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Machine Learning for Real-Time Aggregated Prediction of Hospital 

Admission for Emergency Patients 

Abstract  

Machine learning for hospital operations is under-studied. We present a prediction pipeline 

that uses live electronic health-records for patients in a UK teaching hospital’s emergency 

department (ED) to generate short-term, probabilistic forecasts of emergency admissions. A 

set of XGBoost classifiers applied to 109,465 ED visits yielded AUROCs from 0.82 to 0.90 

depending on elapsed visit-time at the point of prediction. Patient-level probabilities of 

admission were aggregated to forecast the number of admissions among current ED 

patients and, incorporating patients yet to arrive, total emergency admissions within 

specified time-windows. The pipeline gave a mean absolute error (MAE) of 4.0 admissions 

(mean percentage error of 17%) versus 6.5 (32%) for a benchmark metric. Models 

developed with 104,504 later visits during the Covid-19 pandemic gave AUROCs of 0.68-

0.90 and MAE of 4.2 (30%) versus a 4.9 (33%) benchmark. We discuss how we surmounted 

challenges of designing and implementing models for real-time use, including temporal 

framing, data preparation, and changing operational conditions.   
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Introduction 

To date, most applications of Artificial Intelligence (AI) to healthcare have been applied to 

address clinical questions at the level of individual patients1. Now that many hospitals have 

electronic health records (EHRs) and data warehouse capabilities, there is the potential to 

exploit the promise of AI for operational purposes2. Hospitals are highly connected systems 

in which capacity constraints in one area (for example, lack of ward beds) impede the flow of 

patients from other locations, such as the emergency department (ED)3 or those ready for 

discharge from intensive care4. Arrivals to the ED show diurnal and seasonal variations, with 

predicted peaks in the morning and early evening, but workflows elsewhere in a hospital 

mean that discharges from the hospital happen late in the day, creating flow problems5. This 

mismatch of cadence between different parts of the hospital results in patients boarding in 

ED, or being admitted to inappropriate wards, with adverse consequences including longer 

stays6, greater risk of medical errors7 and worse long-term outcomes in elderly patients8.  

Hospital services can be managed more efficiently if accurate short-term forecasts for 

emergency demand are available9,10. Currently, most hospitals use simple heuristics to make 

short-term forecasts of numbers of emergency admissions, which are based on rolling 

averages for each day of the week11. Scholars have suggested improvements using 

Bayesian approaches or auto-regressive inductive moving averages with meteorological, 

public health and geographic data9,12,13. However, such methods do not take account of 

stochastic nature of ED arrivals14 and cannot be adapted to reflect the case mix of people in 

the ED at a given point in time. In hospitals with EHRs, where staff are recording patient data 

at the point of care, there is an opportunity to use EHR data to generate short-horizon 

predictions of bed demand. These would help the teams responsible for allocating beds 

make best use of available capacity and reduce cancellations of elective admissions.  

ML is attractive for such predictions because its aggregation of weak predictors may create a 

strong prediction model2. Emergency medicine scholars have compared predictions made 
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by ML algorithms against conventional approaches like linear regression and naïve 

Bayes10,15. It is common for such studies to use arrival characteristics (e.g. arrival by 

ambulance or on foot), triage data and prior visit history16–18 to make predictions, although 

recent studies have included a wider variety of data captured by EHRs, including medical 

history, presenting condition and pathology data10,19–21. Hong et al10 showed that ML 

algorithms like gradient-boosted trees and deep neural networks, applied to a large EHR 

dataset of 972 variables, improved predictive performance. By including data on lab test 

results and procedures, El-Bouri et al21 were able to predict which medical specialty patients 

would be admitted to. Barak-Corren et al’s study19 is one of few in emergency medicine to 

address the challenges of making predictions during a patient’s visit to ED. They built 

progressive datasets from historical data, each intended to reflect the data usually available 

at 10, 60 and 120 minutes after presentation to the ED. Notwithstanding their use of chief 

complaint data that was entered by ED receptionists as free text and retrospectively coded 

by the researchers, they were able to show that the later datasets offered better predictions 

than at 10 minutes. Their study demonstrates the potential that EHRs offer for improving on 

approaches that use triage data only. 

Although these studies demonstrate the predictive utility of ML, they do not unlock its 

potential to generate predictions in real-time to help managers address problems of patient 

flow. Building a model for implementation involves several additional challenges to those 

encountered when simply optimising the technical performance of a prediction model. These 

include preparing training examples of incomplete visits from historic data in which visits 

have been completed22, making decisions about the temporal framing of the model (for 

example, at what point in the visit to check if the outcome of interest has occurred)23, and 

planning for a drift in model performance over time24. Models for real-time prediction have 

been trained in clinical contexts such as circulatory failure in critical care25 and post-

operative complications26,27. These are contexts where patient observations are taken with 

high frequency whereas the frequency of data collection and the type of data collected varies 
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greatly from patient to patient in the ED. A patient in the resuscitation area of an ED may 

have frequent observations, while a patient in the waiting room has no data collected. These 

heterogeneous data profiles are themselves indicative of likelihood of admission. 

From the bed planners’ point of view, knowing the probability that a particular patient will be 

admitted is less valuable than knowing in aggregate how many patients to plan for. In this 

respect a prediction tool that can provide a probability distribution for the number of 

admissions in a given time frame is more useful than one that solely estimates probability of 

admission at the patient level. One study in emergency medicine derived an expected 

number of admissions among a roomful of patients in ED by summing their individual 

probabilities of admission28, but there was no presentation of the uncertainty of their point 

estimates. Also, when making predictions for admissions within a time-window after the 

prediction is made, projections must allow for the number of patients not on the ED at the 

prediction time who will arrive and be admitted within the window29. 

If models are to be used operationally, their performance needs to be sustained over time as 

care provision, patient characteristics and the systems used to capture data evolve24. Real-

time operational models also need to cover the ‘last mile’ of AI deployment; this means that 

the applications that generate predictions can run end-to-end without human intervention. 

This last mile is the most neglected30, leading to calls for a delivery science for AI, in which 

AI is viewed as an enabling component within an operational workflow, rather than an end in 

itself31. 

This research aimed to harness the heterogenous stream of real-time data coming from 

patients in the ED of a UK hospital to make predictions of aggregate admissions in a short 

time horizon. Bed planners at the hospital were closely involved with the research team to 

specify their requirements. They requested predictions for bed requirements in the next four 

and eight hours to be sent at four times daily, to coincide with their own capacity reporting. 

As part of the project, we developed an application that formats and sends an email to the 
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bed planners at the four report times. See Supplementary Note 9 for details of the bed 

planners’ workflow and the application we created. In this paper, we explain how the 

predictions are generated, evaluate their performance and compare them with standard 

benchmarks. 

The contributions of the research are: the development and deployment of a ML-based 

information product in use in hospital operations; the demonstration of a method to train ML 

models for real-time use when patient-level data is variable between patients and over the 

course of individual visits; the incorporation of a method to aggregate individual-level 

predictions for operational planning purposes; and an exposition of some of the challenges 

associated with developing models for real-time implementation. 
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Figure 1: Example of the seven-step prediction pipeline using a real example, predicting the number of 
admissions within 4 hours after 16:00 on 11 May 2021  
a illustrates the roomful of patients in the ED at the prediction time on the day of interest, grouped according to 
how long they had been in the ED since arrival. b shows each patient’s probability of admission, generated using 
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a set of ML models. These are combined in c into a probability distribution for the number of admissions among 
this roomful of patients.  d shows the probability of admission within 4 hours calculated from recent data on time 
to admission, taking into account the time the patient has been in ED up to the prediction time  e shows a 
distribution over the number of admissions among the roomful of patients in the prediction window of 4 hours. f 
shows a probability distribution over the number of patients who have not yet arrived, who will be admitted in the 
prediction window, generated by a Poisson equation. g shows the final probability distribution for the number of 
admissions within the prediction window 

Results  

Figure 1 illustrates a real example of predictions generated at 16:00 on 11 May 2021 using 

the seven-step pipeline built through this work. As noted above, the bed planners wanted 

these predictions at four times daily (06:00, 12:00, 16:00 and 22:00). The following 

paragraphs present an evaluation of the predictions made at the four prediction times on a 

test set of 97 days from 13 December 2019 to 18 March 2020. 

At each prediction time, EHR data on the set of patients in ED was retrieved (Step 1). A ML 

prediction was made for each about their probability of admission at Step 2. At Step 3, the 

individual probabilities were combined to give a probability distribution for the number of 

admissions from the patients currently in ED. At Step 4, the individual probability of 

admission for each patient was combined with survival analysis to give for each patient the 

probability that they would be admitted within the prediction window, accounting for when 

they arrived and the number of patients in ED when they arrived. At Step 5 the individual 

probabilities from Step 4 were combined to give a probability distribution for the number of 

admissions within the prediction window from patients currently in the ED. At Step 6 Poisson 

regression was used to give a probability distribution for the number of additional patients 

that would arrive and be admitted within the prediction window. Finally, at Step 7, the 

distributions obtained at Steps 5 and 6 were convoluted to give a probability distribution for 

the total number of admissions within the prediction window by patients currently in the ED 

and others yet to arrive. 

Results for steps 1-2: Machine learning to estimate individual probability of admission  

The most important features for admission prediction selected by the XGBoost classifier are 

shown in Figure 2a for 12 distinct models developed for use with patients that have been on 
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the ED for increasing periods of time, where model T15 is based on data available within the 

first 15 minutes of a visit and T240 based on data available within the first 240 minutes etc. 

See Supplementary Table S2 for a glossary of features.  

Among the visit features, age, arrival method and previous admission are initially important 

but these diminish as elapsed time passes and signals from other features become stronger. 

Among the location features, being in a waiting area, or being in the resuscitation area 

(Resus), are important between 15 and 120 minutes. (See Supplementary Note 1 for more 

information on the locations within the ED). After 180 minutes, having visited or being in the 

Mental Health Stream (MHS) is important; this location is used for people with mental health 

disorders who are usually discharged to a specialist facility but who often stay in MHS for a 

long time. That explains why MHS is so important in the T720 model, whose training 

examples include a higher proportion of MHS visits. After 240 min, being in the Clinical 

Decision Unit (CDU) becomes important; this location is for people waiting for test results or 

being observed, prior to discharge.  

Among the observation and consults features, the number of consults with inpatient 

specialists, signalling likely admission, is important in all models, especially between 180 

and 360 minutes. Triage scores are important up to 60 minutes, and the National Early 

Warning Score (NEWS) remains important up to 240 minutes. The cumulative number of 

measurements taken, and the number of times certain indicators are recorded, like nurse 

checks of body pressure areas, are more important later in the ED stay, presumably 

reflecting sustained attention by staff to more unwell patients. Among the pathology 

features, test result values and the number of out-of-range results become important from 

60 min onwards, as lab tests results start to be returned to the ED. Requests for certain sets 

of lab tests (bone profile and C-reactive protein) are important for longer-staying patients. 

The performance metrics for each model are shown in Figure 2b. The models achieved 

lowest log loss when presented with patients with elapsed times of between 30 and 120 
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minutes, and the best Area Under the Receiving Operating Curve (AUROC) of 0.90 between 

90 and 180 minutes. Up to this point, few patients have departed, so the models can 

differentiate well between likely admissions and discharges. As time goes on, the more 

straightforward discharges and admissions are made, the number of training examples 

diminishes (see Figure 2b) and the case mix includes a higher proportion of more clinically 

complex cases which are harder to predict. 
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Figure 2: Feature importance and performance for each model on test set  
a shows the feature importances, presented for ease of interpretation in four groups (visit data, location history, 
observations and consults, and pathology). The colour intensity reflects the relative importance of each feature 
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within each model. For simplicity of presentation, a feature is excluded from the figure if it had a raw importance 
of less than 0.01 in all models. b shows the number of visits, admission proportion and performance of each 
model. See Supplementary Table S2 for a glossary of features and Supplementary Note 6 for equivalent analysis 
of later visits during the Covid-19 pandemic 

Calibration plots for each ML model are shown in Figure 3, applied to all visits in the test set. 

All models are well calibrated, up to the final two models which related to a very small subset 

of visits where patients remain in the ED after 8 hours.  

 

Figure 3: Calibration plots for each of the ML models applied to the test set 
 

In additional analyses we found XGBoost to outperform Random Forest (RF) in terms of log 

loss on all 12 models (Figure 4). Logistic Regression with Lasso regularisation gave 

performance almost as good as XGBoost, with increased regularisation (and as a 

consequence sparser regression models) giving less good performance (Figure 4).  Both 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 1, 2022. ; https://doi.org/10.1101/2022.03.07.22271999doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22271999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Random Forrest and Logistic Regression models drew on similar feature sets to XGBoost 

(Supplementary Note 8).  

 

Figure 4: Comparison of model performance of XGBoost, Random Forest and Logistic Regression on test set 
For each set of 12 models (T0 to T720), the log loss achieved by each algorithm is shown as a circle with a line 
to link circles representing the same algorithm. Logistic regression (LR) results are in red with diminishing line 
solidity as lambda, the penalty value, is pushed towards greater regularisation. Lamda.min is the value of lambda 
with minimum cross-validated error, which is the optimal model. Lambda.2se is the value that gives the most 
regularised model such that the cross-validated error is within 2 standard errors of the minimum. Lambda.3se 
and Lambda.4se are within 3 and 4 standard errors respectively.  

Results for steps 3-7: Aggregated predictions of number of emergency admissions  

In the remaining steps, individual probabilities at the patient level were aggregated into 

probability distributions over the number of admissions at each prediction time. Figure 5 

uses QQ plots to evaluate the concordance between observations and the predicted 

distributions created at Steps 3, 5 and 7 of the prediction pipeline (see Methods for more 

about the intervening steps). From visual inspection of the QQ plots, there is very good 

concurrence between the predicted distributions and observations after Step 3. 

(Concurrence at Step 3 was worse when using only 3 rather than 12 models at Step 2, as 

explained in Supplementary Note 7 and shown in Figure S17.) After Step 5, concurrence 
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remains good, although (especially for an eight-hour prediction window) the predicted 

distributions underestimate slightly the number of admissions within the prediction window, 

suggesting that patients were taking less time to be admitted than predicted. Similar 

concurrence is observed after step 7.  

 

Figure 5: QQ plots evaluating the predicted distributions of the number of admissions after Steps 3, 5 and 7. 
Abbreviations: cdf (cumulative distribution function).  
The first column of plots evaluates the distributions for all patients currently in the ED, without applying a 
prediction window. The second column evaluates the distributions for all patients currently in the ED, with a 
prediction window of 4 and 8 hours. The third column evaluates the distributions for all patients currently in ED 
with a prediction window and including patients yet to arrive. 

Figure 6 compares the model predictions with the conventional six week rolling-average 

benchmark for daily admissions, adjusted for use at 16:00 hours (see Methods for how this 

was derived). Mean Absolute Error (MAE) was used to compare the approaches, as this 

avoids positive and negative deviations cancelling each other out, and the error was also 

expressed as a percentage of observed admissions to derive a mean percentage error 

(MPE). The prediction pipeline underestimated the number of admissions within the 8-hour 

window but performed better than the benchmark (MAE of 4.0 admissions with MPE of 17%, 

compared with 6.5 and 32% for the benchmark).  
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Figure 6: Comparing model predictions with six week rolling average benchmark for number of admissions within 
a prediction window of 8 hours after 16:00, including patients who are yet to arrive 
a shows the difference between the observed number of admissions and the expected value from the probability 
distribution for the model predictions (the red dots) and between the observed number of admissions and 
expected value from the benchmark (the blue dots). Where the expected value equals the observed value, the 
dots fall on the x axis (y = 0). The grey shaded band represents the range of probability between the 10th and the 
90th centile of the cumulative probability distribution of the model. b shows the distribution of errors (difference 
between observed and expected). See Methods for a rationale for conducting the evaluation at 16:00 with an 8-
hour prediction window. 
 
 

The results were achieved using data from May 2019 to March 2020, before the Covid-19 

pandemic took hold in the UK. In Supplementary Note 6 we present the results of modelling 

two alternative datasets; one which starts at the point of the Covid outbreak, and one trained 

only on the period after SDEC was introduced. Patterns of feature importance 

(Supplementary Figure S11) and model performance (Supplementary Figure S12) were 

largely consistent across the three datasets. The seven-step pipeline needed one 

adjustment to accommodate the greater variation in both patients and operational conditions 
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after the outbreak of Covid; this was to refine the survival curve used in Step 4 to draw only 

on rolling data from the past six weeks.  

Discussion 

Our work is one of the first examples of a ML-based modelling approach that is designed 

and fit for the purpose of informing real-time operational management of emergency 

admissions. The predictions outperformed the conventional six-week rolling average 

benchmark. Moreover, the prediction pipeline improved on the benchmark (which only 

projects up to midnight) by enabling predictions for short time-horizons of 4 and 8 hours at 

various times throughout the day. When adapted to take account of operational variations in 

how long it takes a patient to be admitted during the state of flux introduced by the 

pandemic, the predictions made using models trained on data following the Covid outbreak 

were also able to improve on the benchmark. The results were achieved using only data that 

are available for inference in real-time.  

The predictions were based on ML models that have equivalent or better performance to 

other studies. Using logistic regression (LR), Barak-Corren et al19 achieved an AUROC of 

0.82 in their 10 minute model (augmented by free-text chief complaint data that was 

retrospectively encoded), compared with 0.85 at 15 minutes here without chief complaint; 

they achieved an AUROC of 0.83 after 120 minutes, compared with 0.90 here. Using 

XGBoost, Barak-Corren et al33 achieved AUROC of 0.87–0.93 with a 60 minute model, 

compared with 0.89 here, and Hong et al 10 achieved 0.87 with triage data. The challenge for 

predictions using ED data is the sparse and heterogenous nature of the recorded data. This 

study created complex models with many features, without dropping visits with missing data 

as other scholars have done21, and included real-time location features that proved to be 

important for the long-staying patients who are more difficult to predict for. To exploit the 

evolving predictive power of features, including data-completeness during patients’ visits to 

ED, 12 temporally framed models were used; Supplementary Note 7 shows the value added 
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by the use of 12 models compared to  3, (the number chosen by Barak-Corren et al33), 

confirming that additional models contribute to superior performance. We found that 

XGBoost outperformed Random Forest and that LR optimised with Lasso regularisation was 

a close second. More heavily regularised LR models also performed well, suggesting that 

sparser models could potentially achieve acceptable performance in data-poor settings. That 

said, we note that that the full set of variables was available for inclusion in the regression 

models.  In addition to good predictive performance, the XGBoost and other classifiers used 

here have the benefit of being more interpretable than other algorithms such as neural 

networks, giving some insight into how the models derive their individual-level predictions. 

Patterns of feature importance and model performance were largely consistent across three 

different datasets, confirming that the ML models are relatively robust to changes brought 

about by the pandemic. 

This study is also, to our knowledge, one of few to aggregate patient-level probabilities into 

predictions of bed demand. Peck et al’s28 proposed summation of probabilities to calculate 

running bed need does not quantify uncertainty, and England et al’s34 simulations do not 

benefit from real-time data. The prediction pipeline generated output that could be evaluated 

at each step, which means that, when applied to data from later time periods, it is possible to 

identify (and potentially address), any weak step(s) in the pipeline. For example, a post-hoc 

change to the step that uses survival curves was made for the period following the Covid 

outbreak to address fluctuations in the flow of patients through the ED after the pandemic 

began. Other changes also required adjustments. Same Day Emergency Care (SDEC) was 

introduced late in 2020 and significantly changed how the ED is run. So, for the real-time 

information product currently in use, a training set starting in November 2020 was used to 

train the models, and the survival curves are updated nightly to use only time-to-admission 

data from the last six weeks. 

The need for a post-hoc adjustment to models is reflective of wider difficulties with drift for all 

predictive applications that learn from past data, including but not limited to those using ML. 
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Methods have been proposed for dealing with non-stationary learning problems35,36. Here a 

sliding window was applied to one step of the model, but changing patterns of ED 

presentations and/or changing operational practice may introduce drift or sudden changes in 

model performance, necessitating continuous monitoring. Here, the modular nature of the 

aggregation made it easy to swap out the bit that changed and retrain. No model of an 

evolving system can be expected to predict accurately in perpetuity, so some human action 

to monitor and revise models is acceptable and indeed expected by patients37. It is also 

important to alert users of the application if prediction quality deteriorates and we intend to 

do this in a future release. Nonetheless there is evidence for the robustness of the models. 

The ML models draw on similar features before and during Covid (see Supplementary Note 

6) suggesting that the signals of likelihood of admission remain somewhat consistent.  

The hospital where this work was conducted is urban with a student and commuter case mix 

and no major trauma centre. As ED organisation varies between hospitals (especially 

location and pathways) the cross-site generalisability of the findings may be restricted to 

similar hospitals. But aside from those based on location, the risk factors for admission found 

here are familiar in ED practice and therefore likely to be common to other sites33. There are 

limitations to this study. Some features used in other studies19,21 are not available here, 

particularly chief complaint and imaging. Because presentations at ED are seasonal, ideally 

models have more than one complete annual cycle to learn patterns from12; in fact the two 

years in this study were very different, affected by organisation changes and the impact of 

Covid-19 on health services. Future research in this setting could benefit from longer training 

periods, and focus on predictions of onward destinations, following El-Bouri21, to distinguish 

between demand for medical versus surgical admissions, and perhaps to differentiate 

demand according to infection status with respect to Covid-19 or other infectious diseases.  

This study was novel in two respects. From a research point of view, the use of real-time 

EHR data is new in the literature on emergency admissions, as is the aggregation of patient-

level predictions into data for operational use. In future studies, researchers may find it 
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useful to deploy the prediction pipeline proposed here in healthcare settings with sparse and 

heterogeneous flows of patient data, such as outpatient clinics. Second, it presented an 

information product in use, co-designed with bed managers with continued, and ongoing, 

iterations to meet their needs. Few published studies complete the ‘last mile’ of AI 

deployment by reporting on models in production38. Here we demonstrate an application of 

ML in that last mile, providing an example of how ML for healthcare will need to be delivered 

if it is to become a dependable and reliable tool. This work draws attention to some 

challenges that make technically high-performing systems perform poorly for their intended 

use, including model drift, and considers how to address them.  

In a resource-constrained environment, the benefits of ML implementations must be weighed 

against the costs. Our study was designed under the assumption that better information 

would improve bed planners’ ability to manage the complexities of patient flow, but its 

benefits are hard to isolate from the contribution of other workflows and initiatives in a 

complex and changing environment. The costs of implementation were small as the hospital 

had already invested in the infrastructure to utilise data from the EHR, and no data entry was 

required by clinical staff in real-time. Other settings without the upfront investment in 

infrastructure might be able to achieve similar results with fewer data points and simpler 

models, as suggested by our LR results, and it may be possible to implement some 

predictive models within an EHR.  Ultimately of course, crowding in EDs is an outcome of 

system-wide issues downstream such as bottlenecks and capacity constraints7,39. AI does 

not do anything on its own; to succeed, it must be connected to real-world processes40.  

Methods  

Data source 

The source of the data is HL7 messages generated by Epic, the hospital’s EHR system. 

These are captured as they are issued, and stored in EMAP, a PostgresSQL relational 

database that is kept up to date with latency of less than 5 minutes. The database records a 
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subset of the full patient record, including observations, pathology orders and results, 

location of patients, consult requests, and a summary of prior visit history.  Data were 

analysed with R version 4.0.0 using MLR3 packages41 to manage the ML pipeline. The real-

time application is run on a security-enhanced Linux machine within the hospital network.  

The study was deemed exempt from NHS Research Ethics Committee review as there is no 

change to treatment or services or any study randomisation of patients into different 

treatment groups. It was considered a Service Evaluation according to the NHS Health 

Research Authority decision tool (http://www.hra-decisiontools.org.uk/research/).  

Study population and datasets 

The data include all inpatient and emergency visits involving an ED location from 1 May 

2019 to 19 July 2021. Pre-processing steps are shown in Supplementary Figure S1. Patients 

under 18 on the day of admission were excluded, as were the very few who died in ED and 

those who self-discharged. After filtering, there were 213,985 visits. In total 36,225 (20.7%) 

visits ended in admission. Supplementary Note 2 explains how the outcome of admission 

was derived. The distribution of the outcome variable at different report times, and in periods 

before and during Covid, is shown in Supplementary Figure S2.  

From March 2020 onward, three notable changes happened that could be material to the 

modelling process. First, as Covid-19 case numbers have fluctuated through various surges, 

EDs have had to deal with the uncertainties of a new disease and changing clinical case 

mix. Second, operational conditions, in terms of levels of busy-ness, have been highly 

variable. Numbers of presentations fell dramatically in late March 2020 (see Supplementary 

Figure S3) and patients were processed quickly. After a quiet period in April to June 2020, 

presentations gradually climbed, reaching pre-pandemic levels by mid-2021 and EDs have 

become progressively busier and slower to admit patients. Third, structural changes have 

led to various reconfigurations of care pathways, including: the introduction of Same Day 

Emergency Care (SDEC) in December 2020 intended to avoid unnecessary admissions42; 
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the resumption of primary care and urgent pediatric services; the accelerated vaccination 

campaign and; the establishment of ambulatory services for the treatment of mild to 

moderate Covid cases. We therefore modelled three datasets; a pre-Covid dataset up to the 

point of the Covid outbreak in the UK on 19 March 2020, a Covid dataset running from then 

to 19 July 2021, and one trained only on the period after SDEC was introduced, which runs 

from 17 November 2020 to 19 July 2021. 

Visits were added to training, validation and test sets chronologically with the test set 

containing the most recent 20% of days, and the validation set the 10% before that, as 

shown in Supplementary Figure S3. This temporal split avoids any leak of future information 

into the past, and allows for a fairer test for problems with temporal drift that are commonly in 

real-time implementation24. See Supplementary Table S1 for a detailed explanation of how 

the training, validation and test sets were used to prepare models and regression equations, 

and to evaluate the predictions, at each step of the pipeline.  

Design of prediction pipeline 

Our pipeline was designed to generate bed-level predictions from real-time patient-level data 

streams. We have four prediction times in the day and use data from an observation window 

to make predictions about the number of admissions in prediction windows of 4 and 8 hours 

after each prediction time (italics refer to the terminology of Lauritsen et al23). We 

constructed the aggregate predictions in a series of seven steps (see Figure 1). Figure 7 

shows the temporal detail for each step at a hypothetical moment when four patients were in 

the ED at the prediction time, and an unknown number of patients could be expected to 

arrive after the prediction time and be admitted within the prediction window.  
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Figure 7: Temporal framing of each step in the process of making aggregated predictions 
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Methods for Steps 1-2: Machine learning for predictions of individual probability of admission  

Using Lauritsen et al.’s 23 terminology, samples were left-aligned for training and right-

aligned for prediction, as shown in Figure 8. A series of 12 models, each trained on 

successively longer elapsed times in ED, was created. For example, model T60 was trained 

on all visits lasting more than 60 minutes and any data timestamped as recorded within 60 

min of the patient’s arrival. For ease of interpretation, features are described here in four 

groups. The visit features included demographics, prior visit history and the nature and 

timing of the patients’ arrival. Location features included the patient’s location within the ED 

at the time of the prediction, and locations visited previously. Observation and consults 

features included triage scores, vital signs, the use of respiratory support and other data 

recorded by staff. Counts of each type of observation and latest values were used as 

features. Observations were also summarised by counting: how many observations were 

recorded; how many different types of observations were recorded; how many recording 

events took place; and how many specialist consultations were requested. Pathology 

features included requests for sets of lab tests, and latest results on a selection of tests 

clinically associated with acute illness. Pathology features were summarised by counting the 

number of out-of-range results that were higher, and the number that were lower, than the 

relevant target range for the patient. A glossary and descriptive statistics for features used 

T0, T90 and T240 models for the pre-Covid period are in Supplementary Table S2. 

Supplementary Table S3 has descriptive statistics for the T90 model in the various periods 

analysed (pre-Covid, during Covid and post-SDEC). Supplementary Figure S4 shows how a 

Covid surge feature was derived for the periods after the Covid outbreak.  
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Figure 8: Temporal framing of ML models 
A series of left-aligned datasets was constructed for training as shown in a. In each, the observation window 
began at the patient’s arrival time in the ED. Successive models were trained on longer observation windows. 
Model T0 had a zero minute cutoff, ie was given only the data known at the arrival time. Model T15 was trained 
on any data known up to 15 mins. Thus visit A, which lasted less than 15 min, only appears in T0. Model T30 was 
trained on any data known up to 30 min, so would only include data from visits D, E and F. To make predictions, 
right-aligned datasets of all patients in the ED at the time of prediction, as shown in b, were created. For each 
patient, the elapsed time of their visit determined which model was used to predict their probability of admission. 
Visit I began just less than 30 minutes before the prediction time, so this would be predicted by model T15. Visit 
K began just more than 30 minutes before the prediction time, so model T30 would be used for this visit.  

The size and class balance of the dataset used for each model are shown in Supplementary 

Figure S5. As elapsed time increases, fewer patients remain and the proportion of 

admissions increases. An extreme gradient boosting (XGBoost) classifier43 was trained on 

each of the 12 datasets using a binary logistic loss function to generate a probability of 

admission. XGBoost was chosen due to its efficiency and capability of processing large 

datasets, its ability to handle missing data and imbalanced datasets, and (relative to other 

ML algorithms) its interpretability. Ten-fold cross-validation was used to find 

hyperparameters for each model, optimising for log loss, and the validation set used to 

assess held-out performance of individual-level models and the whole pipeline during 

development44. See Supplementary Note 3 for details on class balance, tuning and feature 

generation. To evaluate the individual-level probabilities, predictions were generated for all 

visits in the test set period and scored using log loss and AUROC as shown in the Results. 
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Log loss was considered the most important metric, because, for input into the aggregation 

steps, accurate probabilities are more important than classification.  

Predictions from XGBoost were compared with Random Forest (RF) and from Logistic 

Regression (LR). For RF and LR, missing values were imputed at the median. Lasso 

regularisation was applied to LR using the Lasso and Elastic-Net Regularized Generalized 

Linear Models (GLMNET) algorithm developed by Friedman et al 32. A series of Logistic 

Regression equations were created, using the lambda parameter – ranging from 

lambda.min, the optimal value, to lambda.4se, which is the most regularised model with a 

mean loss that was 4 standard errors away from that of the lambda.min model – to force 

greater model sparsity. More details are provided in Supplementary Note 8.  

A post-hoc analysis evaluated the use of 3 models at Step 2, whereby visits were stratified 

as less than 90 min, less than 240 min and the remainder, with  the T0, T90 and T240 

models applied respectively (see Supplementary Note 7 for details). 

Methods for Step 3: Aggregation into a probability distribution 

At each prediction time, the probabilities of admission for every individual in the ED 

estimated at Step 2 were combined to give a predicted cumulative distribution function (cdf) 

for the aggregate number of admissions among this group (see for instance Utley et al29). 

The observed number of admissions associated with each prediction time was mapped to 

the midpoint of the relevant portion of its respective predicted cdf45. A plot of the cumulative 

distribution of these mapped observations against the predicted cdf was constructed to give 

a visual guide to the concurrence between the predicted distributions and the observations 

analogous to a QQ plot44. 

Methods for Step 4-5: Survival analysis for time to admission and aggregation 

Survival analysis applied to ED visit durations among admitted patients was used to estimate 

the probability of a patient that had been on the ED for a given time being admitted within the 
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prediction window conditional on them being admitted eventually, with Cox regression used 

to adjust such probabilities to account for the time of the patient’s arrival (time of day, 

weekday or weekend, quarter of year) and the occupancy of the ED at that time. (See 

Supplementary Note 4 for more details and Supplementary Table S4 for regression 

coefficients.)  This analysis was combined with the probabilities of admission estimated at 

Step 2 to give a probability for each patient in the ED at the prediction time of being admitted 

within the prediction window. These probabilities were then combined to give a predicted 

cumulative distribution function for the aggregate number of admissions within the prediction 

window among this group (as per Step 3).  

Methods for Step 6-7: Poisson analysis for patients who have not yet arrived and 

aggregation 

At each prediction time during the training set periods, a count was made of the number of 

patients not on the ED at the prediction time who were admitted via ED within the prediction 

window. A Poisson regression was fitted to the count data, with coefficients for the prediction 

time of day (06:00, 12:00, 16:00 and 22:00), quarter of year, and weekday or weekend. (See 

Supplementary Note 5 for more details and Supplementary Table S5 for regression 

coefficients.) The resulting coefficients were used to generate a probability distribution for 

the relevant prediction time of patients who have not yet arrived, and this was convoluted 

with the output from Step 5 to generate the final aggregated predictions of number of 

admissions within the prediction window, which was evaluated using QQ plots as in Step 3.   

Methods for final evaluation: comparison with benchmarks 

Comparison with the commonly used six week rolling average was not straightforward, as 

this metric is for a 24 hour prediction window from midnight. A direct comparison with it is 

only possible for a prediction window that ends at midnight. Following practice in the 

hospital, the observed number of admissions up to 16:00 was subtracted from the daily 

rolling average to derive a prediction for the period from 16:00 to midnight for the 
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benchmark. This was compared with the models’ 8 hour predictions at 16:00 for all report 

days in the test set, illustrated in Figure 6.  

Data availability 

The datasets analysed during the current study are not publicly available: due to reasonable 

privacy and security concerns, the underlying EHR data are not easily redistributable to 

researchers other than those engaged in approved research collaborations with the hospital. 

Code availability 

The code used in this project is available at https://github.com/xxxxxx/real-time-admissions 
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