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1 INTRODUCTION 

Background  Blunt intra-abdominal injury is a leading cause of preventable death and disability in children in the U.S.1 

Computed tomography scans (CT) are the reference standard to diagnose intra-abdominal injury. In the last 30 years, CT 

use in children has increased without proportional improvements in clinical outcomes.2 Indiscriminate use of CT is 

associated with an increased risk of radiation-induced malignancy.3 Uncertainty and the lack of evidence in emergency 

department risk-stratification strategies lead to wide variation in CT use.4 Furthermore, variability in practice increases cost 

and reduces effectiveness, efficiency, and quality of pediatric trauma care.5 The Pediatric Emergency Care Applied 

Research Network (PECARN) prospectively developed a clinical decision instrument (CDI) to identify children after blunt 

torso trauma at very low risk for intra-abdominal injury undergoing acute intervention to decrease indiscriminate CT use.6  

Importance  Emergency care requires rapid and accurate decisions across a diverse group of patients and practices. CDIs 

reduce variability for high-prevalence conditions by offering the potential for more accurate and reliable diagnostic 

strategies than clinician judgment alone.7 However, before widespread use, CDIs require external validation. External 

ABSTRACT 

Objective The Pediatric Emergency Care Applied Research Network (PECARN) has developed a clinical-

decision instrument (CDI) to identify children at very low risk of intra-abdominal injury. However, the 

CDI has not been externally validated. We sought to vet the PECARN CDI with the Predictability 

Computability Stability (PCS) data science framework, potentially increasing its chance of a successful 

external validation. 

Materials & Methods We performed a secondary analysis of two prospectively collected datasets: 

PECARN (12,044 children from 20 emergency departments) and an independent external validation 

dataset from the Pediatric Surgical Research Collaborative (PedSRC; 2,188 children from 14 emergency 

departments). We used PCS to reanalyze the original PECARN CDI along with new interpretable PCS 

CDIs we developed using the PECARN dataset. External validation was then measured on the PedSRC 

dataset. 

Results Three predictor variables (abdominal wall trauma, Glasgow Coma Scale Score <14, and abdominal 

tenderness) were found to be stable. Using only these variables, we developed a PCS CDI which had a 

lower sensitivity than the original PECARN CDI on internal PECARN validation but performed the same 

on external PedSRC validation (sensitivity 96.8% and specificity 44%). 

Conclusion The PCS data science framework vetted the PECARN CDI and its constituent predictor 

variables prior to external validation. In this case, the PECARN CDI with 7 predictors, and our PCS-based 

CDI with 3 stable predictors, had identical performance on independent external validation. This suggests 

that both CDIs will generalize well to new populations, offering a potential strategy to increase the chance 

of a successful (costly) prospective validation. 
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validation is considered a more robust test of diagnostic performance than internal validation, and is critical to 

understanding the reliability of CDIs as they are generalized to new populations.8,9 If the CDI performs poorly during 

external validation, it may be refined, reconsidered, or even abandoned.10 However, prospective external validation may be 

expensive and cumbersome. Therefore, introducing a step to assess a CDI before external validation can ensure that it is 

developed and modeled to be as predictive and stable as possible, to increase the chance of successful external validation. 

Recent progress in data science has led to innovative frameworks to assess the prediction performance and stability of 

healthcare-related diagnostic models, such as CDIs. The Predictability-Computability-Stability (PCS) framework is a 

unified approach to data science that protects against instability induced by subjective decisions made during the data 

science lifecycle.11,12 PCS has improved drug-response prediction12, gene-interaction search13, and drug subgroup discovery 

in clinical trials14; these case-studies suggest that PCS may improve the CDI development and validation process before 

further investment into external validation. In addition to predictability as a reality check, two critical aspects of PCS are 

interpretability and stability analysis. To undergo PCS vetting, a CDI must be developed using interpretable methods, 

ensuring reproducibility.15 Stability measures how much a CDI varies as choices made during the data science life cycle 

(including data cleaning and modeling), such as reasonable data alterations or different modeling techniques.16 Here, 

multiple CDIs are developed by subsampling the original PECARN dataset. First, they are screened based on their test 

characteristics (predictability) and interpretability before assessing the variability of the importances of different predictor 

variables across high-performing CDIs (variable-level stability). 

Goals of This Investigation  The main objective of this study was to demonstrate the use of the PCS data science 

framework in vetting clinical decision instrument development (methods in Section 2.1 and results in Section 3.1). The 

secondary objective was to assess and externally validate the original PECARN clinical decision instrument for identifying 

children at very low risk of intra-abdominal injuries undergoing acute intervention after blunt torso trauma (methods in 

Section 2.2 and results in Section 3.2). Section 4 provides a discussion before Section 5 provides a conclusion. 

2. METHODS 

We analyzed two independent prospectively collected datasets from two large pediatric research networks, PECARN and 

the Pediatric Surgical Research Collaborative (PedSRC). This secondary analysis of anonymized data was deemed exempt 

from review by the University of California, San Francisco, and Medical University of South Carolina institutional review 

boards. There were two objectives of this study. The first (Section 2.1) was to demonstrate the PCS framework for 

improving CDI development. The second (Section 2.2) was to assess prediction performance and stability of the original 

PECARN CDI on external validation.  

2.1 Objective 1: Demonstrate Predictability-Computability-Stability (PCS) Data Science 

Framework for Improving CDI Development 

We followed the PCS framework, which goes beyond traditional reporting guidelines to assess the impact of reasonable 

human judgment calls by conducting reasonable data/model perturbations across the entire data science lifecycle.7,16 PCS 

offers a framework to assess a CDI for diagnostic performance based on predictive performance (i.e. sensitivity and 

specificity) and computational needs, putting weight on stability. During the development of a CDI, investigators make 
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many “judgment calls”, i.e. subjective decisions which may lead to variability in the final developed CDI. PCS 

recommends that investigators ensure that study conclusions are stable to any such judgment calls. These judgment calls 

can be checked by measuring the stability of conclusions when alternative “reasonable” judgment calls are made. 

Reasonable judgment calls are those solicited through direct engagement between clinicians and data scientists (see the 

Discussion section for a more detailed look at PCS in the context of CDIs). 

In this study, the PCS framework was applied to CDI development (Figure A1), including all CDI development and 

validation stages (it could also be applied to the data cleaning stage, but was not done here). First, the PCS framework (1) 

defines the clinical problem, then reviews all aspects of (2) collecting and preprocessing data, and (3) develops CDIs using 

interpretable and rule-based models. Next, these CDIs are vetted for their (4) predictive performance (predictability) and 

the importance of predictor variables. Last, PCS (5) supports the interpretation of results by identifying variability in all the 

PCS steps (stability), ensuring CDIs are developed to be supported by both data and domain knowledge (provider input). In 

addition, PCS guided all aspects of data documentation and analysis; code is available on Github 

(https://github.com/csinva/iai-clinical-decision-rule).10 

Development and Validation Dataset  The PECARN dataset is a prospective cohort of 12,044 children after blunt torso 

trauma between May 2007 and January 2010 in 20 emergency departments.6 Predictor variables were collected 

prospectively using a standard data collection tool. We used the PECARN definition for the a priori outcome of interest of 

intra-abdominal injury undergoing acute intervention.6  

Following the original PECARN methods, we excluded any variable that was missing more than 5%, and used predictor 

variables with at least moderate inter-rater agreement, with the lower bound of the 95% confidence interval (CI) of the k 

measurements being at least 0.4.17 Missing values for a predictor variable were imputed via its median, and we manually 

combined predictors that conveyed redundant information based on their correlations (Figure A2). 

Original PECARN CDI Development. Redevelopment of the PECARN CDI ensures the replicability of the original trial. 

We followed the original PECARN development and internal cross-validation process to redevelop the PECARN CDI to 

identify children at very low risk for intra-abdominal injuries undergoing acute intervention.6 We used a Classification and 

Regression Trees (CART) rule list,18 which involves binary recursive partitioning using the Gini criterion.19 

PCS CDI Development. We developed several alternative CDIs (corresponding to different judgment calls during 

modeling) to compare the predictive performance and perform stability analysis of the PECARN CDI. The following 

models were used to develop CDIs: logistic regression, CART decision trees, rule lists,18 Bayesian Rule Lists,20 iterative 

Random Forests,13 RuleFit21, Optimal sparse decision trees22, Fast interpretable greedy-tree sums23 and manual subgroup 

analysis. Each rule-based predictive model was chosen for its interpretability, taking the form of either a parsimonious list, 

tree, or set of binary rules. We used a stratified splitting technique to divide the PECARN dataset into a development set 

(i.e. a training set), 7,985 children (66%), and a validation set, 4,059 children (34%). Predictive models were fit using the 

imodels python package24 (version 0.2.5). Hyperparameters were selected via manual tuning using only the development 

dataset. 
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CDI Predictive Performance. We calculated standard diagnostic statistics to report CDI performance. We used sensitivity 

and specificity curves to compare the diagnostic test characteristics of each CDI in the PECARN development and internal 

validation datasets.  Furthermore, many more test characteristics were reported for each CDI, including their positive 

predictive value and Brier score (which helps evaluate the calibration of a CDI).25 The CDIs were ranked heuristically from 

the sensitivity-specificity curves by weighting (threshold-dependent) sensitivity five times more than specificity. CDIs with 

poor predictive performance (i.e., achieving a sensitivity below 90%) were eliminated before further analysis. 

CDI Stability. We assessed CDI stability by performing side-by-side comparisons of the PECARN CDI and alternative 

CDIs. To assess predictor-variable stability, we report the frequency and non-zero permutation-importance score of each 

predictor variable for each CDI.26 The permutation importance measures the effect a predictor variable has on the overall 

prediction model’s error. If a predictor variable is important, permuting or shuffling the value increases the model’s error. 

The predictor variables with high permutation importance, especially across many different CDIs have greater stability. 

We also compared the variability of diagnostic test characteristics between the PECARN development and internal 

validation datasets to assess the generalization of the model (i.e. stability of the predictive performance). Large changes in 

test characteristics suggest that the model is unstable in generalizing to new data. Moreover, a CDI can be unstable even 

when being re-developed to the same data. This is because many models contain some randomness in fitting, which can 

produce a different result when a model is re-developed. Therefore, we also measure randomness when each model is re-

developed as a marker of stability. Prediction models were then ranked based on predictive performance (sensitivity and 

specificity), and then on variable-level stability.  

2.2 Objective 2: Predictability and Stability of the Original PECARN CDI on External 

Validation  

External Validation Dataset  The PedSRC dataset is based on a prospective cohort of 2,188 children with blunt trauma at 

14 non-PECARN Level I pediatric trauma centers.27 Predictor variables were collected prospectively using a standard data 

collection tool. The PedSRC study defined intra-abdominal injury as any injury to an intra-abdominal structure identified 

on abdominal CT or at laparotomy. We matched the a priori PedSRC outcome of intra-abdominal injury undergoing 

intervention to the PECARN outcome.  

We matched predictor and outcome variables between the datasets through distribution assessment and expert review. To 

ensure consistent matching, all variable linkages between datasets were reviewed by domain experts, including PECARN 

and PedSRC study principal investigators, to ensure biologic plausibility and ensure original data definition was congruent 

between the respective datasets. Variables with subjectivity were further screened, original documentation reviewed, and 

expert authorship team consensus was used to match variables. The same missing data strategy was used on the PedSRC 

and PECARN datasets. 

PCS External Validation. To externally validate each CDI, we calculated threshold-bound and threshold-free standard 

diagnostic statistics. We calculated sensitivity, specificity, negative and positive predictive values, positive and negative 

likelihood ratios. We also included false positives, false negatives, accuracy, and F1 score. The F1 score, an accuracy 

indicator, emphasizes the clinical relevance of sensitivity over specificity and ranges from 1 (best value) to 0 (worst value). 
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We used sensitivity-specificity curves to compare the test characteristics of each candidate CDI on the external test dataset. 

We ranked predictor variable importance by assessing each variable’s redundancy and weighted predictive power on the 

external validation dataset. Finally, we assessed overall CDI performance by evaluating the diagnostics test characteristics 

and variable importance.  

We considered clinical context, predictive performance, computational speed, and stability to assign each CDI a rank. To 

compare the PCS framework to external validation, we first ranked predictive performance and stability. As the goal of the 

CDI is to limit unnecessary CT use in children after blunt torso trauma, we set a comparison threshold for predictive 

performance as a sensitivity five times more than specificity with a lower bound sensitivity of at least 95%. We calculated 

standard diagnostic statistics to report CDI performance, including sensitivity, specificity, negative and positive predictive 

values, positive, negative likelihood ratios, false positives, false negatives, accuracy, and F1 score. We also ranked 

predictor variable importance by assessing each variable’s redundancy and weighted predictive power on the external 

validation dataset. Similarly, we measured overall stability as the proportion of the CDI’s predictive performance assigned 

to predictor variables with the highest and lowest variable-level stability. 

3 RESULTS 

3.1 Results for Objective 1: Demonstrating the PCS Framework in CDI Development 

Characteristics of Study Patients. The PECARN dataset included 12,044 children (Table 1). In PECARN, the mean (SD) 

age was 10.3 (5.4) years (1,167 patients <2 years), ranging from 0 to 18 years. The PedSRC external validation dataset 

included 2,188 children. The mean (SD) age was 7.8 (4.6) years (216 patients <2 years), ranging from 0 to 15 years. The 

PedSRC had a higher prevalence of motor vehicle collisions, compared to the PECARN development and validation 

datasets, 46.3% vs. 31.8% and 31.4%, and children with intra-abdominal injuries undergoing acute intervention, 2.8% vs. 

1.7% and 1.7%, respectively (Table 1). 

Table 1. Patient demographics and outcomes of the PECARN dataset split into development and validation (80:20), and the 

PedSRC external validation dataset. 

 

PECARN PedSRC 

Total 
(N=12,044) 

Development 
(n=7,985) 

Internal Validation 
(n=4,059) 

External 
Validation 
(N=2,188) 

Age <2 years (%) 1167 (9.7%) 761 (9.5%) 406 (10%) 216 (9.9%) 

Sex Male (%) 7384 (61.3%) 4887 (61.2%) 2497 (61.5%) N/A  

MVC (%) 3832 (31.8%) 2505 (31.4%) 1327 (32.7%) 1014 (46.3%) 

CT scan (%) 5,179 (43.0%) 3,393 (42.5%) 1,786 (44.0%) 967 (44.2%) 

IAI (%) 761 (6.3%) 485 (6.1%) 276 (6.8%) 261 (11.9%) 

IAI-I (%) 203 (1.7%) 133 (1.7%) 70 (1.7%) 62 (2.8%) 
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PECARN: Pediatric Emergency Care Applied Research Network; PedSRC: Pediatric Surgery Research Collaborat
MVC: motor vehicle collision; CT scan: computed tomography; IAI: intra-abdominal injury; IAI-I: intra-abdominal inj
undergoing acute intervention 
 

Clinical Decision Instrument Development. We replicated the original PECARN CDI development using the PECA

dataset and redeveloped the identical seven ordered decision predictor variables in the PECARN rule list.  The poten

alternative CDIs, including Bayesian rule lists, CART Decision Trees, CART Rule Lists, Iterative Random Forests, 

Rulefit are in Figures A3-7. The randomness for all re-developed models had no effect on any of the final C

performances. 

Clinical Decision Instrument Internal Validation. Each CDI had a decline in performance between the development 

internal validation PECARN datasets (Figure 1); however, the magnitude of the performance drop differed betw

different CDIs. The greater the magnitude in reduction suggests a less stable model. For example, the Iterative Rand

Forest CDI (red) and CART decision tree (orange) had the largest decline in performance between the development 

validation datasets, suggesting that the prediction model was overfitting to the development dataset. In contrast, a fi

Bayesian rule list (blue), CART rule list (green), and Rule fit (purple) all retained similar predictive accuracy betw

development and validation. Table 2 summarizes the results of threshold-specific weights in which the sensitivity

weighted five times more heavily as specificity. 

Figure 1. Sensitivity-specificity curves for clinical decision instruments to evaluate children after blunt torso trauma on
PECARN (a) development dataset (b) internal validation dataset, and (c) external validation on the PedSRC. The clin
decision instruments were then ranked by predictability from best to worst (top to bottom). 
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Table 2. Predictive performance of the clinical decision instruments with sensitivity weighted five times more heavily as 
specificity. (a) PECARN Development dataset, (b) PECARN Internal Validation Dataset, (c) PedSRC External Validation 
Dataset. 

 

(a) PECARN Development 
Dataset PECARN Bayesian Rule 

List 
CART Decision 

Tree 
CART 

Rule List 
Iterative Random 

Forest 
Rule 
Fit 

Sensitivity 98% 89% 95% 94% 98% 95% 

Specificity 43% 59% 58% 29% 70% 47% 

Negative predictive value 99.9% 100% 100% 100% 100% 100% 

Positive predictive value 2.8% 4% 4% 2% 5% 3% 

Negative likelihood ratio 0.035 0.19 0.09 0.21 0.02 0.1 

Positive likelihood ratio 1.74 2.18 2.26 1.33 3.33 1.80 

F1 score 0.056 0.07 0.07 0.04 0.10 0.06 

Brier score 0.016 0.02 0.58 0.02 0.01 0.08 

(b) PECARN Internal 
Validation Dataset PECARN Bayesian 

Rule List 
CART Decision 

Tree 
CART Rule 

List 
Iterative Random 

Forest 
Rule 
Fit 

Sensitivity 94% 90% 84% 91% 71% 97% 

Specificity 41% 58% 56% 28% 68% 33% 

Negative predictive value 99.8% 100% 100% 99% 99% 100% 

Positive predictive value 2.7% 4% 3% 2% 4% 2% 

Negative likelihood ratio 0.14  0.17 0.28 0.31 0.42 0.09 

Positive likelihood ratio 1.60 2.13 1.93 1.26 2.24 1.45 

F1 score 0.053 0.07 0.06 0.04 0.07 0.04 

Brier score 0.016 0.02 0.59 0.02 0.02 0.08 

(c) PedSRC External 
Validation Dataset PECARN Bayesian 

Rule List 
CART 

Decision Tree 
CART 

Rule List 
Iterative Random 

Forest 
Rule 
Fit 

Sensitivity 96.8% 95% 94% 90% 81% 97% 

Specificity 44.0% 60% 60% 39% 63% 55% 

Negative predictive value 99.8% 100% 100% 99% 99% 100% 

Positive predictive value 4.8% 7% 6% 4% 6% 6% 

Negative likelihood ratio 0.073 0.08 0.11 0.25 0.30 0.06 

Positive likelihood ratio 1.73 2.39 2.33 1.47 2.21 2.13 

F1 score 0.091 0.12 0.12 0.07 0.11 0.11 

Brier score 0.026 0.03 0.56 0.03 0.03 0.09 
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Predictability The original PECARN, Rule Fit, and Bayesian Rule List had minimal changes in performance between 

development and internal validation datasets, suggesting relatively high predictability for these CDIs (Figure 1b).

contrast, CART Rule List, CART Decision Tree, and Iterative Random Forest had greater proportional declines

performance, suggesting lower predictability when heterogeneity in datasets was introduced.  

Predictor-variable stability  The most stable predictor variables were abdominal trauma/seat belt sign, Glasgow Co

Scale Score < 14, and abdominal tenderness. These three variables were the most frequent recurring predictor variab

between CDIs. These three variables also had the highest non-zero permutation scores between the different CDIs (Fig

A8).  Therefore, it was recognized that the top three performing predictor variables were selected in the PECARN CDI 

the four top-performing CDIs.  

Computability Computability assesses the computational needs (e.g., hardware and demand for specialized equipment

the project to understand the efficiency and feasibility of repeating the task. We evaluated the computational needs for C

development and validation by timing each epoch and run time. In this case, all modeling and data analysis was perform

on a standard laptop computer: CDI development took less than 10 minutes and validation less than 1 second. 

3.2. Results for Objective 2: External Validation of Original PECARN Clinical Decision 

Instrument 

Figure 2. Matched demographic and predictor variables from PECARN and PedSRC datasets visually represented for
overall distributions. 

 

*GCS: Glasgow Coma Scale score; bpm: beats per minute; ATV: all-terrain vehicle; PECARN: Pediatric Emergency C
Applied Research Network; PedSRC: Pediatric Surgical Research Collaboration 
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Distributions and Variable Matching for the external validation dataset. Predictor and outcome variables between the 

PECARN and PedSRC datasets were matched and evaluated for variable-level distributions (Figure 2). Most variables had 

direct matches between datasets (Table A1-3). Predictor variables were assessed for redundancy and independent 

associations (Figure A2). The distribution of variables was well-matched except for the PECARN dataset inclusion of 

patients 15-17 years, and the lower frequency of children presenting after motor vehicle collisions (MVC) (Figure 2).   

External validation predictive performance. The original PECARN CDI successfully identified all but six children with 

intra-abdominal injuries undergoing acute interventions (sensitivity 97%, specificity 42.5%) on the PECARN dataset 

(Table 2b). On external validation using the PedSRC dataset, the original PECARN CDI maintained high prediction 

performance with an external validation sensitivity of 97.0% and specificity 44.0% (Table 2c). However, the original 

PECARN CDI missed two children with intra-abdominal injuries undergoing acute interventions; the clinical 

characteristics of these two children are presented in Table A4. 

The top-performing three predictor variables of the PECARN CDI identified 60/62 patients with intra-abdominal injuries 

undergoing acute interventions in the PedSRC dataset, corresponding to 100% of the CDI’s predictive power (blue box, 

Figure 3). The remaining four predictor variables (red box, Figure 3) did not add to the predictive performance of the 

PECARN CDI on the PedSRC dataset. The Brier score was 0.026, suggesting the predicted risk is well-calibrated when 

using the original PECARN CDI. The same three predictor variables also captured the majority of the predictive power in 

the original PECARN validation, identifying 186 of 201 outcomes. The additional four predictor variables substantially 

reduce the CDI’s specificity. However, without these variables, the CDI misses 11 IAI-I patients in the PECARN dataset, 

resulting in an unacceptably low sensitivity. 
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Figure 3. Prediction tree for the original PECARN clinical decision instrument on (a) PECARN internal validation data
and (b) PedSRC external validation dataset. The blue box shows that the top three predictor variables retained all 
predictive power for the clinical decision instrument on external validation. The red box shows the predictor variab
without prediction power on external validation. From the top of the rule to the bottom, risks for the identified subgro
monotonically decrease, although risks are systematically higher on the PedSRC data. 

 

3.3: Tying together Objective 1 and Objective 2: Comparing PCS Framework Predictions to 
External Validation of Clinical Decision Instruments 

The ranked overall performance of the CDI on external validation matched that of the PCS framework prediction ranking
(Figure 1c). This suggests that the results obtained from the PCS framework yielded useful information about the CDI’s 
external validation performance, prior to collecting or analyzing the external validation dataset. In addition, the predictiv
performance was similar between internal validation and external validation (using the PedSRC dataset). However, most
CDIs slightly improved their performances, suggesting that the CDIs are not overfitting to the PECARN dataset (Table 2
The original PECARN CDI, Bayesian rule list, and Rule Fit had similar performances as in the PECARN datasets. In 
contrast, Iterative Random Forest, CART decision tree, and CART rule list had large declines in predictive performance 
(Figure 1c).  

4. DISCUSSION 

In the discussion, first we seek to describe PCS in the context of CDI development and vetting focusing on three key top

predictability, stability, and interpretability. Next, we exemplify these three topics and their implications for the PECA

CDI. 
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4.1 Contextualizing PCS in the context of CDI development 

Predictability The predictive performance of a CDI serves as the benchmark in the clinical literature. The concept of 

diagnostic test characteristics, such as sensitivity and specificity, are well-described and clinically used metrics for 

predictability. For example, previous literature has found that the PECARN CDI has a higher sensitivity than clinical 

judgment alone.17 This study sought to evaluate the predictability of a CDI using threshold-dependent discriminative 

metrics (i.e., sensitivity) and threshold-free metrics (i.e. sensitivity-specificity curves). We found that the PECARN, 

Bayesian, and Rule Fit CDIs were the most predictable on external validation (PedSRC). However, CDIs used in clinical 

practice are designed to make predictions on varying populations, over time, and within differing conditions. Therefore, 

before using a CDI in clinical practice, investigators should validate how well a CDI will perform under varying conditions. 

Stability Stability should be checked for all aspects of the data science lifecycle. Here, we largely focus on predictor-level 

stability, estimating how the feature importance of each predictor variable changes as a result of different judgment calls 

made during modeling. We also examine the stability of both the predictive performance and individual predictors to 

different calls made during data preprocessing. For example, we tried using GCS as a continuous predictor variable 

compared to different binary thresholds. The effect of this and many other judgment calls were found to be minimal and are 

omitted here (but can be found on our github). 

Interpretability Interpretability enables the integration of domain expertise for the development and implementation of a 

CDI.28–30 In contrast, black-box machine-learning models lack interpretability and may fail for unknown reasons when 

externally validated.31 Post-hoc interpretations, such as permutation importance used here, can offer some interpretability32–

35, but are not a substitute for developing an interpretable model.15,23,24,36 Therefore, we only consider parsimonious rule-

based models. Each CDI is represented as a straightforward set or list of logical rules (IF:THEN statements), which can 

then be visualized. We restrict each model to a reasonable number of logical steps (fewer than 10), so each CDI can be 

assessed in real-time. We additionally fit logistic regression and optimal decision tree models, but found that they had poor; 

we find that fast interpretable greedy-tree sums learn precisely the same rules as CART so we omit this model here. PCS 

offers clear documentation guidelines to ensure the process is replicable, reproducible, and interpretable.11 

As stated, black-box machine-learning models lack interpretability and may fail for unknown reasons when tested on new 

populations.29 Examples of such complex models are neural networks, random forests, and support vector machines. 

However, even seemingly simple models such as logistic regression or decision trees can become uninterpretable if they are 

large enough and have too many steps.15 Pennell (2020) utilized such models to re-evaluate the PECARN dataset.37 The 

authors concluded that they had developed and validated a novel risk model using modern machine learning techniques. 

However, these complex machine-learning models lack the interpretability to integrate judgment, thus not allowing review 

nor the recognition of bias, which may build mistrust in the user.30 Therefore, we use interpretable models with visual 

representation to allow stability analysis and ensure the integration of clinical judgment within the CDI.28  

4.2 Implications for the PECARN CDI  
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As the second aim of this paper, we assessed the prediction performance and the stability of the original PECARN CDI for 

identifying children at very low risk of intra-abdominal injuries undergoing acute intervention after blunt torso trauma on 

external validation. Clinically, there is no standard, generalizable, validated strategy to identify children after blunt torso 

trauma in whom CT scans can safely be avoided. Instead, providers use ad hoc strategies that are inaccurate, and may fail to 

identify life-threatening injuries, leading to over-reliance on diagnostic imaging.38–41 In 2013, PECARN sought to address 

the variability in accuracy and consistency by prospectively developing a CDI for children after blunt torso trauma.6  

We used two uniquely matched prospectively collected but independent datasets to assess the CDI predictions and stability 

on external validation. Through this process, we reexamined the original PECARN findings using alternative reasonable 

statistical models and found the original PECARN CDI to be high performing. The PECARN CDI was highly predictive 

across the development, internal validation, and external validation datasets. Therefore, PECARN has strong predictive 

performance, which measures how well a CDI predicts in heterogeneous cohorts. We also found that three predictor 

variables made up the entirety of the predictive power on external validation: abdominal wall trauma, Glasgow Coma Scale 

Score <14, and abdominal tenderness. This is not surprising, as these three variables were also the most stable based on the 

PCS framework and made up the majority of the predictive power on the PECARN dataset (identifying 94.4% of the 

correctly predicted IAI-I patients). 

Through the PCS framework, we found that the predictability, and stability of the original PECARN CDI warrants further 

investment and investigation, including prospective external validation. In contrast, if we found that the model or predictor 

variables were unstable in the original study, we would recommend against further validation. Our study can serve as an 

example for how investigators may evaluate the predictability and stability of a CDI for inherent weakness, prior to 

investing in a prospective external validation.  

We found that if PCS could be successfully integrated as a novel step into prediction and diagnostic model development 

before external validation, there is a potential to streamline and evaluate CDIs to improve performance or expose 

weaknesses and avoid further investment in CDIs with poor stability. This is important because many CDIs have reduced 

accuracy during external validation.42 Introducing a PCS step between CDI development and external validation, or using 

PCS directly for CDI development before external validation, will allow researchers, funders, and clinicians to understand 

better how CDIs may perform on future populations before external validation, impact analysis, or implementation into 

clinical practice. However, PCS is not able to replace external validation. 

There are limitations to this study. First, we sought to develop high performing but interpretable CDIs. Therefore, we chose 

only rule-based models, including simple regression-based and complex machine learning models with interpretable visual 

outputs. The inclusion of less interpretable models may have improved diagnostic accuracy but interfered with conducting 

stability analysis, introducing domain expertise, and more easily recognizing bias. Second, the PECARN and PedSRC 

datasets were collected from different research groups. There is a potential for partial verification bias on external 

validation because the PedSRC dataset was not based on consecutive patient enrollment, and follow-up was limited to 

medical record review. Third, three predictor variables did not match between datasets. Two variables could not be matched 

because they were present in only one of the datasets: gender (PECARN only) and femur fracture (PedSRC only). The third 
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predictor variable was distracting injury (prospectively collected in PECARN but retrospectively aggregated in PedSRC). 

Given the limitations of this study, we believe prospective external validation is required before implementing the CDI. 

5. CONCLUSION 

In conclusion, the PCS data science framework helped vet CDI predictive performance and stability before external 

validation. The PCS framework offers a computational and less resource-intensive method than external validation. Even 

though it does not replace prospective external validation, PCS offers a method to vet for unstable CDIs to avoid further 

investment. We found that the predictive performance and stability of the PECARN CDI warranted further investigation. 

We used the external PSRC dataset to carry out this investigation, validating the PECARN CDI and a similar but simpler 

PCS-driven CDI. 

CONFLICT OF INTERESTS  

None. 

 

FUNDING 

This work was supported in part from NSF TRIPODS Grant 1740855, DMS-1613002, 1953191, 2015341, IIS 1741340, 

ONR grant N00014-17-1-2176. Moreover, this work is supported in part by the Center for Science of Information (CSoI), 

an NSF Science and Technology Center, under grant agreement CCF-0939370. This project was supported in part by the 

National Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI Grant Number 

UL1 TR001872. 

REFERENCES 
1.  Kenefake ME, Swarm M, Walthall J. Nuances in pediatric trauma. Emerg Med Clin North Am. 2013;31(3):627-652. 

doi:10.1016/j.emc.2013.04.004 

2.  Meltzer JA, Stone ME Jr, Reddy SH, Silver EJ. Association of Whole-Body Computed Tomography With Mortality 
Risk in Children With Blunt Trauma. JAMA Pediatr. 2018;172(6):542-549. doi:10.1001/jamapediatrics.2018.0109 

3.  Miglioretti DL, Johnson E, Williams A, et al. The use of computed tomography in pediatrics and the associated 
radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;167(8):700-707. 
doi:10.1001/jamapediatrics.2013.311 

4.  Marin JR, Wang L, Winger DG, Mannix RC. Variation in Computed Tomography Imaging for Pediatric Injury-
Related Emergency Visits. J Pediatr. 2015;167(4):897-904 e3. doi:10.1016/j.jpeds.2015.06.052 

5.  Vogel AM, Zhang J, Mauldin PD, et al. Variability in the evalution of pediatric blunt abdominal trauma. Pediatr 
Surg Int. 2019;35(4):479-485. doi:10.1007/s00383-018-4417-z 

6.  Holmes JF, Lillis K, Monroe D, et al. Identifying children at very low risk of clinically important blunt abdominal 
injuries. Ann Emerg Med. 2013;62(2):107-116.e2. doi:10.1016/j.annemergmed.2012.11.009 

7.  Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for 
individual prognosis or diagnosis (TRIPOD): The tripod statement. J Clin Epidemiol. 2015;68(2):112-121. 
doi:10.1016/j.jclinepi.2014.11.010 

8.  Riley RD, Ensor J, Snell KIE, et al. External validation of clinical prediction models using big datasets from e-health 
records or IPD meta-analysis: opportunities and challenges. BMJ. 2016;353:i3140. doi:10.1136/bmj.i3140 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.08.22270944doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22270944
http://creativecommons.org/licenses/by-nc-nd/4.0/


9.  Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 
1999;130(6):515-524. doi:10.7326/0003-4819-130-6-199903160-00016 

10.  Green SM, Schriger DL, Yealy DM. Methodologic standards for interpreting clinical decision rules in emergency 
medicine: 2014 update. Ann Emerg Med. 2014;64(3):286-291. doi:10.1016/j.annemergmed.2014.01.016 

11.  Yu B, Kumbier K. Veridical data science. Proc Natl Acad Sci U S A. 2020;117(8):3920-3929. 
doi:10.1073/pnas.1901326117 

12.  Li X, Tang TM, Wang X, Kocher JPA, Yu B. A stability-driven protocol for drug response interpretable prediction 
(staDRIP). ArXiv201106593 Q-Bio Stat. Published online November 16, 2020. Accessed May 11, 2021. 
http://arxiv.org/abs/2011.06593 

13.  Basu S, Kumbier K, Brown JB, Yu B. Iterative random forests to discover predictive and stable high-order 
interactions. Proc Natl Acad Sci. 2018;115(8):1943-1948. doi:10.1073/pnas.1711236115 

14.  Dwivedi R, Tan YS, Park B, et al. Stable Discovery of Interpretable Subgroups via Calibration in Causal Studies. Int 
Stat Rev. 2020;88(S1):S135-S178. doi:10.1111/insr.12427 

15.  Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models 
instead. Nat Mach Intell. 2019;1(5):206-215. doi:10.1038/s42256-019-0048-x 

16.  Yu B. Three principles of data science: predictability, computability, and stability (PCS). In: 2018 IEEE 
International Conference on Big Data (Big Data). ; 2018:4-4. doi:10.1109/BigData.2018.8622080 

17.  Yen K, Kuppermann N, Lillis K, et al. Interobserver agreement in the clinical assessment of children with blunt 
abdominal trauma. Acad Emerg Med. 2013;20(5):426-432. doi:10.1111/acem.12132 

18.  Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Wadsworth and Brooks; 1984. 

19.  Stiell IG, Wells GA. Methodologic standards for the development of clinical decision rules in emergency medicine. 
Ann Emerg Med. 1999;33(4):437-447. doi:10.1016/s0196-0644(99)70309-4 

20.  Letham B, Rudin C, McCormick TH, Madigan D. Interpretable classifiers using rules and Bayesian analysis: 
Building a better stroke prediction mode. Ann Appl Stat. 2015;9(3):1350-1371. 

21.  Friedman JH, Popescu BE. Predictive Learning Via Rule Ensembles. Ann Appl Stat. 2008;2(3):916-954. 

22.  Lin J, Zhong C, Hu D, Rudin C, Seltzer M. Generalized and Scalable Optimal Sparse Decision Trees. :11. 

23.  Tan YS, Singh C, Nasseri K, Agarwal A, Yu B. Fast Interpretable Greedy-Tree Sums (FIGS). ArXiv220111931 Cs 
Stat. Published online January 27, 2022. Accessed February 10, 2022. http://arxiv.org/abs/2201.11931 

24.  Singh C, Nasseri K, Tan Y, Tang T, Yu B. imodels: a python package for fitting interpretable models. J Open Source 
Softw. 2021;6(61):3192. doi:10.21105/joss.03192 

25.  Rufibach K. Use of Brier score to assess binary predictions. J Clin Epidemiol. 2010;63(8):938-939. 
doi:10.1016/j.jclinepi.2009.11.009 

26.  Breiman L. Random Forests. Mach Learn. 2001;45(1):5-32. doi:10.1023/A:1010933404324 

27.  Streck CJ, Vogel AM, Zhang J, et al. Identifying Children at Very Low Risk for Blunt Intra-Abdominal Injury in 
Whom CT of the Abdomen Can Be Avoided Safely. In: Vol 224. ; 2017:449-458.e3. 
doi:10.1016/j.jamcollsurg.2016.12.041 

28.  Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make 
decisions. Ann Intern Med. 2006;144(3):201-209. doi:10.7326/0003-4819-144-3-200602070-00009 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.08.22270944doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22270944
http://creativecommons.org/licenses/by-nc-nd/4.0/


29.  Norgeot B, Quer G, Beaulieu-Jones BK, et al. Minimum information about clinical artificial intelligence modeling: 
the MI-CLAIM checklist. Nat Med. 2020;26(9):1320-1324. doi:10.1038/s41591-020-1041-y 

30.  Zorc JJ, Chamberlain JM, Bajaj L. Machine Learning at the Clinical Bedside-The Ghost in the Machine. JAMA 
Pediatr. 2019;162(1):W1-W73. doi:10.1001/jamapediatrics.2019.1075 

31.  Zihni E, Madai VI, Livne M, et al. Opening the black box of artificial intelligence for clinical decision support: A 
study predicting stroke outcome. PLoS ONE. 2020;15(4):1-15. doi:10.1371/journal.pone.0231166 

32.  Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. :10. 

33.  Devlin S, Singh C, Murdoch WJ, Yu B. Disentangled Attribution Curves for Interpreting Random Forests and 
Boosted Trees. ArXiv190507631 Cs Stat. Published online May 18, 2019. Accessed February 10, 2022. 
http://arxiv.org/abs/1905.07631 

34.  Agarwal A, Tan YS, Ronen O, Singh C, Yu B. Hierarchical Shrinkage: improving the accuracy and interpretability of 
tree-based methods. ArXiv220200858 Cs Stat. Published online February 1, 2022. Accessed February 10, 2022. 
http://arxiv.org/abs/2202.00858 

35.  Singh C, Murdoch WJ, Yu B. Hierarchical Interpretations for Neural Network Predictions. Int Conf Learn Represent. 
Published online 2019:26. 

36.  Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Definitions, methods, and applications in interpretable 
machine learning. Proc Natl Acad Sci U S A. 2019;116(44):22071-22080. doi:10.1073/pnas.1900654116 

37.  Pennell C, Polet C, Arthur LG, Grewal H, Aronoff S. Risk assessment for intraabdominal injury following blunt 
trauma in children. J Trauma Acute Care Surg. 2020;Publish Ah. doi:10.1097/ta.0000000000002717 

38.  Holmes JF, Sokolove PE, Brant WE, et al. Identification of children with intra-abdominal injuries after blunt trauma. 
Ann Emerg Med. 2002;39(5):500-509. doi:10.1067/mem.2002.122900 

39.  Capraro AJ, Mooney D, Waltzman ML. The use of routine laboratory studies as screening tools in pediatric 
abdominal trauma. Pediatr Emerg Care. 2006;22(7):480-484. doi:10.1097/01.pec.0000227381.61390.d7 

40.  Mahajan P, Kuppermann N, Tunik M, et al. Comparison of Clinician Suspicion Versus a Clinical Prediction Rule in 
Identifying Children at Risk for Intra-abdominal Injuries after Blunt Torso Trauma. Acad Emerg Med. 
2015;22(9):1034-1041. doi:10.1111/acem.12739 

41.  Keller MS, Coln CE, Trimble JA, Green MC, Weber TR. The utility of routine trauma laboratories in pediatric 
trauma resuscitations. Am J Surg. 2004;188(6):671-678. doi:10.1016/j.amjsurg.2004.08.056 

42.  Toll DB, Janssen KJM, Vergouwe Y, Moons KGM. Validation, updating and impact of clinical prediction rules: A 
review. J Clin Epidemiol. 2008;61(11):1085-1094. doi:10.1016/j.jclinepi.2008.04.008 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.08.22270944doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.08.22270944
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

APPENDIX 

 

Table A1.  Predictor variables with 1:1 match between the two study datasets, PECARN and 

PedSRC. 

 Predictor variable PECARN variable PedSRC variable 

History 
Race 'Race' 'Race' 

Vomiting* 'VomitWretch' 'Emesis post injury' 

Vitals 

Heart rate 'InitHeartRate' 'Initial ED HR' 

Blood pressure 'InitSysBPRange' 'Initial ED systolic BP' 

Hypotension 'Hypotension' 'Hypotension' 

Exam 

Thoracic wall trauma* 'ThoracicTrauma' 
'Evidence of thoracic trauma 

(choice=None)' 

Thoracic wall tenderness 'ThoracicTender' 
'Lower chest wall/costal margin 

tenderness to palpation (choice=None)' 

Decreased breath sounds* 'DecrBreathSound' 
'Evidence of thoracic trauma 

(choice=Decreased breath sounds)' 

Abdominal wall trauma* 'AbdTrauma' 'Evidence of abdominal wall trauma' 

Seat belt sign* 'SeatBeltSign' 'Seatbelt sign' 

Abdominal distention 'AbdDistention' 'Abdominal distension' 

Costal margin tenderness 'CostalTender' 
'Lower chest wall/costal margin 

tenderness to palpation' 

Predictor variables that match exactly. * Included in PECARN clinical decision instrument
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Table A2. Predictor variables that were mapped between the two study datasets, PECARN and PedSRC. 

 Feature PECARN Values (PECARN)  Values (PedSRC) PedSRC  Notes 

History 

Mechanism of 
injury 

'RecodedMOI' 

Mechanism of injury (choice=Assault/struck) 
Mechanism of injury (choice=Other blunt mechanism) 

↔ Object struck abdomen 

'Mechanism of 
injury' 

 

Mechanism of injury (choice=MVC) ↔ Motor vehicle collision 

Mechanism of injury (choice=Motorcycle/dirt bike 
crash) 

Mechanism of injury (choice=ATV injury) 
Mechanism of injury (choice=Golf cart injury) 

↔ Motorcycle/ATV/Scooter collision 

Mechanism of injury (choice=Bike crash) ↔ Bike collision/fall 

Mechanism of injury (choice=Bike struck by auto) 
Mechanism of injury (choice=Pedestrian struck by 

auto) 
↔ 

Pedestrian/bicyclist struck by moving 
vehicle 

Mechanism of injury (choice=Fall > 10 ft. height) ↔ Fall from an elevation 

Unknown ↔ All other mechanisms of injury 

Age 'ageinyrs' 0-2 (years) 
2-17 (years) 

↔ 
↔ 

0-23 (months) 
2-17 (years) 

'Age in years' 
'Age in months' 

Converted ages in 
months to years 

with decimal 
points 

Abdominal 
pain* 

'AbdomenPain' 

Yes 
No 

Other 
Unknown 

↔ 
↔ 
↔ 
↔ 

Yes 
No 
Other 
Unknown 'Complain 

abdominal 
pain' 

 

Unable to assess ↔ 
Non-verbal 
Incoherent 
Intubated 

Vitals GCS* 'GCSScore' 3-15 ↔ 3-15 'Initial GCS' 

Missing PECARN 
'GCSScore' values 

replaced with 
'AggregateGCS' 

Exam Abdominal 
tenderness* 

'AbdTenderDegree' 

Mild 
Moderate 

↔ 
↔ 

Mild 
Moderate 

'Abdominal 
tenderness to 

palpation' 

 

Severe 
Unable to assess 

↔ 
↔ 

Severe 
Limited exam (intubation/sedation) 

No ↔ None 
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Table A3. Predictor variables that were adjudicated or left out between the two study datasets, PECARN 

and PedSRC. 

 Feature PECARN  
Values 

(PECARN)  Values (PedSRC) PedSRC  Notes 

History 

Sex ‘Sex’ Sex ↔ � Absent from data set 
No adequate proxy found, so 

omitted from analysis 

Distracting 
injury 

'Distracting 
Pain' 

Yes ↔ 

Presence of any of 
following: skull 
fracture, facial 
fracture, clavicle 
fracture, rib 
fracture, pelvic 
fracture, femur 
fracture, 
dislocation, crush, 
or burn injury 

Absent from dataset 

We defined distracting pain in 
the PedSRC dataset as the 

presence of any of the injuries 
listed on the left 

No 
Unknown 

↔ 
↔ 

Absence of all of 
above 
Absence of all of 
above, some 
missing values 

Femur 
fracture 

Absent from 
data set � ↔ 

Yes 
No 
Unknown 

'Femur fracture' 
No adequate proxy found, so 

omitted from analysis 

Table A4. Two children with intra-abdominal injury requiring acute intervention predicted very low risk by the 
original PECARN clinical decision instrument on the PedSRC external validation dataset. 

(Age Range*), 
(Race/Ethnicity) 

Mechanism Additional Clinical 
Findings 

Intra-abdominal 
Injury 

Acute Intervention 

Infant (0-5 years)  
(White, non-Hispanic) Rollover MVC 

Traumatic brain 
injury with skull 
fracture; femur 
fracture 

Grade 1 liver 
laceration; Grade 3 
splenic laceration 

Exploratory 
laparotomy 

Child (6-10 years)  
(Black, African 

American) 
Fell > 10 feet Extremity fracture 

Grade 5 liver 
laceration 

Angio-embolization 

*Exact age concealed per policy; MVC: motor vehicle collision 
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Figure A1. Five stages of the Predictability Computability Stability (PCS) framework as adapted for clinical 

decision instrument assessment. First, the PCS framework (1) defines the clinical problem, then reviews all aspects 

of (2) collecting and preprocessing data, and (3) models clinical decision instruments using interpretable and rule-

based models. Next, the PCS framework (4) performs a validity (predictability), stability, and validation analysis. 

Last, the PCS framework (5) supports the interpretation of the results by identifying limitations in all the PCS steps, 

ensuring clinical decision instruments are developed to be supported by both data and domain expertise. 

 

s, 
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Figure A2. Redundant predictor variables are compared in this heatmap of (a) all predictors and (b) subset of key 

predictors. Darker blue signifies a direct correlation. Darker red signifies an inverse correlation. White signifies no 

correlation. 

a.        b. 

.  

Figure A3. CART Decision tree.  
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Figure A4. Bayesian rule list 

 

IAI-I: intra-abdominal injury requiring acute intervention; Abdo:abdominal;  
GCS: Glasgow Coma Scale score; SBS: seatbelt sign
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Figure A5. RuleFit 

 

Rule Coefficient 

No Abdominal Tenderness -0.009 

Abdominal Trauma or Seatbelt Sign 0.032 

Glasgow Coma Scale score = 15 -0.034 

Mechanism of Injury = Motor Vehicle Collision 0.001 

 

Figure A6. CART Rule List 
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Figure A7. Iterative Random Forest permutation importance scores. 

 

Rule Permutation importance 

Glasgow Coma Scale score = 15 0.094 

Thoracic Trauma 0.09 

Abdominal Trauma or Seatbelt Sign 0.09 

Hypotension 0.089 

Emesis/retching 0.083 

Costal tenderness 0.073 

No Abdominal Tenderness 0.073 

Mechanism of Injury = Motor Vehicle Collision 0.071 

Decreased breath sounds 0.064 

Age < 2 0.062 

Mechanism of Injury = Pedestrian/bicyclist struck by moving vehicle 0.047 

Mechanism of Injury = Fall from an elevation 0.045 

Abdominal Distention or Abdominal Pain 0.035 

Mechanism of Injury = Object struck abdomen 0.034 

Mechanism of Injury = Bike collision/fall 0.032 

Mechanism of Injury = Motorcycle/ATV/Scooter collision 0.018 
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Figure A8. Non-zero permutation importance scores for predictor variables across high-performing clinical decision 

instruments. 

*GCS Score: Glasgow Coma Scale score; PECARN: Pediatric Emergency Care Applied Research Network 

on 
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