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ABSTRACT  

Background: Although there are well-known prognostic factors for survival from cutaneous 

melanoma (CM) such as primary tumour thickness and stage of the tumour at diagnosis, the role of 

germline genetic factors in determining survival is not well understood. 

Objective: To perform a genome-wide association study (GWAS) meta-analysis of melanoma-

specific survival (MSS), and test whether a CM-susceptibility polygenic risk score (PRS) is 

associated with MSS. 

Methods: We conducted two Cox proportional-hazard GWAS of MSS using data from the Melanoma 

Institute Australia (MIA; 5,762 patients with melanoma; 800 deaths from melanoma) and UK 

Biobank (UKB: 5,220 patients with melanoma; 241 deaths from melanoma). The GWAS were 

adjusted for age, sex and the first ten genetic principal components, and combined in a fixed-effects 

inverse-variance-weighted meta-analysis. Significant (P<5×10-8) results were investigated in the 

Leeds Melanoma Cohort (LMC; 1,947 patients with melanoma; 370 melanoma deaths). We also 

developed a CM-susceptibility PRS using a large independent GWAS meta-analysis (23,913 cases, 

342,870 controls). The PRS was tested for an association with MSS in the MIA and UKB cohorts, 

with replication in the LMC.  

Results: Two loci were significantly associated with MSS in the meta-analysis of MIA and UKB 

with lead SNPs rs41309643 (G allele frequency 1.6%, hazard ratio [HR] 2.09, 95% confidence 

interval [CI] 1.61-2.71, P=2.08×10-8) on chromosome 1, and rs75682113 (C allele frequency 1.8%, 

HR=2.38, 95% CI=1.77—3.21, P=1.07×10-8) on chromosome 7. While neither SNP replicated 

(P>0.05) in the LMC, rs75682113 was significantly associated in the combined discovery and 

replication sets and requires confirmation in additional cohorts. 
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After adjusting for age at diagnosis, sex and the first ten principal components, a one standard 

deviation increase in the CM-susceptibility PRS was associated with improved MSS in the discovery 

meta-analysis (HR=0.88, 95% CI=0.83—0.94, P=6.93×10-5; I2=88%). The association with the PRS 

was not replicated (P > 0.05) in LMC, but remained significantly associated with MSS in the meta-

analysis of the discovery and replication results. 

 

Conclusion: We found two loci potentially associated with MSS, and evidence that increased 

germline genetic susceptibility to develop CM may be associated with improved MSS.  
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INTRODUCTION  

Cutaneous melanoma (CM) is the third most common skin cancer and is responsible for over 1,300 

deaths in Australia annually (Cancer Australia 2019) and more than 7,000 deaths in the United States 

of America (USA) (NCI 2021). While survival rates have been improving since 2013, likely due to 

advances in immunotherapies and BRAF-targeted therapies , management of CM remains a major 

public health burden, with an annual cost of over AUD 200 million in Australia and USD 24 billion 

in the US (Elliott et al. 2017; Zaorsky et al. 2021).  

 

CM-susceptibility is driven by host factors including skin pigmentation and number of naevi, as well 

as environmental factors, most importantly exposure to ultraviolet radiation (Gandini, Sera, 

Cattaruzza, Pasquini, Abeni, et al. 2005; Gandini, Sera, Cattaruzza, Pasquini, Zanetti, et al. 2005; 

Mitra et al. 2012; Y.-M. Chang et al. 2009; Veierød et al. 2010). Germline genetic factors can 

influence the risk of developing CM through modification of these host risk factors, and other 

biological pathways; genome-wide association studies (GWAS) have identified over 50 CM-

susceptibility loci (Landi et al. 2020). 

Although there are well known prognostic factors for melanoma-specific survival (MSS) including 

primary tumour thickness, ulceration, mitotic rate, melanoma type, anatomical site and the stage of 

the tumour at diagnosis (Cherobin et al. 2018; Kibrité et al. 2016), the role of host genetic factors in 

MSS is not well understood. Death of a relative from CM is associated with poorer MSS, raising the 

possibility that germline genetic factors influence survival (Brandt, Sundquist, and Hemminki 2011). 

Higher naevus count has been associated with improved survival (Ribero et al. 2015). Naevus count 

is strongly influenced by germline genetics (Zhu et al. 1999; Wachsmuth et al. 2001), and is the 

strongest risk factor for the development of melanoma (Olsen, Carroll, and Whiteman 2010), 

suggesting germline genetic risk for CM may also impact survival. Telomere length is another 
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biological pathway to high genetic CM-susceptibility (Burke et al. 2013) and may also influence MSS 

(Rachakonda et al. 2018). 

 

A powerful approach to test whether germline genetic risk for a given disease or trait (e.g. risk for 

CM) influences another trait (e.g. MSS) is to combine individual genetic effects in a polygenic risk 

score (PRS). Death from all causes has been associated with the joint effect of PRSs associated with 

risk of a range of diseases (e.g. coronary artery disease, pancreatic cancer, and lung cancer) or 

associated with mortality risk factors (e.g. cholesterol, sleep duration) (Meisner et al. 2020), 

suggesting that germline risk for development of a disease can help predict outcomes. However, it is 

not known whether a genetic predisposition to CM influences melanoma outcomes.  

 

To explore these two questions, we first aimed to identify germline genetic factors that influence MSS 

by performing a large-scale GWAS of MSS. Following this we assessed whether a PRS for CM-

susceptibility (referred to as PRS_susceptibility) was associated with MSS. 
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METHODS AND MATERIALS 

Genome-wide association studies of melanoma-specific survival  

Discovery cohort 1: Melanoma Institute Australia 

Samples for this cohort were derived from the Melanoma Institute Australia (MIA) Biospecimen 

Bank (protocol HREC/10/RPAH/530) and patient information from the MIA Research Database 

(protocol HREC/11/RPAH/444). With written, informed consent, patients with histo-pathological 

confirmed CM cases managed at MIA, Sydney, Australia were identified from this Biospecimen Bank 

and Database. Participants’ clinical and biospecimen data were captured and prospectively collected 

follow- up for outcomes including death due to melanoma. MIA study protocols were approved by 

the Sydney Local Health District Ethics Review Committee, Royal Prince Alfred Hospital, 

Camperdown, Australia. Participants were genotyped in phases using the Oncoarray in 2014 and 

2016, and the Global Screening Array in 2018 (Illumina, San Diego).  

 

Full details of the GWAS data cleaning quality control for both MIA datasets have been previously 

reported (Landi et al. 2020; Liyanage et al. 2021). Briefly, for Oncoarray genotyped samples, 

individuals were removed based on high genotype missingness (> 3%), extreme heterozygosity (± 

0.05 from the mean), being related to other samples (identified by descent pihat > 0.15), or were more 

than 6 standard deviations (SDs) from the means of principal components (PCs) 1 and 2 of a European 

reference population (Landi et al. 2020). In addition, single nucleotide polymorphisms (SNPs) were 

removed if they were missing more than 3% of their calls, had a minor allele frequency (MAF) < 

0.01, or their Hardy–Weinberg equilibrium (HWE) P-value was less than 5 × 10−10 for patients with 

melanoma or less than 5 × 10−4 in CM-free individuals in Landi et al., (Landi et al. 2020). Individuals 

genotyped on the Global Screening Array were removed due to high genotype missingness (> 5%), 

non-European ancestry or relatedness (as above), and SNPs were excluded due to a low MAF (< 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.07.22272003doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22272003
http://creativecommons.org/licenses/by-nd/4.0/


9 of 35 

0.01), high missingness (> 5%), HWE P < 1 × 10-6, or a low GenTrain score (< 0.6) (Liyanage et al. 

2021). The cleaned genotyped data were batched by their genotyping array (Oncoarray and Global 

Screening Array) and imputed to the Haplotype Reference Consortium (v1) panel using the 

University of Michigan imputation server (Loh et al. 2016).  

 

For this study, the primary endpoint was MSS which was ascertained through MIA clinical records 

and linkage to Australian Cancer Registries (including the New South Wales Cancer Registry), 

electoral rolls, and the Birth and Death Register. This analysis was restricted to 5,672 participants of 

European ancestry diagnosed with CM. For participants with multiple CM, the first primary CM was 

used to define the start point. MSS survival time (in years) was defined as the duration between the 

date of diagnosis of the (first) primary CM, and the date of death due to melanoma. Patients were 

censored on the last day of follow-up or when they died of non-melanoma causes. 

 

 

Discovery cohort 2: UK Biobank 

UK Biobank (UKB) is a large population-based cohort of approximately 500,000 adult participants 

(40-70 years at recruitment) recruited with informed consent from the United Kingdom between 2006 

and 2010. Participants were followed up for disease outcomes including death from melanoma. 

Details on participant recruitment, phenotype measurement and genotyping have been published 

elsewhere (Sudlow et al. 2015; Bycroft et al. 2018). In brief, participants were genotyped using the 

UK Biobank Axiom Array and the UK BiLEVE Axiom Array (Affymetrix Inc, California, USA) and 

imputed using the Haplotype Reference Consortium and UK10K reference panels. The study was 

approved by the United Kingdom’s National North West Multi-Centre Research Ethics Committee. 

For this present study, we included 5,220 participants of European ancestry with histo-pathologically 
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confirmed invasive CM based on the International Classification of Diseases (ICD) 10 (UKB data 

field 40006) and 9 (data field 40013) and ICD for Oncology, 3rd edition codes (data field 40011) for 

melanoma. Participants were then filtered for missingness (<3%), relatedness (identity by descent 

pihat < 0.2), and population ancestry outliers (from the European reference). The primary endpoint 

was MSS which was ascertained through linkage of the participant records with Cancer Registries, 

electoral rolls, and the Birth and Death Register in the UK.  

 

Replication cohort: Leeds Melanoma Cohort  

The Leeds Melanoma Cohort (LMC) is a population-based cohort of 2,184 participants diagnosed 

with incident melanoma between September 2000 and December 2012 and residing in Yorkshire and 

the North of England (Newton-Bishop et al. 2015). Details on the recruitment, follow-up and 

phenotype/genotype data processing have been published previously (Newton-Bishop et al. 2015, 

2010; Bishop et al. 2009). In brief, for two periods (September 2000 - December 2001, and July 2003 

to December 2005) recruitment was restricted to patients with a primary tumour thickness of > 0.75 

mm, while all patients with invasive melanoma were invited to participate between January 2002 and 

June 2003, and between January 2006 - 2012. Melanoma survival information was collected by direct 

communication with patients and their families, clinical records and from national registers. 

 

Melanoma diagnoses were clinico-histopathologically confirmed through data linkage with the 

Northern and Yorkshire Cancer Registry and Information Service. Samples were genotyped using the 

Infinium HumanOmniExpressExome array (Illumina San Diego, CA, USA). After genetic quality 

control procedures (filtering for missingness, relatedness, and population outliers), this present study 

was restricted to 1,947 participants with genetic and phenotype data, and consent. Ethical approval 

for research involving the LMC was obtained from the Northern and Yorkshire Research Ethics 

Committee, and all participants provided written informed consent. 
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SNPs with MAF < 0.03, control Hardy-Weinberg equilibrium (HWE) P < 10–4 or missingness > 0.03 

were excluded, as were any individuals with call rates <0.97, identified as first degree relatives and/or 

European outliers by principal components analysis. Samples were imputed using the Haplotype 

Reference Consortium panel at the University of Michigan imputation server (Loh et al. 2016) and 

variants with an imputation quality score <0.5 or MAF<0.0001 were discarded. 

 

Statistical analysis: Genome-wide association study of melanoma-specific survival 

First, we conducted two GWAS of MSS in the MIA cohort (5,762 patients with melanoma and 800 

melanoma-specific deaths) and in UKB cohort (5,220 melanoma patients and 241 melanoma-specific 

deaths). Using Cox proportional-hazard modelling, hazard ratios (HRs) were computed using PLINK 

1.9 (C. C. Chang et al. 2015) and the R survival package (Therneau 2020). In both the MIA and UKB 

analyses, we adjusted for age, sex and the first ten PCs; in the MIA cohort we also adjusted for 

genotyping batch. Analysis was restricted to participants of European ancestry and SNPs with MAF 

> 0.5%, and an imputation quality score > 0.5. 

 

Next, we conducted a meta-analysis for both GWAS (N=10,982 and 1,041 melanoma deaths) using 

a fixed-effects inverse-variance weighted model in METAL (Willer, Li, and Abecasis 2010). In 

addition, measures of heterogeneity (such as I2) were computed. Lead genome-wide significant (P < 

5 × 10-8) SNPs independent at linkage disequilibrium (LD) r2 < 0.1 were identified using FUMA 

v1.3.6a (https://fuma.ctglab.nl/) (Watanabe et al. 2017). 

 

Lead SNPs were tested for replication in the LMC (N=1,947 patients with melanoma and 370 

melanomas-specific deaths). The replication p-value threshold was set to 0.05. Next, we conducted a 

fixed- and random- effects inverse-variance meta-analysis of the lead SNPs from all three sets (MIA, 
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UKB and LMC) using METAL (Willer, Li, and Abecasis 2010). For the two lead SNPs the nearest 

gene, and any significant expression quantitative trait loci (eQTLs) were identified using FUMA 

v1.3.6a (Watanabe et al. 2017). 

 

Cutaneous melanoma polygenic risk score 

Cutaneous melanoma risk discovery cohorts and GWAS meta-analysis  

As the three MSS GWAS cohorts contributed to the discovery CM-susceptibility GWAS meta-

analysis (Landi et al. 2020), and overlap between datasets used to generate, optimise or test PRS can 

lead to overfitting and other biases (Lambert, Abraham, and Inouye 2019), we re-analysed the CM-

susceptibility GWAS meta-analysis excluding the three MSS GWAS datasets. We further excluded 

the QSkin Sun and Health Study cohort to use as an independent data set to validate the generated 

PRSs. Details on recruitment, case definitions, genotyping, quality control, imputation approaches 

and ethical approvals for each cohort have been extensively described before (Landi et al. 2020). The 

updated meta-analysis consisted of 23,913 cases, and 342,870 controls of European ancestry from 

Europe, Australia and the United States of America (USA) (Supplementary Table 1). 

 

With the exception of the self-reported 23andMe, Inc. dataset, all CM cases were histopathologically 

confirmed; previous work has shown that 23andMe cases are very similar to the confirmed cases: the 

susceptibility loci show very similar effects in the self-reported and confirmed CM cases (Landi et 

al. 2020). Each study was approved by the human research ethics committee at their respective 

institution, and all participants provided written informed consent. Specifically, for 23andMe, 

participants provided written informed consent and participated in the research online, under a 

protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent Review Services. 
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Only SNPs with an imputation quality score > 0.5 were included, and a fixed-effects inverse variance 

weighted meta-analysis of log odds ratios (ORs) was performed using PLINK 1.9 (C. C. Chang et al. 

2015). Next, we selected 6,342,711 non-ambiguous, autosomal, bi-allelic GWAS meta-analysis SNPs 

with a MAF > 1% that were present in the validation (QSkin) and target (MIA and UKB) cohorts, 

and in the LD reference panel. 

 

CM PRS validation cohort: The QSkin Sun and Health Study cohort 

The QSkin Sun and Health Study (QSkin) cohort is a population-based cohort comprising over 43,000 

adult participants recruited from Queensland, Australia. Detailed information on participant 

recruitment, phenotype measurement, genotyping and quality control measures have been published 

elsewhere (Olsen et al. 2012; Landi et al. 2020). In summary, 18,087 participants were genotyped 

using the Global Screening Array [Illumina, San Diego, USA], and individuals were removed if they 

had non-European ancestry (6 s.d from the mean of PC1 and PC2 of 1000 Genomes European 

samples), were related to another participant (one from each pair removed if identity by descent pihat 

value > 0.1875), or had high genotype missingness (> 3%). SNPs were also removed due to HWE 

violations (P < 1 × 10-6), a low GenTrain score (< 0.6), or a low MAF (< 0.01). Cleaned genotype 

data were imputed to the haplotype reference consortium (v1) panel using the University of Michigan 

imputation server (Loh et al. 2016).  

 

The Human Research Ethics Committee of QIMR Berghofer Medical Research Institute, Brisbane, 

Australia approved the study protocol and all participants provided written informed consent. We 

selected 16,708 participants (1,285 histopathologically confirmed CM cases and 15,423 controls) of 

European ancestry. CM cases were ascertained through data linkage with the Queensland Cancer 

Registry as well as assessing histopathology reports from pathology laboratories in Queensland.  
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Generation of the cutaneous melanoma polygenic risk score models 

We used the CM-susceptibility GWAS data (generated above) and an LD reference panel of 2,000 

unrelated individuals of European ancestry from UKB, to generate 30 PRS_susceptibility models at 

1 megabase (Mb), 2 Mb, 3 Mb, 4 Mb and 5 Mb of LD radii each with varying fractions of causal 

SNPs i.e. 1 (F0), 0.1 (F1), 0.01 (F2), 0.001 (F3), 0.0001 (F4), and 0.00002 (F5). For this analysis we 

used LDpred, a Bayesian method that utilises all SNPs in the discovery GWAS (here CM-

susceptibility GWAS), and their LD information, to derive LD-adjusted effect estimates (log ORs) 

for the trait (here CM-susceptibility) (Vilhjálmsson et al. 2015).  

Validation of the cutaneous melanoma polygenic risk score in QSkin cohort 

Next, we used the QSkin validation cohort to select the optimally performing PRS. Next, for each 

model we computed scores for 16,708 individuals (1,285 melanoma cases and 15,423 controls) in the 

QSkin Cohort using the LDpred-adjusted effect sizes (log ORs) and the imputed allelic dosages using 

PLINK 1.9 (C. C. Chang et al. 2015). Then we computed and used Nagelkerke’s R2 (Nagelkerke 

1991) to select the optimally performing PRS_susceptibility model by comparing the model fit for 

CM risk ~ PRS_susceptibility +age + sex +10 PCs, and a null model (CM risk ~ age + sex +10 PCs) 

using the PredictABEL R package (Kundu et al. 2011). Model performances are presented in Figure 

1, and the best performing PRS model was used in the subsequent analyses. 

 

Testing for association between cutaneous melanoma polygenic risk scores and melanoma-

specific survival  

The best performing PRS_susceptibility model was applied to the MIA and UKB cohorts using 

imputed allelic dosages and PLINK 1.9. The PRS was normalised to have a mean of 0 and an SD of 

1 and tested for association with MSS in a Cox proportional hazard model adjusted for age at 

diagnosis, sex and the first ten PCs using the survival package in R (Therneau 2020).  We further 
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calculated the MSS HR and 95% confidence interval (CI) per SD increase in the PRS_susceptibility. 

Next, we conducted a fixed- and random- effects inverse-variance meta-analysis to compute the 

pooled HR and 95% CI using the meta R package (Balduzzi, Rücker, and Schwarzer 2019). We then 

we tested for association between MSS and the same PRS_susceptibility in the LMC, adjusting for 

the same covariates. Finally, we meta-analysed the MIA, UKB and LMC results.  

 

Sensitivity analyses for polygenic susceptibility to melanoma and melanoma-specific survival  

Pigmentation and naevus count loci are major biological pathways for CM-susceptibility (Duffy et 

al. 2018; Landi et al. 2020). We further explored whether any association between the 

PRS_susceptibility and MSS was driven by SNPs associated with pigmentation and/or naevi 

pathways (Supplementary Information). In addition, we generated PRSs for pigmentation (PRSP), 

naevus count (PRSN) and telomere length (PRSTL) and tested whether they were associated with MSS 

(Supplementary Information). To rule out the possibility of thin or slow-growing melanomas 

influencing the PRS-survival association, we explored the potential influence of tumour stage, 

thickness and lead-time bias on any associations (Supplementary Information). 
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RESULTS 

Baseline characteristics of the melanoma survival cohorts 

This analysis was restricted to 5,762 melanoma patients in the MIA cohort, 5,220 in the UKB cohort, 

and 1,947 in the LMC. Summary data on mean age at diagnosis, sex, duration of follow up and the 

number of melanoma-specific deaths are presented in Table 1. 

 

Table 1: Characteristics of Melanoma Institute Australia, UK Biobank and Leeds Melanoma 

Cohorts 

Characteristic MIA  UKB  LMC 

Number 5762 5220 1947 

Mean age in years (SD) 60.1 (15.4) 56.78 (11.2) 55.05 (13.4) 

Number of males (%) 3,478 (60.4) 2,231 (42.7) 839 (43.1) 

Mean duration of follow up in 

years (SD) 

5.82 (6.4) 13.69 (8.7) 7.29 (3.7) 

Number of melanoma-specific 

deaths (%) 

800 (13.9) 241 (4.6) 370 (19.0) 

MIA = Melanoma Institute Australia cohort, UKB = UK Biobank, LMC = Leeds Melanoma Cohort 

SD - Standard deviation, N - Number, % - percent 
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Genome-wide significant genetic variants for melanoma-specific survival 

A MSS GWAS meta-analysis of the MIA and UKB cohorts identified two independent genome-wide 

significant (P < 5 × 10-8) loci (Table 2, and Supplementary Figure 1); rs41309643 (P = 2.08 × 10-

8) on chromosome 1 (1q42.13) and rs75682113 (P = 1.07 × 10-8) on chromosome 7 (7p14.1) (Table 

2). However, neither SNP was replicated in the LMC (rs41309643 P = 0.679 and rs75682113 P = 

0.411 (Table 2, and Supplementary Table 2). Following the meta-analysis of all three cohorts, 

rs41309643 was no longer formally significant at P < 5 × 10-8 (HR = 1.83, 95% CI = 1.45—2.30, P 

= 3.21 × 10-7) with high heterogeneity metrics (Table 2). rs75682113 remained genome-wide 

significant with no significant evidence of heterogeneity (C-allele HR = 2.23, 95% CI = 1.68—2.95, 

P = 2.13 × 10-8; Table 2).  

 

 Rs41309643 on chromosome 1 is an intron of the PSEN2 gene and is associated with the expression 

of the Coenzyme Q8A (COQ8A) (formerly ADCK3) gene in blood. COQ8A is induced by p53 in 

response to DNA damage and inhibition of COQ8A counteracts p53-induced apoptosis (Iiizumi et al. 

2002). rs75682113 on chromosome 7 is in an intron of the Succinyl-Coa:Glutarate-Coa Transferase 

(SUGCT) gene. This SNP has not been reported as an eQTL for any genes. Independent variants in 

the SUGCT gene have been associated with glutaric aciduria type 3 disease susceptibility (Sherman 

et al. 2008).  
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Table 2: Genetic variants for melanoma-specific survival in the discovery cohorts (MIA+UKB) and replication cohort (LMC). 

       Meta-analysis of MIA and UKB  Meta-analysis of MIA, UKB and LMC 

       Fixed effects  Random effects  Heterogeneity  Fixed effects  Random effects  Heterogeneity 

SNP CHR BP Gene* EA/ 
NEA EAF  HR 

(95% CI) P  HR 
(95% CI) P  Direction I2 Q  HR 

(95% CI) P  HR 
(95% CI) P  Direction I2 Q 

rs41309643 1 227,078,509 
COQ8A/
PSEN2 

G/T 0.018  2.09 
(1.61-2.71) 

2.81 × 10-8  
1.89 

(1.12-3.19) 0.0179  p++ 64.9 0.09  1.83 
(1.45-2.30) 3.24 × 10-7  1.58 

(0.95-2.62) 0.078  p+++ 74.1 0.02 

rs75682113 7 40,708,001 SUGCT C/G 0.020  2.38 
(1.77-3.21) 1.07 × 10-8  2.38 

(1.77-3.21) 1.07 × 10-8  p++ 0.0 0.39  2.23 
(1.68-2.95) 2.14 × 10-8  2.17 

(1.57-3.02) 3.45 × 10-6  p+++ 19.6 0.29 

 
MIA Melanoma Institute Australia cohort, UKB UK Biobank cohort, LMC Leeds Melanoma Cohort, SNP single nucleotide polymorphism, CHR chromosome. BP Hg19 base position, 
EA effect allele, NEA non-effect allele, EAF effect allele frequency reported from the Haplotype Reference Consortium (HRC), HR hazard ratio, CI confidence interval, P P-value. 
Gene* rs41309643 is an eQTL for the C0Q8A gene in blood (eQTL P=9.3x10-14), as well as closest to and an eQTL for the PSEN2 gene (eQTL P = 5.5x10-5) in GTEx/v8 (The GTEx 
Consortium 2020)
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The optimal cutaneous melanoma susceptibility polygenic risk score model  

Of the thirty PRS tested, the model with the F3 causal fraction (0.001) and a 5 Mb LD radius 

performed best, with a Nagelkerke’s R2 of 7.02% (Figure 1), and was used in all subsequent analyses. 

 

Figure 1: Cutaneous melanoma polygenic risk score model performance in the validation 

cohort (QSkin).  

The x-axis represents the different melanoma polygenic risk score (PRS) modelling varying fractions 

of causal SNPs, 1 (F0), 0.1 (F1), 0.01 (F2), 0.001 (F3), 0.0001 (F4) and 0.00002 (F5), and differing 

linkage disequilibrium (LD) radii, 1 megabase (Mb), 2 Mb, 3 Mb, 4 Mb and 5 Mb. The y-axis 

represents Nagelkerke's R2 (%) for each of the 30 PRS models. The horizontal dashed black line 

highlights the optimal model (F3 and 5Mb) with the highest Nagelkerke’s R2 of 7.03%.  
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Association of polygenic susceptibility to melanoma and melanoma-specific 

survival  

After adjusting for age at diagnosis, sex and the first ten PCs, a one SD increase in the 

PRS_susceptibility was associated with improved MSS in a fixed-effects meta-analysis of MIA and 

UKB cohorts (HR = 0.88, 95% CI = 0.83—0.94, P = 6.93 × 10-5). However, the association between 

the PRS_susceptibility and MSS was highly heterogeneous across the two studies (I2 = 87.7%, 95% 

CI = 52.4—96.8%). Although not statistically significant, the magnitude and direction for the random 

effects model was also consistent with the fixed-effects results (fixed effects model HR = 0.92, 95% 

CI = 0.75—1.13, P = 0.43). The inverse association between polygenic susceptibility to melanoma 

and MSS persisted after excluding genomic regions associated with naevus count (fixed-effects HR 

= 0.91, 95% CI = 0.86—0.97, P =0.0038; random-effects HR = 0.93, 95% CI = 0.83—1.03, P = 0.16) 

and pigmentation (fixed-effects HR = 0.91, 95% CI = 0.850—.97, P =0.0023; random-effects HR = 

0.93 95% CI = 0.82—1.06, P = 0.26). The association between polygenic risk for melanoma and MSS 

was not replicated (P > 0.05) in the LMC; however, the directions of the effect estimates were 

consistent (Figure 2).  

 

In a meta-analysis of the three cohorts a one SD increase in the PRS_susceptibility was still associated 

with improved MSS (fixed-effects HR = 0.90, 95% CI = 0.85—0.95, P = 6.35 x 10-5 ; random-effects 

HR = 0.93, 95% CI = 0.83—1.04, P = 0.20), even after excluding naevus and pigmentation loci 

(Figure 2). There was substantial heterogeneity across the three studies (I2 = 78.7%, 95% CI = 31.6—

93.4%). Sensitivity analyses showed that the skin colour PRS was also associated with improved 

MSS (PRSP; HR = 0.90, 95% CI = 0.85—0.96, P = 1.1 × 10-3), while the naevus count PRS also 

provided suggestive evidence (PRSN; HR = 0.95, 95%CI = 0.89—1.02, P = 0.179) (Supplementary 

Figure 5).  
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Figure 2: Association of polygenic risk for cutaneous melanoma and melanoma-specific survival. 

All models were adjusted for age, sex and the first 10 PCs and additionally genotype batch effects in 

the MIA analysis. HRs were estimated using Cox proportional-hazards models. The full model refers 

to the PRS_susceptibility (CM PRS), while for the remaining two models the PRS_susceptibility 

respectively excluded SNPs in the naevus count and pigmentation pathways. MIA- Melanoma 

Institute Australia, UKB - United Kingdom Biobank, LMC - Leeds Melanoma Cohort, IVW- Inverse 

variance weighted methods, Het- heterogeneity, HR- hazard ratio. CI- confidence interval.  

 

Influence from melanoma prognostic factors and lead-time bias in the MIA Cohort 

In the MIA cohort the PRS_susceptibility remained associated with improved survival after excluding 

participants with melanoma in-situ, and those with an unknown stage (HR = 0.84, 95% CI = 0.78—

0.90, P = 2.15 × 10-6). In addition, the association was consistent even after adjusting for age, sex, 10 
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PCs, AJCC 2010 Stage, and primary tumour thickness (HR = 0.84, 95% CI = 0.78—0.91, P = 1.90 × 

10-5) (Table 3). There was also no evidence for interaction by the tumour stage or tumour thickness 

(Table 3). In a stratified analysis, there was no evidence that the association between the PRS and 

MSS differed by tumour stage (Figure 3a) and primary tumour thickness at diagnosis (Figure 3b). 

The PRSTL was suggestive but not significantly associated with MSS in the MIA cohort (PRSTL; HR 

= 0.90, 95% CI = 0.64 — 1.27, P = 0.5504). After excluding the first two years of follow-up 

(following diagnosis), there was no evidence of lead-time bias (survival bias) (HR = 0.84, 95% CI = 

0.77—0.91, P = 4.03 × 10-5).  

 

Table 3: Testing for an interaction between the polygenic susceptibility to melanoma and 
survival prognostic factors in the MIA Cohort 

Model N Events HR 95% CI P-value 

PRS+Age+Sex+Breslow+Stage+ 10PCs+Batch 5282 669 0.84 0.78—0.91 1.9 × 10-5 

PRS*Stage+Age+Sex+Breslow+ 10PCs+Batch 5282 669 0.82 0.75—0.91 1.6 × 10-4 

PRS*Breslow+Stage+Age+Sex+ 10PCs+Batch 5282 669 0.84 0.70—1.01 0.060 

PRS*Breslow*Stage+Age+Sex+ 10PCs+Batch 5282 669 0.85 0.70—1.03 0.095 

N- Number of participants, HR- hazard ratio, CI- confidence intervals 
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Figure 3: Stratified analysis of the PRS and MSS association by the AAJC Stage and primary 

tumour thickness in the MIA Cohort. The y-axis represents the hazard ratio for MSS per standard 

deviation (SD) increase in the PRS. Error bars show the 95% confidence interval of the HR. The x-

axis shows the strata for tumour stage and thickness at diagnosis of melanoma. The dashed grey line 

represents a null effect at a hazard ratio of 1. Panel 3a shows the association between the CM PRS 

and MSS stratified by the AJCC 2010 tumour stage, after controlling for age at diagnosis, sex, the 

first 10 ancestral components and genotype batch effects. Stage I/II included 4493 participants and 

427 melanoma deaths, while stage III/IV included 789 participants and 242 melanoma deaths. Panel 

3b reports the association of the CM PRS and MSS stratified by the primary tumour thickness, after 

controlling for age at diagnosis, sex, the first 10 ancestral components and genotype batch effects. 
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The thin (<= 1 mm) stratum included 1,898 participants and 122 melanoma deaths, while the thick 

(> 1 mm) stratum included 3,384 participants and 547 melanoma deaths. 
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DISCUSSION 

In this study, we performed the largest GWAS for MSS to date using data from Australia and the 

United Kingdom and potentially have identified two independent, novel, genome-wide significant (P 

< 5x10-8) loci for MSS at 1q42.13 and 7p14.1. While the two loci did not formally replicate in an 

independent cohort, the confidence intervals (particularly for rs75682113) in the replication set 

overlap the estimate from the discovery cohorts. Confirmation of these two loci will require 

replication in larger cohorts. rs75682113 is particularly promising as it was genome-wide significant 

(P < 5x 10-8) in our meta-analysis of the discovery and replication samples.  

 

In addition, we report evidence that increased genetic susceptibility for CM, as measured by a one 

SD increase in a PRS_susceptibility, was significantly associated with improved MSS. However, 

caution is required as the result was primarily driven by a strong association in the MIA cohort. 

Genetic susceptibility to CM is primarily driven by loci in the pigmentation and naevus count 

pathways (Cust et al. 2018). HRs for PRS_susceptibility and MSS were slightly attenuated (but still 

with a significant association) when we removed SNPs in either pathway. In turn PRS designed 

specifically for these traits were also associated (though not significantly for naevus count) with MSS. 

In addition, the PRS for telomere length (another pathway to both CM susceptibility and survival) 

was not significantly associated with MSS in our sensitivity analysis. These pathway-analysis results 

suggest that if genetic propensity to CM is associated with improved survival it is not simply due to 

pigmentation, nevus count or telomere length.  

 

However, this study suggests that if there is a true association, its magnitude may differ across 

populations, presumably due to environmental and other effects. Firstly, the MIA and UKB meta-

analysis results did not replicate in the LMC. Secondly, the high heterogeneity metrics (e.g. I2 ) 

indicates that the effect sizes may not be consistent across the three studies, with a very strong result 
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in the MIA cohort and weaker associations in the UK samples (Table 1 and Supplementary Table 

2). Although the fixed-effects model shows a strong statistically significant association, the results 

are not significant for the random-effects model even when they are of a similar magnitude. The 

observed heterogeneity may be due to differences in recruitment, where the MIA cohort recruitment 

was from clinics as opposed to the population-based UKB and LMC. It is also possible that the strong 

inverse result in Australia is influenced by overdiagnosis for melanoma (Welch, Mazer, and Adamson 

2021). It is estimated that 54% of all melanomas and 15% invasive melanomas in Australia are over-

diagnosed (Glasziou, Bell, and Barratt 2020). Thus, patients may be diagnosed with non-lethal 

melanoma and subsequently exhibit improved survival. However, recent evidence suggests that 

regular skin checks (which may lead to overdiagnosis for melanoma) are not associated with MSS 

(Watts et al. 2021). Since sun exposure is associated with improved MSS (Berwick et al. 2005; Rosso 

et al. 2008), it is also possible that differences in high or long-term sun and ultraviolet-radiation 

exposure in Australia are in part responsible for the heterogeneity.  

 

In a more detailed analysis in the MIA cohort, our study suggests that this inverse association is 

consistent even after further adjusting for (and testing for interaction with) strong predictors of MSS 

like tumour stage and primary tumour thickness at diagnosis. The stratified analysis shows that the 

association is not modified by primary tumour thickness or stage. Thus, if replicated in additional 

cohorts, a CM-susceptibility PRS is potentially an independent prognostic factor for MSS.  

 

To our knowledge, while no prior study has examined the association of a CM susceptibility PRS and 

survival outcome, similar inverse relationships have been found in other cancers e.g. higher breast 

cancer PRSs and better breast cancer prognosis/characteristics (Holm et al. 2016; Li et al. 2018). 

Also, a follicular lymphoma PRS was associated with improved overall survival among women in a 

population in the USA (Zhong et al. 2020). BRCA1/2 mutations which increase breast cancer risk 
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were associated with better overall survival among triple-negative breast cancer women (Baretta et 

al. 2016). A CAD PRS was inversely associated with all-cause mortality (OR=0.91; 95% CI=0.85-

0.98), and ischaemic stroke (OR = 0.78; 95% CI=0.67- 0.90) in CAD patients (Howe et al. 2020).  

 

  

The mechanisms underlying this inverse association are unclear. Particularly for MSS, it could be 

that a higher genetic risk for CM leads to thin melanomas or slow-growing melanomas that are less 

lethal (Adami et al. 2017; Halpern and Marghoob 2004; Maurichi et al. 2014), and respond better to 

treatment. However, detailed analysis in the MIA cohort showed no difference in survival for both 

thin and thick tumour categories. In addition, after excluding the initial two years of follow up, the 

results were consistent, suggesting there is no survival/ lead-time bias. 

 

As noted in our study above, higher nevus counts may be associated with a lower chance of dying 

from melanoma (Ribero et al. 2015). It is possible however that those with large numbers of naevi 

are subjected to increased screening, which may lead to overdiagnosis and greater survival relative 

to those with fewer moles (Autier et al. 2015). However, as already indicated, increased screening is 

not associated with MSS (Watts et al. 2021). 

 

Another possible mechanism could be via gene-environment interaction, where those at highest 

genetic risk of CM benefit more from treatment (e.g immunotherapy), as it is the case for those at 

high genetic risk for coronary artery disease (CAD) and treatment benefits from PCSK9 inhibitors in 

the FOURIER and ODYSSEY OUTCOMES trials (Marston et al. 2020; Damask et al. 2020).  
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Potential clinical utility 

This study presents new insights that highlight the potential clinical utility of PRS_susceptibility for 

profiling and monitoring patients for melanoma outcomes following diagnosis during the “melanoma 

follow-up care program” (Trotter et al. 2013; Farma and Abdulla 2015). In combination with other 

prognostic factors, it could be used to guide patient care e.g. counselling on modification of mortality-

related non-genetic behaviours and lifestyle factors, or guide the direction of patient-specific 

treatment to help improve survival after diagnosis. It may also be useful for the stratification of 

patients while recruiting into clinical trials evaluating melanoma treatment and outcomes. 

 

Conclusions 

In a GWAS meta-analysis of MSS, we identified two novel loci potentially associated with survival 

from cutaneous melanoma, both of which contain candidate genes linked to tumour progression; 

however, replication in large independent cohorts is required. In line with observations in other 

cancers and complex diseases, increased germline genetic susceptibility for CM was strongly but 

heterogeneously associated with improved MSS. If validated, a PRS_susceptibility could be used to 

predict melanoma outcomes after diagnosis and profile patients for personalised care. 

 

 Data Availability Statement  

The pruning and thresholding (P+T) versions of polygenic risk scores CM can be accessed at the 

polygenic risk score catalogue (https://www.pgscatalog.org/) upon publication. CM GWAS summary 

statistics used to generate the LDPred PRSs can be accessed as indicated by Landi et al 2020. 

Underlying data for the cohorts used in the paper are available through application to the respective 

cohorts; UKB (http://www.ukbiobank.ac.uk/wp-content/uploads/2012/09/Access-Procedures-2011-

1.pdf); MIA (https://www.melanoma.org.au/research/collaborate-on-research-with-mia/); Q-Skin 
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(By application to Q-Skin Principal Investigator David Whiteman 

David.Whiteman@qimrberghofer.edu.au). 
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Supplementary Methods 

Exclusion of genetic variants associated with pigmentation and naevus pathway loci 

Pigmentation and naevus count loci are major biological pathways for CM-susceptibility (Duffy et 

al. 2018; Landi et al. 2020). We further explored whether any PRS_susceptibility and MSS 

association was driven by genetic variation associated with pigmentation and/or naevi pathways. 

Using the previously published CM GWAS (Landi 2020), we identified both pigmentation and 

naevus count loci and removed SNPs from the PRS_susceptibility within +/- 0.50 megabase (mb) for 

each lead SNP for pigmentation (Supplementary Table 3) and naevi (Supplementary Table 4). In 

addition, for loci in regions with long-range LD we excluded wider windows including MC1R on 

chromosome 16 (87-90.3 megabases), ASIP on chromosome 20 (30-36 megabases), and CDKN2A on 

chromosome 9 (1 megabase either side of rs871024). 

 

Using this information we generated two additional PRS_susceptibility models; one excluding the 

SNPs in the pigmentation pathway (PRSCMexP) and another excluding the loci in the naevus pathway 

(PRSCMexN). First, we assessed whether new PRS models were still associated with melanoma risk 

using QSkin data and adjusting for covariates as before (i.e.  CM risk ~ PRSCMexP or PRSCMexN + age 

+ sex +10 PCs) (Supplementary Figure 3). Second, we explored if PRSCMexP and (PRSCMexN were 

associated with MSS in both MIA and UKB (Results). Third, as previously (in the Methods) the 

resulting HRs were combined by meta-analysis (Results; Figure 2). 

 

Impact of melanoma survival prognostic factors in the MIA Cohort 

Since the MIA cohort had information on other important prognostic factors including the American 

Joint Committee on Cancer (AJCC) 2010 stage at diagnosis (I through IV), primary tumour thickness 
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(mm), we performed more sensitivity analyses in this dataset. First out of the 5,762 participants we 

excluded those with AJCC 2010 Stage O (N=90), unknown stage (N=119), and missing data (N=2) 

to restrict the analysis to participants with invasive melanoma (total N=5,551, melanoma 

deaths=771). Second, we computed Cox proportional-hazard models for MSS (MSS ~ 

PRS_susceptibility + 10 PCs + age + sex) (Results). 

 

Next we restricted the analyses to participants with invasive melanoma and complete data on both 

tumour stage and primary tumour thickness (N = 5,282, melanoma deaths = 669), to compute Cox 

proportional-hazard models for MSS adjusting (in addition to the above) for AJCC 2010 tumour stage 

(stage III/IV vs stage I/II) and primary tumour thickness (thick (>1mm) vs thin (<=1mm) (MSS ~ 

PRS_susceptibility + 10 PCs + age + sex + tumour stage + primary tumour thickness) (Results, 

Figure 3). 

 

To rule out survival bias due to leading time bias, we also excluded the first two years of follow up 

(leaving N = 4,018, and melanoma deaths = 574) and computed the Cox proportional-hazard models 

for MSS (MSS ~ PRS_susceptibility + 10 PCs + age + sex + tumour stage + primary tumour 

thickness) (Results) 

 

We further examined whether there was an interaction between the PRSCM and strong MSS prognostic 

factors; by fitting interaction terms between the PRS and them and computing the Cox proportional-

hazard models for MSS (MSS ~ PRS_susceptibility * tumour stage + 10 PCs + age + sex + primary 

tumour thickness, MSS ~ PRS_susceptibility * primary tumour thickness + 10 PCs + age + sex + 

tumour stage, and MSS ~ PRS_susceptibility * primary tumour thickness * tumour stage + 10 PCs + 

age + sex) (Results; Table 3). 
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In a similar way, we explored whether the MSS ~ PRSCM association differed by tumour stage (stage 

III/IV vs stage I/II) or primary tumour thickness (thick vs thin ) by computing the Cox proportional-

hazard models for MSS in each stratum (e.g. in stage III/IV; MSS ~ PRS_susceptibility + 10 PCs + 

age + sex, or in thin melanoma; MSS ~ PRS_susceptibility + 10 PCs + age + sex). In order to rule 

whether the PRSCM - MSS association was not mediated through tumour or tumour thickness, we 

tested whether the PRSCM was associated with advanced tumour stage (I/II- no, and III/IV- yes) 

(advanced tumour stage ~ PRS_susceptibility + 10 PCs + age + sex), and primary tumour thickness 

(thin -no, and thick -yes) (thick tumour ~ PRS_susceptibility + 10 PCs + age + sex) (Results; Figure 

3) 

 

We also assessed whether the association between PRSCM and MSS varied across the PRS strata 

(quartiles) by comparing the odds of dying from melanoma for participants in the Q4, Q3, Q2 with 

their counterparts in Q1, adjusting for age, sex and 10 PCs using the MIA cohort (Supplementary 

Figure 4). 

 

Development of the standalone skin colour polygenic risk score 

We used the skin colour phenotype (data field 1717) in the UKB and coded in the order brown, dark 

olive, light olive, fair and very fair. Using R we applied a rank inverse normal transformation (rankit 

transformation) such that it could be analysed as an approximately normally distributed quantitative 

phenotype. We conducted a GWAS using linear mixed models using BOLT-LMM (Loh et al. 2015), 

adjusting for sex, age and the first ten PCs. We excluded participants with melanoma (who were 

included in the MSS analysis), of non-European ancestry and those who withdrew their participation 

in the UKB research. Following these filters, 427,893 participants were included in the analysis.  
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Next, we selected non-ambiguous, autosomal, bi-allelic SNPs with a minor allele frequency (MAF) 

> 1% and imputation quality score of 0.3 that were present in the validation (QSkin) and target (MIA 

and UKB) cohorts as well as the linkage disequilibrium (LD) reference panel, resulting in 6,360,404 

SNPs. 

Next, as for the PRS_susceptibility  (Methods) we used LDpred  (Vilhjálmsson et al. 2015) to derive 

PRS models at 2 mb and 5 mb of LD radii with different fractions of causal SNPs i.e. 1 (F0), 0.1 (F1), 

0.01 (F2), 0.001 (F3), 0.0001 (F4) and 0.00002 (F5). We used the QSkin Cohort (1,285 melanoma 

cases and 15,423 controls) to validate the derived PRS models and select the best performing one. 

First, we used the LDpred-adjusted effect sizes (log ORs) and the imputed allelic dosages to compute 

PRS for each individual using PLINK 1.9 (Chang et al. 2015). Then we calculated and used 

Nagelkerke’s R2 (Nagelkerke 1991) to select the optimally performing PRS model by comparing the 

model fit for CM risk ~ Pigmentation PRS +age + sex +10 PCs, and a null model (CM risk ~ age + 

sex +10 PCs). Model performances are presented in Supplementary Figure 2. The best performing 

PRS model was subsequently used to explore the association between the skin colour PRS and 

melanoma risk in the QSkin cohort, and melanoma specific survival in UKB and MIA cohorts. The 

F1 2 mb LD radius model was the best performing model with Nagelkerke’s R2 of 3.1% 

(Supplementary Figure 2). It was thus used in all our subsequent analyses.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 12, 2022. ; https://doi.org/10.1101/2022.03.07.22272003doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22272003
http://creativecommons.org/licenses/by-nd/4.0/


7 of 15 

 

Supplementary Figure 2: Skin colour polygenic risk score model performance in the validation 

cohort (QSkin). The x-axis represents the different melanoma polygenic risk score (PRS) models of 

varying fractions of causal SNPs (i.e. 1 (F0), 0.1 (F1), 0.01 (F2),0.001(F3),0.0001 (F4) and 0.00002 

(F5)) at the different radii of the linkage disequilibrium (LD) (i.e. 2 megabase (mb) and 5 mb). The 

y-axis represents Nagelkerke’s R2 (%) for each of the 12 PRS models. The horizontal dashed black 

line highlights the optimal model (F1-2mb) (i.e. with the highest Nagelkerke’s R2).  
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Generation of the standalone naevus count pathway polygenic risk score 

We used naevus count PRS (Supplementary Table 5) of genome wide significant (5x10-8) SNPs 

from a previously published GWAS of naevus count (Duffy et al. 2018). In brief, the GWAS included 

52,506 participants of European ancestry without melanoma, non-overlapping with the QSkin, MIA 

or UKB cohorts, from 11 cohorts from Europe, Australia, and USA. Details of the included cohorts 

and other quality control metrics have been published elsewhere (Duffy et al. 2018). Individual scores 

were generated in QSkin, MIA and UKB by using the SNP effect sizes (betas) as the weights and the 

imputed allelic dosages using PLINK 1.9 and analysed as done for the pigmentation PRS above.  

 

Development and assessment of the standalone telomere length polygenic risk 

score. 

Using data from the UKB we conducted a GWAS on telomere length (data field 22192; Z-adjusted 

T/S log) using linear mixed models using BOLT-LMM v2.3  (Loh et al. 2015), adjusting for sex, age 

and the first ten PCs. For the telomere length phenotype, adjusted leukocyte telomere length (Field 

22191) was both loge-transformed to obtain a normal distribution and then Z-standardised 

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=22192). After excluding all participants who were 

included in the MSS analysis, of non-European ancestry and those who withdrew their participation 

in the UKB research, 433,431 individuals were available for the analysis. After the conducting the 

GWAS, we retained non-ambiguous, autosomal, bi-allelic SNPs with a minor allele frequency (MAF) 

> 1% and imputation quality score of 0.3 which overlapped in the validation (QSkin) and target (MIA 

and UKB) cohorts. 

After performing LD clumping (r2 = 0.5%, and 5000 kb, and P < 1) to select independent SNPs, we 

generated 8 PRS models based on P-value thresholds less than; 5 x 10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 10-

2, and 10-1 and validated them in the QSkin Cohort (as described for skin colour PRS) to select the 

optimal telomere length PRS (PRSTL). PLINK/1.90b6.8 (Chang et al. 2015) was used for LD 
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clumping. The PRS at P < 5 x 10-8 was selected as the best performing one (Nagelkerke’s R2 of 2.6%). 

First, we tested if PRSTL was associated with CM risk in the QSkin cohort (Supplementary Figure 

3), then with MSS in the MIA cohort (Results).  

 

Testing the association between skin colour, naevus count and telomere length genetics 

and melanoma specific survival  

In addition, we assessed if independent polygenic risk scores for pigmentation (PRSP), naevus count 

(PRSN) and telomere length (PRSTL) were associated with MSS. First, we generated PRSP, PRSN, and 

PRSTL using data independent of the QSkin (validation cohort) and selected the best models as 

described previously. After validating that these PRS were associated with CM risk in QSkin 

(Supplementary Figure 3), we tested if they were associated with MSS in UKB and MIA, as above; 

MIA and UKB estimates were combined by fixed effects meta-analysis (Supplementary Figure 5 

(PRSP & PRSN) and Results (PRSTL) )). 
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Supplementary Results 

Supplementary Figure 1: 

 
Supplementary Figure 1: Manhattan plot for the MSS GWAS meta-analysis between MIA and UKB 

cohorts.  
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Association of the cutaneous melanoma polygenic risk score with melanoma risk.  

After adjusting for age at diagnosis, sex and the first ten PCs, a one SD increase in the PRSCM was 

positively associated with CM risk (OR = 1.80, 95% CI = 1.69—1.92, P = 8.7 × 10-71) in the validation 

cohort (Supplementary Figure 3). The association was largely contributed, but not entirely driven 

by the pigmentation and naevus pathways. The PRSCM models without the naevus and pigmentation 

genomic regions were still associated with increased risk of CM (PRSCMexN ; OR = 1.53, 95% CI = 

1.43—1.64, P = 3.99 × 10-37 and PRSCMexP; OR = 1.35, 1.27—1.43, P = 2.46 × 10-24). The naevus 

count, skin colour (pigmentation) and telomere length PRSs were also associated with increased risk 

melanoma (PRSN; OR = 1.16, 95% CI = 1.09—1.22, P = 6.32 × 10-7, PRSP; OR = 1.22, 95% CI = 

1.15—1.30, P = 7.58 × 10-11, and PRSTL; OR = 1.38, 95% CI= 1.05—1.82, P = 0.0230). 
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Supplementary Figure 3: The association between polygenic risk scores and the risk of melanoma 

in QSkin.  

The x-axis represents the different polygenic risk score (PRS) models represented in red (Full 

melanoma model), dark green (melanoma model after excluding the naevus count loci), green 

(melanoma model after excluding the pigmentation loci), cyan (an independent naevus count PRS 

model), blue (an independent skin colour PRS) and pink (an independent telomere PRS). Skin colour 

phenotype was rank normalised in the order brown, dark olive, light olive, fair and very fair. The y-

axis represents the odds ratio for melanoma risk per standard deviation (SD) increase in the 

respective PRSs. Error bars are the 95% confidence interval for each PRS model. All models were 

adjusted for age, sex and the first ten principal components.  

 

 

Melanoma prognostic factors, PRS and survival 

 The PRS_susceptibility was also not a predictor of advanced tumour stage (I/II- no, and III/IV- yes) 

(OR =1.02 95%CI= 0.94- 1.10, P= 0.64357) and primary tumour thickness (thin -no, and thick -yes,) 

(OR = 1.003, 95%CI= 0.95-1.06, P= 0.89580). Yet advanced tumour stage and primary tumour 

thickness (as expected) were strong predictive factors for MSS (advanced stage; HR =3.12, 95%CI= 

2.63 - 3.70, P = 5.97 x10-40; adjusted for age, sex, tumour thickness and 10 PCs, and tumour thickness 

(thick vs thin); HR = 2.00, 95%CI=1.63- 2.47, P= 6.93 x 10-11).  

 

Variation of MSS across PRS quartile in the MIA cohort 

Compared to the bottom quartile (Q1), participants in the top quartile (Q4) with the highest genetic 

risk for CM were 38% less likely to die due to melanoma (HR = 0.62, 95% CI = 0.51-0.76, P = 2.34 

× 10-6) (Supplementary Figure 4). 
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Supplementary Figure 4: The association by quartile of polygenic risk for melanoma susceptibility 

and melanoma specific survival in the MIA cohort  

This analysis of the MIA cohort includes 5,762 patients, of which 800 died from melanoma. The x-

axis represents the different quartiles for the CM polygenic risk score (PRS) from Q1 to Q4. The y-

axis represents the hazard ratio (HR) and the 95% confidence interval (CI) computed using Cox 

proportional-hazards models for each quartile adjusting for age at diagnosis, sex, 10 PCs and 

genotype batch effects. 
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Supplementary Figure 5: Association of standalone skin colour and naevus PRSs and 

melanoma specific survival in MIA and UKB.  
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