we discuss our hardware choices to achieve video-rate ischemia monitoring, the consequences of

high tissue heterogeneity, our approach to ischemia detection and a comparison between our proposed approach and current

clinical practice.

3.1 MSI system design

We developed the first real-time MSI system for laparoscopic surgery that was applied in a patient study. The key strengths of

our imaging system are the high acquisition speed (above 25 MSI images per second), the low weight (32 g), the small size

(camera cube with edge size of 26×26×31 mm) and the fact that it operates with a standard clinical light source, all of which

allow for smooth integration into the surgical workflow. Furthermore, all relevant changes made compared to the standard

clinical setup concern components that are attached to the laparoscope and as such never touch the patient, which minimizes

the patient risk introduced by a new imaging device.

Previous work on clinical spectral imaging has focused on systems for open surgery with acquisition times of several

seconds32–39. Preclinical multispectral or hyperspectral systems proposed in the specific context of laparoscopy have typically

been based on sequential image acquisition11, 44–46, e.g. using the filter wheel technology11, 44, 47, and thus come with the risk

of motion artefacts and the lack of video-rate acquisition capabilities. The snapshot technique applied in this work has in

parallel been explored by other authors48 in the context of open surgery. Overall, we are not aware of any real-time MSI or HSI

laparoscopic system that has been applied in humans so far.

While the snapshot technique is the key enabler for fast image recordings, it also comes with several limitations. The second

order peaks of the MSI camera filters shown in Fig. 7 can potentially present challenges to image interpretation and analysis.

Given the fact that these second order peaks are located at low wavelengths in the optical range, and that oxyhemoglobin

(HbO2) and deoxyhemoglobin (Hb) absorb light mainly in those spectral regions, they need to be taken into account when the

target application is quantitative perfusion or oxygenation estimation. For example, applying the Beer-Lambert law44, 49 to our

data yielded implausible values (e. g. oxygenation above 100%), as discussed below. Our proposed method is not influenced by

these second order peaks because the INNs learn the density of the MSI data, regardless of the influence such peaks have on the

reflectance spectra. More specifically, given that all image sequences are equally influenced by these second order peaks, INNs

encode such influences in the model and learn to predict our ischemia index based only on physiological changes and not on

hardware configurations.

At the moment, the camera operates in the visible spectrum. However, the tissue spectrum in the infrared (IR) range is often

very expressive10, promising even better performance in estimating tissue parameters. It could thus be viable to explore this

regime with a combination of cameras receptive in the IR range and IR optimized light sources. Another necessary adaptation

of the camera system would be the capability to provide both a regular RGB image for human-interpretable visualization to the

surgical staff as well as MSI data for the ischemia index computation.

3.2 Tissue heterogeneity and personalized approach

To our knowledge, this work constitutes the first systematic in vivo spectral analysis of diseased kidney tissue. Our analysis

clearly exposed the high inter-patient variability of optical properties. A key finding was that the main contributor to the

variance of spectral measurements is the patient rather than the perfusion state of the kidney. These results dim the hopes of

successfully applying supervised machine learning algorithms as ischemia detectors under conditions of limited patient data.
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Our findings regarding the heterogeneity are in stark contrast to recent findings in porcine organs40, where the influence of

the different specimen is small compared to other explanatory variables. A key difference between this study and the present

work (apart from the species) is that for the porcine study all organs were healthy, whereas all of our human subjects underwent

partial nephrectomy due to kidney cancer. This might be one factor explaining the high inter-patient variability.

The limited number of patients included in our study makes it hard to determine the mechanism for the change in spectra. In

particular, the combination of cancer type and comorbidities is unique for each patient. Furthermore, the complex environment

of the OR offers a significant number of external factors that cannot be controlled. For example, the pose of the laparoscope

relative to the kidney changes between each patient due to variables such as port placement, respiratory movements, different

anatomy, etc. Since the laparoscope is operated freehand, additional motion from the surgeon is involved. Data normalization

can only compensate for some of these factors. Overall, the described mismatch between sample size and the number of

variable factors makes attribution of spectral variability to these factors hard. However, they are captured as the remaining

unexplained variance in Fig. 4 b).

We observed that the explained variability of bands 5 and 10 that can be accounted for by changes in tissue state (perfused

vs. ischemic) is especially low in comparison to the variability explained by different patients (see Fig. 4). We attribute this to

two main reasons: a) The maxima of the camera filter responses corresponding to these bands are located at wavelengths where

the extinction coefficient of Hb and HbO2 are very similar (see Fig. 7). This, in turn, leads to lower variability between tissue

states. b) Band 5 is also affected by a second order peak with a maximum filter response located at a wavelength where the

extinction coefficients of Hb and HbO2 are considerably smaller, thus leading to higher reflectances and a lower influence of

different tissue states (perfused vs. ischemic) in the reflectance signal.

In the future, the incorporation of more explanatory variables (such as comorbidities) in our linear mixed model would

allow for an in-depth understanding of how different factors impact spectral measurements. However, with the frequency of

partial nephrectomies being limited, particularly in pandemic times, additional data acquisition is a slow process. Obtaining an

MSI imaging device certified for clinical use can be considered a pivotal step in accelerating data acquisition for large-scale

studies.

3.3 Ischemia index

We introduced an entirely novel approach to ischemia detection which neither relies on potentially oversimplified modeling

assumptions (such as the Beer-Lambert law) nor on a large patient cohort for algorithm training. Our results show that we

can overcome difficulties posed by the high inter-patient variability through rephrasing the problem of ischemia detection as

an OoD detection problem. In the vein of personalized medicine, this process is solely dependent on data from the patient in

question, which avoids the necessity for consideration of confounders introduced by different patients33, 50. This constitutes an

extremely relevant feature in the face of increasing evidence that many research studies overestimate the performance of DL

algorithms due to poor selection of test data relative to the training data51, 52. Furthermore, algorithms trained on data from a

specific camera may not necessarily generalize to slightly adapted conditions33, 53. Even though our model has to be retrained

for every patient, application in the OR is feasible as only spectra of perfused tissue are required for training and the training

time is approximately 30 s per network (five networks). Such a training procedure can easily be performed at the beginning of

each surgery prior to identification of the renal artery, thus avoiding delays in the surgical procedure. Furthermore, at a spectrum

evaluation rate of 220 kHz, which translates to an individual ROI evaluation rate of 240 Hz, the inference is real-time capable.

The clinical state-of-the-art method for assessing ischemia in partial nephrectomy is based on ICG fluorescence. As

summarized in Tab. 1, key advantages of our method are its non-invasiveness and real-time capability. A limitation of our

approach can be seen in the fact that our algorithm requires a clean kidney to perform reliably. Excessive bleeding, scarring, or

remaining fatty tissue on the kidney surface in particular may hinder the application of our method. On the other hand, this

disadvantage may potentially be overcome by extending the wavelength range to the IR range, which is associated with deeper

tissue penetration.

The state-of-the-art approach to assessing perfusion based on spectral measurements in preclinical studies is to apply the

Beer-Lambert law44, 49 (see Sec. 5.4). However, this yielded implausible values (e. g. oxygenation above 100%). In addition, a

clear separation of perfusion states could only be achieved in 50% / 30% of the patients, depending on whether oxygenation or

blood volume fraction estimation was used as a decision score.

Other model-based approaches to estimating physiological parameters, such as the one applied by the TIVITA® cameras

(Diaspective Vision GmbH, Am Salzhaff-Pepelow, Germany), rely on first and second order derivatives of the spectra46. Such

an approach thus requires fine-grained spectra and is potentially highly sensitive to noise. In consequence, its application has so

far been restricted to HSI camera setups associated with long acquisition times.

In our own previous work, we presented a machine learning-based approach to physiological parameter quantification

based on MSI data11, 12. To address the absence of a reliable reference method for generating labeled training data, we based

our approach on simulations generated with Monte Carlo (MC) methods. To this end, we leveraged prior knowledge on
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tissue composition, optical properties and light-tissue-interaction to generate a large pool of synthetic spectra, labeled with

corresponding ground truth physiological parameters. This data was then used to train a machine learning-based regressor11, 12, 54,

possibly after a domain adaptation step12. We did not apply the method in this study as our kidney measurements were OoD

compared to the simulations, which indicates that more work is needed for fully realistic spectra generation in the presence of

pathologies. To overcome the lack of accurate prior knowledge as required by model-based approaches or the simulation-based

model, we decided to explore the personalized method presented in this manuscript.

While our method worked perfectly on nine out of ten patients, it failed on patient 7. Further analysis revealed that the

spectra between different kidney states did not substantially differ for this particular patient, as shown in Fig. 6. In fact, a

kernel density estimation (KDE) performed on the data resulting from a patient-specific PCA showed a considerable overlap

between tissue states. Furthermore, the perfused spectra exhibited higher variability than the ischemic spectra consistently

across all bands. These two factors might explain why ischemic spectra were erroneously detected as in domain, with the

support of the distribution of perfused spectra containing the support of the distribution of ischemic spectra. A possible reason

for the similar spectra in perfused and ischemic state is the appearance of burned fatty tissue in the surface of the kidney, which

can occur while removing fatty tissue with the da Vinci® monopolar scissors and negatively impact tissue penetration. To

mitigate problems related to tissue penetration and thus preclude failure of our method, we envision increasing the wavelength

range of the camera and the light source in the future, as mentioned above. Since this change requires a new hardware setup

(higher power light source) with regulatory approval, it remained beyond the scope of our current study. It should also be

mentioned that the laparoscopic videos of patient 7 looked unusual from a clinical perspective (see Fig. 6 a)). As patient 7

also happened to be the only smoker among the participants of our study, we cannot rule out a possible effect on the measured

spectra. Investigating the impact of comorbidities on MSI-based ischemia detection and potential failure cases was not within

the scope of the present work, but could be the subject of a more comprehensive study in the future.

Of note, patient 4 presented a particular case in our analysis. Due to data corruption of the white Spectralon® reference

measurements (see Sec. 5.3.2), we used the white measurements recorded during another surgery with identical hardware setup

(patient 3). Given that hardware, software and Spectralon® target were all identical, we did not expect a major influence of

this procedure in the analysis of the data from patient 4. Indeed, experiments where the data from patient 4 was normalized

using the white and dark references from other patients revealed that the variation across different normalization strategies is

insignificant compared to the variance across kidney states (perfused and ischemic).

A specific challenge within this study was the fact that we needed to remove our laparoscope between training and testing

data acquisitions. The reason was that we did not want to alter the clinical procedure more than necessary and thus based the

clinical decision making exclusively on a standard (additional) RGB laparoscope. In order not to require an additional port for

our own laparoscope (which would have come at the cost of increased invasiveness), we used the port that is required for the

clamping for our device. This made temporary retraction necessary, thus complicating the ischemia detection because analysis

on the same ROI could not be guaranteed. Note that in some of the patients, it was not even manually possible to robustly

locate the same tissue region before and after clamping due to the lack of landmarks and the altered pose of the laparoscope

relative to the tissue. To ensure that our OoD detector does not merely detect different tissue regions (rather than tissue states),

we took the design decision to base the analysis on two disjoint ROIs. Furthermore, we designed the validation study in a way

that we acquired data from perfused and ischemic tissue in a comparable manner; always after removal and re-insertion of

the laparoscope. If the reason for OoD detection in the ischemic tissue was the change of tissue region, the algorithm would

have failed on the testing sequences corresponding to perfused tissue (perfused2). Of note, the challenge of interrupted image

acquisition may easily be overcome in the future with a clinically certified MSI laparoscope, enabling MSI acquisition and

physician interpretation at the same time.

It is further worth mentioning that we investigated applying our ischemia index to (reconstructed) RGB data. While a

separation of perfusion states was possible for some of the patients, the MSI results were far better in terms of data separation.

Working on an even broader wavelength range that incorporates IR bands may improve the results further.

In conclusion, we presented the first approach to ischemia detection based on MSI data in laparoscopic surgery that was

successfully applied in a clinical study. Future work should be directed to large cohort studies and the transformation of our

index into an easy-to-use score with inherent classification and uncertainty quantification capabilities.

4 Conclusion

Here, we presented the first-in-human study demonstrating that intraoperatively monitoring kidney perfusion in real time is

possible by exploiting a combination of spectral imaging and advanced deep learning-based analysis algorithms. Our study can

be seen as a first foray into the application of multispectral imaging in a clinical interventional setting.
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Figure 6. Comparison of a representative patient with patient 7 with respect to the algorithm input. a) Example Red,

Green and Blue (RGB) images were selected from the perfused2 sequence to illustrate the unusual images acquired of the

kidney of patient 7. b) The reflectances of the representative patient (patient 3) differ clearly between perfused and ischemic

tissue for the vast majority of camera bands, while no clear separation can be observed in patient 7. The boxes show the

interquartile range with the median (solid line) while the whiskers extend up to 1.5 the interquartile range. c) A kernel density

estimation (KDE) performed on the data resulting from a patient-specific principal component analysis (PCA) provides further

explanation for why our method falsely detected the ischemic kidney data of patient 7 as inlier. The axes labels denote the

explained variance of the corresponding principal component (PC).
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Table 1. Key characteristics of traditional ischemia monitoring with ICG injection and our proposed non-invasive method.

Feature ICG Our method

Standard light source ✗ ✔

Standard camera ✗ ✗

Low per use cost ✗ ✔

Low investment cost ✗ ✗

Contrast agent-free ✗ ✔

Multiple use per surgery ✗ ✔

Robust to tissue surface imperfections ✔ ✗

Real-time ✗ ✔

5 Methods

This section presents the methods corresponding to the three primary contributions of our paper, namely, the MSI system (see

Sec. 5.1), the algorithm for ischemia detection (see Sec. 5.2) and our clinical study for validating our approach (see Sec. 5.3).

Implementation details on some of the modules and methods have been moved to a separate section (see Sec. 5.4).

5.1 Multispectral imaging system

Our MSI system is illustrated in Fig. 2 and comprises the following main components.

Multispectral camera The core component is an MSI camera (MQ022HG-IM-SM4x4-VIS, XIMEA GmbH, Münster,

Germany), which is a small (26×26×31 mm) and light (32 g). It is based on the imec (Leuven, Belgium) mosaic snapshot

sensor, which acquires 16 spectral bands at a single snapshot, using a 4×4 repeating mosaic pattern of filters (see Fig. 7 b)); the

spectral response of each filter is shown in Fig. 7 c). Several of the bands show two peaks in the spectral response. These are

caused by the measurement principle of the Fabry-Pérot filters55, which lead to so-called “second order” peaks. The intensity

of such peaks depends on the height of the optical cavity of the filters, the refractive index of the sensor material and the cosine

of the light incidence angle56. The spatial resolution of the sensor is 272×512 pixels.

Surgery-specific components Due to intrinsic optical tissue properties, the reflectance of human tissue in the red region

(above ≈ 620nm) is higher than that in the blue region (below ≈ 490nm). To ensure more balanced camera counts, and thus

similar noise levels across different camera filters, a 335–610 nm bandpass filter (FGB37, Thorlabs Inc., Newton, New Jersey,

United States) was placed between the C-Mount adapter and the laparoscope. The C-Mount adapter (20200043, KARL STORZ

SE & Co. KG, Tuttlingen, Germany) features an adjustable focal length, with a maximum of 38 mm. To enable the recording

of MSI images during minimally invasive surgery, the camera was connected to standard 30° laparoscopes (26003BA, KARL

STORZ SE & Co. KG, Tuttlingen, Germany and Panoview, Richard Wolf, Knittlingen, Germany) via the aforementioned

C-Mount adapter. The ℓ1 normalized transmission spectra of the bandpass filter, the laparoscope and the C-Mount adapter are

shown in Fig. 7. The extinction coefficients of HbO2 and Hb are also shown as a reference57. As light source, we chose a

Xenon light source (IP20, Richard Wolf GmbH, Knittlingen, Germany) as it provides brighter and more uniformly distributed

light across different wavelengths in comparison to a halogen light source.

Image recording and storing For image acquisition and recording, a standard laptop (Msi GE75 Raider 85G, Intel i7,

NVIDIA RTX 2080) was used. A custom C++ software (not publicly available) based on the XIMEA Application Program

Interface (XiAPI, XIMEA, Münster, Germany) was implemented and used to record the MSI images.

5.2 Algorithm for live ischemia monitoring

We phrase the challenge of live ischemia monitoring as an OoD detection problem that only relies on data of the current patient.

This mitigates the challenge of acquiring large amounts of annotated training data and the limited robustness which traditional

machine and DL approaches suffer from due to high variability of human tissue, acquisition protocols, camera setups, etc.

Specifically, our algorithm is trained to compute the likelihood of normal tissue perfusion based on a (several seconds) video

sequence acquired at the beginning of each surgery. In the following paragraphs, we review the principle of WAIC43, explain

how to leverage INNs to compute it in real time and present our novel OoD-based ischemia index.

WAIC While we are not aware of any previous work in OoD detection in the field of optical imaging, the topic of OoD has

gained increasing interest in the machine learning community. We build our method upon the work by Choi et al.58 who

proposed WAIC as a means to measure the closeness of a new sample to the training distribution. In Watanabe et al.43, WAIC
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Figure 7. Optical properties of our multispectral system. a) ℓ1 normalized transmission spectra of the laparoscopes,

bandpass filter and C-Mount adapter are shown in the left axis. Extinction coefficients of oxyhemoglobin (HbO2) and

deoxyhemoglobin (Hb) are shown on the right axis. The bandpass filter mainly filters light in the low wavelength region where

blood absorbs the most (below ≈ 600nm), thus making the spectral power distribution that reaches the camera detector more

uniform across wavelengths. b) Representation of the 4×4 mosaic pattern of the multispectral camera sensor. Each colored

square represents a different filter; these filters form a 4×4 pattern that extends over the whole image. c) The filter responses

of the multispectral camera bands. Some bands, such as 5–12, show two extra peaks in the spectral response, which are referred

to as “second order” peaks.
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was defined as

WAIC(x) = VarΘ[log p(x | Θ)]−EΘ[log p(x | Θ)], (1)

where Θ represents the parameters of the model family that parametrize p and the variance and expectation is taken over

Θ ∼ p(Θ | X tr) of the training distribution X tr. Then WAIC(x) estimates the proximity of a sample x to X tr. Choi et al.58

suggested to use WAIC as a means for OoD in the setting of neural networks. The variance term in equation (1) measures

the certainty of the posterior distribution about p(· | Θ) for a sample x. The intuition behind the term is that it should be more

certain about samples the closer the samples are to the training distribution. The expectation term in equation (1) is taken

directly from standard density estimation approaches to OoD detection. If the sample x lies in a low density region, then it is

expected to be OoD. Hence, the log-density is subtracted as another OoD contribution to the WAIC score. A major challenge

related to the implementation of WAIC is the efficient computation of log p(x | Θ). We propose applying INNs to be able to

compute log p(x | Θ) and thus WAIC(x) in real time during a surgical procedure.

Invertible Neural Networks (INNs) for computing WAIC Our approach to computing log p(x | Θ) is based on two steps: (1)

leveraging INNs for converting a measurement into a space in which we can analytically compute the log-likelihood and then

(2) applying the change of variable formula to obtain log p(x | Θ). More specifically, we use INNs59 based on the normalizing

flow architecture60 to encode the spectra in image space X in a latent space Z in which the samples are distributed according to

a multivariate standard Gaussian. Let fΘ : X ⊂ R
n → Z ⊂ R

n denote the neural network with parameters Θ. Then we can use

the change of variable formula to compute the log-likelihood log p(x | Θ) for a spectrum x as

log p(x | Θ) =−
1

2
‖ fΘ(x)‖

2
2 −

n

2
log(2π)+ log |detJ fΘ(x)|, (2)

where J fΘ denotes the network’s Jacobian and we already assume that the latent space Z is normally distributed.

The change of variable formula enables us to compute log p(x | Θ) for a single neural network. To be able to compute the

WAIC variance and expectation term, we generate an ensemble of networks (default: n = 5) with identical architecture but

different random seeds.

Ischemia index As not only the inference but also the training needs to be performed during the actual surgical procedure,

we faced the requirement of fast training times (seconds rather than minutes or hours). To achieve fast network convergence

based on the patient-individual data, we pre-trained our neural network ensemble on simulated data. Specifically, we simulated

light transport in tissue using a MC method to compute high-resolution spectra covering a large space of physiological states

(see Sec. 5.4). In a second step, these high resolution spectra were adapted to the MSI sensor taking the light source, filter

responses and other transmission spectra into account. The fully-trained network then allows us to compute WAIC(x) for any

new spectrum x. Higher WAIC values imply that the spectrum is OoD, i.e. ischemic. As the recorded organ of interest consists

of more than one multispectral pixel, we post-process the WAIC values by aggregating them over ROIs. This leads to a single

value per MSI frame which we refer to as ischemia index.

Note that we presented the general idea of using INNs for OoD in the context of uncertainty quantification at a conference

workshop61. However, the idea of phrasing the ischemia detection problem as an OoD problem is entirely novel (patent

pending). The concrete instantiation of this approach for ischemia detection in partial nephrectomy is provided in Sec. 5.4,

including all relevant implementation details.

5.3 Patient study
The aim of this study was to investigate the feasibility of our approach to contrast agent-free real-time ischemia monitoring. In

this section, we describe our data set (see Sec. 5.3.1), the instantiation of our ischemia detection method (see Sec. 5.3.2), and

the visualization and evaluation techniques (see Sec. 5.3.3).

5.3.1 Patient data

Here we describe the patient recruitment, image acquisition process, technical inclusion criteria for our evaluation, and our data

splits.

Patient recruitment All patients were recruited in the Städtisches Klinikum Karlsruhe (Karlsruhe, Germany). The experi-

ments involving humans were performed in accordance with the Declaration of Helsinki and all protocols were approved by the

Landesärztekammer Baden-Württemberg (DE/EKBW01, study reference number: B-F-2019-101). The inclusion criteria for all

subjects were: a) subjects were undergoing partial nephrectomy and b) subjects were adults (≥ 18 years old). This resulted in

a total of 10 subjects with an age range between 40 and 82 years old, 7 of which were male and 3 female. Tab. 2 shows an

overview of all the subjects recruited for this study.
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Table 2. Patients recruited in our clinical study. ccRCC: Clear Cell Renal Cell Carcinoma, PRCC: Papillary Renal Cell

Carcinoma, ChRCC: Chromophobe Renal Cell Carcinoma

Patient ID BMI Sex Tumor type Data split

1 25 male PRCC retrospective

2 22 female Benign Oncocytoma retrospective

3 40 male ccRCC retrospective

4 30 male Benign Oncocytoma retrospective

5 49 female Leiomyoma retrospective

6 22 male ccRCC prospective

7 29 male ccRCC prospective

8 43 male PRCC prospective

9 31 male ChRCC prospective

10 24 female Angiomiolypoma prospective

In vivo image acquisition Recordings were taken from subjects undergoing partial nephrectomy at the Städtisches Klinikum

Karlsruhe. The standard procedure involves the generation of six surgical ports, three of which were dedicated to the da Vinci®

robotic arms (Intuitive Surgical Deutschland GmbH, Freiburg, Germany), one of which was used for the da Vinci® RGB

surgical camera and the remaining two as assisting ports used for other instruments (e.g. scissors, clip appliers, etc.).

The conventional workflow was adapted as follows for our measurements. After removing the fatty tissue from the surface

of the kidney and locating the renal artery, the multispectral laparoscope was inserted through one of the assisting ports and

three measurements were performed to enable training and validation of our ischemia detection algorithm. Each measurement

was performed for 45 s, yielding ≈ 1200 recorded MSI images (see Fig. 8):

1. First recording of perfused kidney (training sequence: perfused1): MSI images of the surface of the kidney were

recorded before a clamp was applied to the renal artery. Part of this data was used for training the personalized

ischemia index, as detailed in Sec. 5.4.

2. Second recording of perfused kidney (testing sequence: perfused2): To simulate unsuccessful clamping, an additional

image sequence was recorded before the clamp was applied. For this purpose, the multispectral laparoscope was removed

from the surgical port and re-inserted through the same port. Then, MSI images of the surface of the kidney were again

recorded. The re-insertion of the laparoscope was performed to obtain slightly different acquisition conditions. This is

also the case when actual clamping is performed, as the laparoscope needs to be removed before the renal artery can be

clamped through the same surgical port (see next paragraph).

3. Recording of ischemic kidney (testing sequence: ischemic): The laparoscope was removed from the abdominal cavity,

such that the surgical team could perform the clamping procedure through the same port used for the laparoscope. The

renal artery was then clamped, the laparoscope was re-inserted in the abdominal cavity for MSI acquisition. Afterwards,

the success of the clamping procedure was confirmed by ICG injection into the subject’s bloodstream and subsequent

visualization of the fluorescence signal with the Firefly system of the da Vinci® robot. The ICG injection was prepared

by mixing 50 mg of ICG powder (PULSION Medical Systems SE, Feldkirchen, Germany) with 10 ml of distilled water.

To obtain high-quality data, all measurements were performed on parts of the tissue in which regions without blood and

fatty tissue could be observed. Prior to each measurement, a) the camera integration time was set to 40 ms, b) the laparoscope

was positioned to include the clean surface of the kidney in the field of view of the camera and c) the intensity of the light

source was adjusted to minimize the number of specular reflections observed on the surface of the kidney. Furthermore, the

light source of the da Vinci® RGB surgical camera was turned off during all our measurements.

Study cohort To obtain a reliable reference for our measurements, we only included patients in which the ischemia induction

of the kidney was successfully confirmed by ICG injection as part of the traditional surgical procedure. Furthermore, we omitted

patients for which image recordings were underexposed due to a faulty light guide. A common flaw in machine learning-based

image analysis is the overfitting on the test data62. Even if an algorithm is strictly trained on the training data, a common

procedure involves testing multiple different models or hyperparameter configurations on the test set and then reporting the best

model. To avoid an overestimation of algorithm performance resulting from such practice, we finalized the complete algorithm

based on existing data sets before conducting the patient study. The only exception was the number of MSI frames used for

training the networks used to compute the ischemia index. To fix this hyperparameter, we separated the recruited patients into
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Figure 8. Multispectral imaging (MSI) recording procedure in the operating room (OR). We recorded two MSI

sequences (perfused1 (for training) and perfused2 (for testing)) before the clamp was applied to the renal artery, and one

sequence after applying the clamp (for testing). The laparoscope was removed and re-inserted in the patient’s abdominal cavity

before recording the testing sequence for perfused kidney to obtain the same conditions as for the ischemic kidney.

a retrospective and prospective split. The retrospective data split was composed of the first half of the patients (5) and the

prospective split of the second half of the patients (5). The number of MSI frames was determined using only the retrospective

data set.

5.3.2 Automatic ischemia detection

To instantiate our ischemia monitoring approach (see Sec. 5.2) for partial nephrectomy, the following design decisions needed

to be made: (1) How to preprocess the raw camera data before providing it to the neural network ensemble? (2) How to

aggregate values over individual spectra in order to derive an image-level ischemia index at test time?

Data preprocessing We decided to represent the tissue state in an MSI image by two ROIs that correspond to regions on the

tissue from which high-quality measurements can be obtained. The ROIs were chosen by the physician or technical assistant at

the beginning of a recording sequence according to the process detailed in Sec. 5.4. As we implemented an automatic ROI

tracking algorithm, the ROIs only had to be chosen once at the beginning of each sequence. The data from each ROI was first

normalized with a white (W ) and dark (D) reference recording taken with a highly reflective target (Spectralon®, Edmund

Optics, Barrington, USA). Given an ROI of dimensions N ×M ×B, where (N,M) are the spatial dimensions and B is the

number of spectral bands, the intensity I of each pixel at spatial location (i, j) and spectral band k was normalized according to:

(Ī(i, j))k =
(I(i, j))k − (D(i, j))k

(W(i, j))k − (D(i, j))k

(3)

Subsequently, an ℓ2 normalization across different bands was performed to compensate for the influence of light source intensity

changes due to changes in the distance of the laparoscope to the surface of the kidney. The resulting spectra (Î(i, j))k can be

compared between different image sequences. The normalized spectra Î were then used to train our ensemble of INNs, and the

median normalized spectra within each ROI were used for the rest of our analysis.

Ischemia index Our ischemia monitoring approach leveraged spectral information from two different ROIs. To compute our

ischemia index from this information, we first aggregated WAIC values belonging to the same ROI,

WAIC(ROI) := median
i=1,...,N
j=1,...,M

WAIC(x(i, j)), (4)

where (i, j) is taken over the spatial dimensions of the ROI of shape N ×M.

Then, we aggregated the two ROIs per frame via the mean to obtain the final ischemia index

IschIdx(Frame) :=
1

2
[WAIC(ROI1(Frame))+WAIC(ROI2(Frame))] (5)

For ease of visualization, we min-max-normalized the ischemia index for each patient individually. As this is a strictly

monotonic transformation, this has no influence on the AU-ROC metric.

5.3.3 Assessment methods

This section introduces our methods for assessing tissue heterogeneity and for validating our ischemia index.

14/21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2022. ; https://doi.org/10.1101/2022.03.08.22271465doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22271465
http://creativecommons.org/licenses/by-nc-nd/4.0/


Statistical analysis of tissue heterogeneity For 2D visualization of the high-dimensional spectral data, the data from each

ROI was first normalized according to the procedure described in Sec. 5.3.2 yielding a median spectrum per ROI, frame, state

and subject. For each frame, we averaged the median spectra across all ROIs, computed the first two PCs based on the data

from all subjects and projected the data points onto these new axes42.

We further computed the proportion of explained variability in reflectance by different components using linear mixed

models, as suggested by Schreck et al.63. Given a patient index i = 1, . . . ,10, and an MSI frame index j = 1, . . . ,ni, we fitted

the following model for each wavelength separately:

ri j = α +βSi j +δi + εi j (6)

where r represents the averaged median reflectance across tracked ROIs for a given wavelength (see Sec. 5.4). Si j is an

indicator variable, indicating the perfusion state of the kidney (1 for ischemic or 0 for perfused). Furthermore, α represents

an intercept for each linear model, β is a fixed state effect, δi ∼ N (0,σ2
δ ) is a random patient effect and εi j ∼ N (0,σ2

ε ) are

residuals, with respective variances σ2
δ and σ2

ε that are assumed to be independently normally distributed. We computed the

proportions of explained variability following63.

Validation of ischemia index In order to validate the ischemia index, we designed the recording process such that we had

comparable testing sequences for perfused and ischemic kidney as detailed in Sec. 5.3.1. For performance assessment, we

computed the ischemia index for the first 70 frames of both testing sequences. Using ischemic as the positive class, perfused as

the negative class, and the ischemia index as prediction score (higher implying more ischemic), we then computed the AU-ROC

as primary performance metric.

Analysis of example patients For the detailed analysis of the representative patient (patient 3) and the patient on which our

method failed (patient 7; Fig. 6), we computed the box plots on the same data as our network was trained and tested on, that is,

all valid pixels from three kidney states (perfused1, perfused2 and ischemic), both ROIs, and the first 70 frames were used. The

same data was also used for the density plots where we computed the first two PCs and then applied KDE estimation64, 65 on

the projected values for each state separately via the fast KDE method66, 67.

5.4 Implementation details

This section presents implementation details for some of the image analysis methods presented in the manuscript.

INNs The training data consisted of two ROIs of size 30×30 pixels located on the perfused kidney. These ROIs were tracked

for 70 consecutive frames. The INNs were implemented using the PyTorch framework and the FrEIA package for invertible

architectures. Following up on our previous work with INNs59, 61, 68, we applied the normalizing flow architecture originally

introduced in Dinh et al.60 and used the following network default settings: 20 affine coupling blocks60 with 3 layer fully-

connected subnetworks with 256 hidden dimensions, rectified linear unit (ReLU) activations and fixed channel-permutations.

The networks were trained using Maximum-Likelihood training, i.e. by minimizing the loss L(x) =− log p(x | Θ) as given in

Equation (2) using the Adam optimizer69, a learning rate of 1 ·10−4 and weight decay of 1 ·10−4. The training data was z-score

normalized and we used noise augmentation using additive Gaussian noise with a standard deviation of 0.05. The pre-training

based on MC simulations was performed offline with 100 epochs. Fine-tuning on the patient data was done for 10 epochs. All

hyperparameters, except for the number of training frames, were optimized with pre-existing data disjoint from the current

study data.

ROI tracking At least two ROIs of size 30×30 px were selected on each image sequence, each based on the requirements

that a) there was no adipose tissue on top of the kidney tissue, b) there was no blood leakage staining the kidney tissue, c)

the camera counts were not oversaturated and not undersaturated, d) there was no visible smoke, and e) the ROI locations

did not overlap. Each ROI was defined in the first image and subsequently tracked across consecutive frames with a deep

learning-based algorithm. As the multispectral laparoscope needed to be retracted between the two recordings (before and

during clamping), we were not able to ensure imaging of the exact same region. Hence, the ROIs of the different sequences do

not correspond.

The tracking was performed on RGB images reconstructed from the MSI images, as detailed in Sec. 5.4. In order to enable

reliable tracking, the RGB images were first transformed to HSV (hue, saturation value) color space, then the V channel was

normalized with Contrast Limited Adaptive Histogram Equalization (CLAHE), and finally the resulting image was converted

back to RGB. The kernel size used by CLAHE was set to 1/8 of the image height by 1/8 of its width, the number of bins was

set to 256 and the clipping limit to 0.01.

The reconstructed and normalized RGB images were fed into a pre-trained VGG1970 neural network and deep features

were extracted from its seventh convolutional layer. The extracted features were further processed by the tracker Discriminative
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Correlation Filter with Channel and Spatial Reliability (CSR-DCF)71. This tracker compares the features extracted from two

consecutive frames in order to localize the ROI in the new frame.

Before using a processed video sequence (70 frames corresponding to the 2–3 s) for training or testing, the sequence of

automatically tracked ROIs was manually verified to ensure that a) the ROIs did not disappear from the camera field of view, b)

at least 95 % of all tracked pixels were not oversaturated and not undersaturated, and c) there was no visible drift of the ROI

from the original annotated tissue region. Those two ROIs fulfilling the criteria that could be tracked the longest were kept for

further processing.

Monte Carlo simulations Generation of simulated tissue spectra for pretraining the ischemia index was inspired by previous

work12. Light transport of several tissue structures was simulated with a model composed of three infinitely wide slabs. Each

slab was defined by optical and physiological parameter values of blood volume fraction vhb, blood oxygen saturation s,

reduced scattering coefficient at 500 nm amie, scattering power bmie, anisotropy g, refractive index n and layer thickness d.

Such parameters were computed based on reference values from literature72 and later used to create MC simulations. The

reference values used from literature include: extinction coefficients of deoxyhemoglobin εHb and oxyhemoglobin εHbO2,

absorption µa and scattering µs coefficients. A Graphics Processing Unit (GPU) accelerated version73 of the popular Monte

Carlo Multi-Layered (MCML) simulation framework74 was chosen to generate spectral reflectances. The ranges from which

the parameters were uniformly sampled as well as general simulation parameters are summarized in Table 3.

The simulated reflectances r(λ ) were then transformed into the MSI camera measurement rk at band k according to:

rk =

∫ λmax

λmin
T (λ ) · I(λ ) · fk(λ ) · r(λ )dλ

∫ λmax

λmin
T (λ ) · I(λ ) · fk(λ )dλ

(7)

Here, T (λ ) represents the optical transmission profile of the optical components of our hardware setup (see Fig. 7), I(λ ) is

the relative irradiance of the light source, and fk(λ ) characterizes the kth optical filter response of the camera. The transformed

simulated spectra rk were used to pre-train our DL models as described in Sec. 5.3.2.

Table 3. The simulated ranges of physiological parameters, and their usage in the simulation setup. Here vHb represents the

blood volume fraction, s the blood oxygen saturation, amie the reduced scattering coefficient at 500 nm, bmie the scattering

power, g the tissue anisotropy, n the refractive index and d the tissue thickness and ε the extinction coefficients of

oxyhemoglobin (HbO2) and deoxyhemoglobin (HbO). All parameters were uniformly sampled within the specified range.

vHb[%] s[%] amie[cm−1] bmie[a.u.] g[a.u.] n[a.u.] d[cm]

layer 1: 0–30 0–100 5–50 0.3–3 0.80–0.95 1.33–1.54 0.002–0.2

layer 2: 0–30 0–100 5–50 0.3–3 0.80–0.95 1.33–1.54 0.002–0.2

layer 3: 0–30 0–100 5–50 0.3–3 0.80–0.95 1.33–1.54 0.002–0.2

µa(vHb,s,λ ) = vHb(s · εHbO2(λ )+(1− s) · εHb(λ )) · ln(10) ·150gL−1 · (6.45×104gmol−1)−1

µs(amie,b,λ ) =
amie
1−g

( λ
500nm

)−bmie

simulation framework: GPU-MCML73, 106 photons per simulation

simulated samples: 5.5×105

sample wavelength range [λmin −λmax]: 300–1000 nm, step size 2 nm

RGB image reconstruction Reconstruction of RGB images from MSI was required for (1) automatic ROI tracking and

(2) illustration purposes. The reconstruction was achieved by computing a transformation matrix T of dimensions (3×B),
where B = 16 represents the number of bands in one MSI image. A linear regressor was fitted to compute the transformation

matrix T based on the filter response of the MSI camera, the transmission of each optical component (see Fig. 7) and the

filter response of an artificial RGB camera. The artificial RGB camera was simulated by 3 Gaussian filters centered at 460 nm,

550 nm and 640 nm, each with a standard deviation of 42 nm. In addition, the spectral response of the MSI camera was adjusted

by multiplying the transmission T of each optical component by the filter response of the MSI camera FMSI .

F
′
= FMSIT (8)
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If we consider the filter response of the artificial camera FRGB and the spectral response of the MSI camera F
′

after correcting

for the optical components integrated in the system, we can compute the transformation matrix as:

Tmin = argmin
T
′

(‖ FRGB −F
′
T

′
‖2)

T = Tmin ⊘N

(9)

where T represents the coefficients of the linear regressor, ⊘ denotes component-wise division, and N is a normalization vector

with 3 elements, which can be computed as:

Ni =
B

∑
j

(F
′
Tmin)i, j | i ∈ {1,2,3} (10)

Optical transmission profiles All optical transmission profiles shown in Fig. 7 a) were measured with a spectrometer

(HR2000+, Ocean Insight, Orlando, USA). 100 transmission measurements of each optical component were averaged and

then smoothed across wavelengths by rolling window averaging with a window of ≈ 19nm width. The values in the ranges

400–419 nm and 681–700 nm were ignored after smoothing in order to avoid unwanted border effects.

Beer-Lambert regression We used the Beer-Lambert law49 to estimate the total blood volume fraction (vHbT) and oxygena-

tion (s) within the tracked ROIs described in Sec. 5.4. This law states that a linear relationship exists between the absorption

a(λ ) of a media, its attenuation coefficient µa(λ ) and the optical path length l:

a(λ )∼− log(r(λ )) = µa(λ )l +g (11)

where g is a term accounting for scattering losses. Taking into account that blood is the main absorber in internal organs, we

can replace the attenuation coefficients by the extinction coefficients of blood

a(λ ) = vHbO2 · εHbO2(λ ) · l + vHb · εHb(λ ) · l +g, (12)

where v are concentrations and ε the corresponding extinction coefficients. Given measurements at multiple wavelengths,

equation (12) describes a system of linear equations, which can be solved for vHbO2 · l and vHb · l using ordinary least squares

regression. This enables us to estimate the oxygenation s and the total hemoglobin concentration vHbT via:

s =
vHbO2 · l

vHb · l + vHbO2 · l
(13)

vHbT · l = vHbO2 · l + vHb · l (14)

Note that estimations of vHbT can only be computed up to a constant factor l. Since all extinction coefficients are given at a high

spectral resolution, but we use a multispectral sensor with a relatively low number of bands, we adapted the high resolution

extinction coefficients by averaging them over the filter response function of each band.

Data availability

The raw in vivo data used in this manuscript is not available because it was not indicated in the patients’ signed consent.

Code availability

The source code of our core methodology cannot be open-sourced at the moment, because a patent involving this method is

under review.
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