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Abstract 44 

Computer-aided drug discovery (CADD) is a widely used method for drug discovery 45 

with many successes. Meanwhile, CADD has the limitation of analyzing multi-level 46 

scores such as docking results of multiple proteins with multiple drugs. We propose a 47 

method of PageRank to solve the problem. This method can make a comprehensive 48 

ranking based on multi-level scores. Then we take an example of therapeutic 49 

hypothermia (TH). Three levels of TH data were used in the article: the log2 50 

foldchange (logFC) of proteins, the relative expression values of mRNA, and the 51 

docking scores of proteins and molecules. After calculation, we get the 52 

comprehensive drug rank and drug combination rank of each group of TH, which 53 

means we can generate the rank of drug directly from bioinformatics. Based on this 54 

method, we raised the concept of bioinfo-pharmacology.  Given the high rationality 55 

and compatibility of bioinfo-pharmacology, it can effectively enhance popular drug 56 

discovery techniques such as the docking or pharmacophore model. Besides, it could 57 

advance the application of precision medicine. 58 

 59 

Keywords: computer-aided drug discovery (CADD); precision medicine; Therapeutic 60 

hypothermia; virtual screening; 61 
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Introduction 66 

Drug discovery is an expensive and time-demanding process that faces many 67 

challenges, including low hit discovery rates for high-throughput screening, among 68 

many others.[1,2] Methods of computer-aided drug discovery (CADD) can 69 

significantly speed up the pace of such screening and reduce the cost. Until now, 70 

CADD has achieved important results. [3–5] 71 

Meanwhile, CADD also has limitations. Researchers can only get the best match for a 72 

particular target (drug development), or the best match for a particular molecule 73 

(network pharmacology[6]). As a result, most pharmacological studies currently work 74 

on a single target. However, according to bioinformatics databases, 75 

diseases/treatments exist multiple targets, which generate complex regulation 76 

functions, in the different stages of diseases/treatments.[7]  77 

Take therapeutic hypothermia as an example. Therapeutic hypothermia (TH) can limit 78 

the degree of some kinds of injuries in randomized trials[8] and animal 79 

experiments[9], and is even the only effective method for some diseases especially 80 

hypoxic-ischemic encephalopathy (HIE). HIE often causes severe neurological 81 

sequelae, which is the main reason for the poor prognosis of patients with stroke, 82 

shock, carbon monoxide poisoning, cerebral hemorrhage, and cardiac arrest.[10–12]  83 

In the research based on TH, cold shock proteins especially cold-induced RNA 84 

binding protein (CIRP) show high expression [13] and rapid response [14]. CIRP has 85 

been shown to promote the translation of genes involved in DNA repair [15,16], 86 

telomerase maintenance[17], and genes associated with the translational 87 

machinery[18]. 88 

However, if CIRP leaks to the intercellular substance with cell swelling and rupture, it 89 

will become a harmful protein. Extracellular CIRP (eCIRP) showed a strong pro-90 

inflammatory effect, leading to a heavier hypoxic injury.[19,20] Because of the habit 91 

of clinical medication, we cannot determine whether there are drugs that affect the 92 

therapeutic effect before and after the beginning of TH. 93 

With the development of protein prediction technologies, especially AlphaFold2[21] 94 
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and RoseTTAFold[22], we can obtain the three-dimensional structure of proteins 95 

more quickly and accurately. All target proteins’ structures can be predicted, and their 96 

best antagonists can be obtained by molecular docking. However, there is no 97 

technology for comprehensively ranking the cross-level data of numerical evaluation. 98 

To solve the complex function differences by temporal and spatial distribution 99 

differences of proteins, we use personalization-weight-PageRank to rank drugs 100 

targeting proteins predicted by AlphaFold2 and RoseTTAFold at different groups to 101 

predict the best drugs or drug combinations for each group. Based on these, we came 102 

up with the concept of bioinfo-pharmacology.   103 
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Method 104 

Experiment design 105 

As shown in Figure 1, the representative experiment of bioinfo-pharmacology is 106 

divided into 5 processes: 1. Protein or mRNA chosen by bioinformatics analysis; 2. 107 

Protein and drugs 3D structure acquisition and prediction; 3. Proteins’ active sites 108 

prediction; 4. Drug/molecular group evaluation with target proteins; 5. PageRank of 109 

docking results, protein logFC, and mRNA expression. The experiment of animals or 110 

cells is referred by authors, but not forced. The biggest difference from previous 111 

studies is PageRank. 112 

 113 

The data source of bioinformatics analysis 114 

We retrieved the original data of mRNA expression under hypothermia treatment from 115 

the website of The National Center for Biotechnology Information (NCBI) 116 

(GSE54229). The research was reported by Sten et.al.[14] In their research, mouse 117 

embryonic fibroblasts were exposed to mild hypothermia (32°C) or normothermia 118 

(37°C) to gain the transcription response induced by hypothermia.  119 

 120 

Expression Profile Analysis 121 

The log2 fold-change (log2FC) and p-value were calculated for the normothermia 122 

group. Top 3 log2FC mRNA with q-value < 0.05 were selected from each group to 123 

enter the next step. If there exists mRNA with failed protein structure prediction, the 124 

mRNA would be skipped. 125 

R 3.6.1 was used to detect differential expressed compared to matched normothermia 126 

samples. The clustering of genes was calculated by the “dist” and “hclust” function of 127 

R. The visualization of gene expression and clustering is performed by the 128 

“dendextend” package.  129 

 130 

3D Data of proteins and small molecular drugs 131 

All proteins were first searched on PubMed to see if there was protein clipping like 132 
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cleaved caspase-3[23]. 133 

Then the 3D structures of proteins were firstly searched from Protein Data Bank 134 

(PDB), which is used for biological-related ligand-protein interaction. In this article, 135 

no protein structure is listed on the PDB website. All the protein structures were 136 

predicted by AlphaFold2 and RoseTTAFold.  137 

AlphaFold2 is developed by Google and is the champion of the 14th Critical 138 

Assessment of Structure Prediction (CASP14). In August 2021, AlphaFold submitted 139 

a structure prediction database for all proteins. RoseTTAFold is based on the Rosetta 140 

software which is designed for macromolecular modeling, docking, and design[24] 141 

RoseTTAFold also has good application[25] in the research of protein structure 142 

prediction. Finally, protein structures with fewer irregular regions will be selected for 143 

the next step. 144 

The 3D structures of 8,697 drugs (DrugBank, 5.1.8) were downloaded from 145 

DrugBank Online (https://go.drugbank.com/). Approved, experimental, nutraceutical, 146 

and investigational drugs by Food and Drug Administration (FDA) are included. We 147 

split each drug molecule into a PDBQT-format file and minimized the energy 148 

separately for docking with proteins. 149 

 150 

Visualize evolutionary conservation and active site prediction 151 

Visualize evolutionary conservation was performed by the ConSurf server[26]. In a 152 

typical ConSurf application, through BLASTed[27] against the UNIREF-90 153 

database[28] and aligning using MAFFT[29], the evolutionarily conserved positions 154 

are analyzed by the Rate4Site algorithm.  155 

Then, the Consensus approach-D (COACH-D) [30] was used to predict the active site 156 

of target proteins. The COACH-D use five different methods to predict the binding 157 

sites of protein ligands. Four of these methods are COFAC-TOR[31], FINDSITE[32], 158 

TM-SITE[33], and S-SITE[33]. These methods predict binding sites by matching the 159 

query structure and sequence with the ligand-binding template in BioLiP[34], which 160 

is a semi-manual functional database[35] based on the PDB. 161 
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 162 

Virtual screening of potential compounds 163 

To evaluate the hit compounds obtained from DrugBank and calculate their 164 

interaction and binding posture in the active site of target proteins, the molecular 165 

docking method was carried out through QuickVina 2[36]. QuickVina 2 uses the 166 

calculation of shape and electrostatic potential similarity of binding pockets to select 167 

molecules, which may exhibit binding patterns like those of binding pockets. 168 

3D files of target proteins were dehydrated, hydrogenated. Then proteins were saved 169 

as PDBQT files using AutoDock. AutoDock assisted in assigning Gasteiger charges 170 

and adding polar hydrogen atoms to both the proteins and the compounds.  171 

 172 

Molecular dynamics simulation 173 

The molecular dynamics (MD) simulation was performed by Gromacs[37]. Firstly, a 174 

protein-drug complex was prepared, including adding hydrogenation and balancing 175 

charge. Then, we add a solvent so that the target protein and drug small molecules are 176 

coated. The forcefield was Chemistry at HARvard Macromolecular Mechanics 36 177 

(CHARMm 36). The simulation time is set as 50ns for the speed of calculation. The 178 

simulation temperature is 309.15K (36℃) and the pressure is 1 atm. Root mean 179 

square deviation (RMSD) and root mean square fluctuation (RMSF) were calculated 180 

based on the first frame. 181 

 182 

Personalization-weight-PageRank 183 

We use personalization-weight-PageRank to rank cross level data. PageRank is a 184 

comprehensive rank algorithm designed by Google and named after Larry Page.[38] It 185 

is one of the most famous ranking algorithms of network nodes based on Markov 186 

process. PageRank has been applied in medical domains with success.[39,40]  187 

Personalization and weight represent 3 different levels of score data. The weight of 188 

PageRank allows all nodes to be initially assigned different weights/probabilities.[41] 189 

In this article, the weights of rank were set to docking values of proteins and drugs. 190 
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The higher the docking value, the higher the connection rate of the complex. 191 

Personalization of PageRank reinforces the connection intensity between the nodes, 192 

which makes the result more personalized and realistic[42]. In this article, 193 

personalization is influenced by protein functions. If the protein performs a negative 194 

influence such as promoting apoptosis, the personalization will be calculated by 195 

2^(fold change) to ensure they are more than 1. Meanwhile, if the protein plays a 196 

positive role in the group, the personalization will be set as 1/(fold change + 1) to less 197 

than 1. The personalization values of all the drugs are set to 0 to prevent iterations of 198 

the drugs themselves from going wrong. 199 

The calculation process is like putting all proteins and all drugs in the solution, then 200 

simulating the connections between all proteins and drugs by calculation. The 201 

damping factor is set to 0.85 to simulate the metabolism of proteins and drugs. 202 

The whole calculation is based on Python 3.8.10. The relating python libraries include 203 

NetworkX, Pandas, and NumPy. We use Pandas and NumPy to import all the docking 204 

data into a matrix for PageRank calculating. The protein expression value is then 205 

imported by the PageRank personalization parameter of NetworkX. Lastly, we can get 206 

a comprehensive ranking of drugs. 207 

 208 

Prediction and Rank of combined pharmacotherapy 209 

In addition to the comprehensive ranking of drugs, we also try to generate the rank of 210 

drug combinations. Similarly, the calculation places all drugs of combination and 211 

target proteins in a solution to bind free.  212 

First, all drugs will be grouped according to the docking results of drugs in each 213 

combination. In this article, to reduce the amount of calculation, we selected the 214 

TOP20 drugs of each protein to include in the drug combination pool. Then, all the 215 

combinations were performed personalization-weight-PageRank against all protein 216 

targets. The sum of each score of all drugs in the combination is the final score of the 217 

combination. Lastly, we get the rank of combinations. 218 

To make the distribution of combinations more clear, we propose drug-protein-219 
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expression fit score (DPEFS) to show the data distribution pattern. The calculation is 220 

as follows: The PageRank values of all proteins were summed by multiplying logFC, 221 

then divided by the total PageRank values of drugs, and finally divided by the 222 

PageRank values of specific proteins for standardized calculation. It is used for 223 

standardized calculation for comparing different combinations. 224 

DPEFS evaluates the combination by referring to the protein expression trend. The 225 

higher the DPEFS, the better the fitness. In actual drug design, DPEFS is relatively 226 

high and PageRank score is relatively low, indicating that drugs of combination are 227 

relatively moderate, which suggests a negative outcome. All code can be found in 228 

GitHub (https://github.com/FeiLiuEM/PageRank-weight-drug).  229 
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Result 230 

Expression analysis and clustering of hypothermia 231 

Figure 2 shows the expressions of different mRNA of different groups after 232 

hypothermia. From the inside to the outside, the rings were divided into hypothermia 233 

0.5h group, hypothermia 1H group, hypothermia 2H group, hypothermia 4H group, 234 

hypothermia 8h group, and hypothermia 18h group.  235 

As shown in Table 1, in each group, we selected the top 3 expression protein targets. 236 

In the Hypothermia 0.5h group, the target proteins are circadian-associated 237 

transcriptional repressor (CIART), Glutathione-specific gamma-238 

glutamylcyclotransferase 1 (CHAC1), and Uridine diphosphate glucose 239 

pyrophosphatase nudix hydrolase 22 (NUDT22). The target proteins of the 240 

Hypothermia 1h group are CHAC1, corneodesmosin (CDSN), and Nuclear receptor 241 

subfamily 1 group D member 1 (NR1D1). The target proteins of the Hypothermia 2h 242 

group are cold-induced RNA-binding protein (CIRP), armadillo repeat-containing X-243 

linked protein 5 (ARMCX5), and coiled-coil domain-containing protein 122 244 

(CCDC122). The target proteins of the Hypothermia 4h group are CIRP, receptor 245 

activity-modifying protein 3 (RAMP3), and carcinoembryonic antigen-related cell 246 

adhesion molecule 1 (CEACAM1). The target proteins of the Hypothermia 4h group 247 

are the same: CIRP, RAMP3, and NAD(P)H dehydrogenase [quinone] 1 (NQO1).  248 

Within the targets, CHAC1 could enhance apoptosis[43]. NUDT22 is an Mg2+-249 

dependent UDP-glucose and UDP-galactose hydrolase[44], while high glucose shows 250 

a negative effect in HIE like stroke[45]. CCDC122 potentially pro-inflammatory[46].  251 

CIRP can effectively reduce cell death in the early stage of hypothermia therapy. 252 

However, it has a strong pro-inflammatory effect outside the cell, leading to cell 253 

killing. There is no definitive research on the timing of this shift. Referring to the 254 

previous article[47], we conservatively believed that CIRP could be identified as a 255 

negative protein from the 8H group. CEACAM1[48] and NQO1[49] promote 256 

apoptosis. All the other targets are shown protective effects or don't have enough data. 257 

The personalization values were calculated in Table 1. All the structures of target 258 
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proteins in Figure 3 were obtained by the rules in the section of Materials and 259 

Methods. 260 

 261 

Visualize evolutionary conservation and Structure-Function Relationship-Based 262 

Binding Site Prediction 263 

The conservation analysis of all the target proteins was listed in Figure 4A-K. The 264 

redder the amino acid, the higher possibility the amino acid sequence with function. 265 

Then we identified its structure-function relationship by the COACH-D server. The 266 

results showed a familiar result of conservation analysis listed in Figure 4L-V. As 267 

shown in Table 2, the range around 3-5 Å of the active site was used for the setting of 268 

the receptor pocket of the target proteins that were used for virtual screening.  269 

 270 

Virtual Screening of target proteins’ Antagonists 271 

We utilized the virtual screening technique to identify potential antagonists exhibiting 272 

an adequate binding affinity. We started with a chemical database consisting of 8,697 273 

drug molecules and isolated a set of compounds satisfying the threshold of a high 274 

docking score. The results of the best match complexes are shown in Figure 5 and all 275 

the results are listed in the Additional file Table 1. 276 

 277 

MD Simulations and Binding Free Energy Analysis  278 

We performed MD simulation of 11 complexes to measure the stability of the protein-279 

ligand complex. RMSD (root-mean-square deviation) profiles of the protein are 280 

shown in Figure 6A, which indicates that all systems were relatively stable during the 281 

entire simulation run. Moreover, RMSF profiles of protein are measured to evaluate 282 

the moving of each amino acid. All proteins are available for further analysis (Figure 283 

6B).  284 

The RMSD of drug atoms was also conducted to predict the stability of the atoms in 285 

docked complexes (Figure 6C). Most compounds exhibited a consistently low RMSD, 286 

suggesting that these compounds formed stable complexes.  287 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2022. ; https://doi.org/10.1101/2022.03.07.22271997doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.07.22271997
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

 288 

Drug rank of TH in different groups 289 

We rank all drugs by PageRank. First, we PageRank all the drugs and get the results 290 

in table3. 2-drug-combinations are ranked in Table 4 and 3-drug-combinations in the 291 

additional file Table 2. For comprehensive rank, the results of PageRank were listed. 292 

For drug-combination ranks, the percentages of each drug’s value in the combination 293 

were calculated. And DPEFS was calculated for analyzing the distribution differences 294 

of drug combinations. 295 

  296 
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Discussion 297 

In this paper, a new pharmacological method — bioinfo-pharmacology is proposed, 298 

using therapeutic hypothermia as an example. By bioinformatics analysis, protein 299 

structure prediction, and PageRank, we provide a direct bridge between 300 

symptom/treatment and drug design.  301 

AlphaFold2 and RoseTTAFold were used for protein structure prediction. And the 302 

number of proteins selected by AlphaFold2 in this research was close to that of 303 

RoseTTAFold. During the process of protein structure prediction, we found that for 304 

some proteins, the structures predicted by RoseTTAFold have less irregular structure 305 

than that of AlphaFold2. This may be due to the 2D distance map level transformed 306 

and integrated by RoseTTAFold during neural network training[22], while 307 

AlphaFold2 only paired structure database and genetic database. We also find a 308 

phenomenon that the predicted protein structures were relatively unstable under 309 

molecular dynamics simulation than preview reports of other protein structures 310 

detected by X-ray.  311 

The application of PageRank is suitable. First, the combination of drug molecules is a 312 

memoryless stochastic process, which meets the qualifications of the Markov process. 313 

Second, our method aims to simulate the binding process in vivo. The comprehensive 314 

analysis involves free docking of proteins with all drugs. Drug combination analysis 315 

is to put proteins and related drugs into the solution for docking. 316 

Besides, the method has good compatibility for the wide compatibility of PageRank. 317 

In theory, all the technologies with numerical results can be ranked by the method. In 318 

this paper, for the lack of bioinformatics data of Therapeutic hypothermia, we only do 319 

a basic analysis. If there is more data of the TH, the analysis of Weighted Gene 320 

Coexpression Network Analysis (WGCNA)[50] or Gene Regulatory Networks 321 

(GRN)[51] will be better because they could provide more plausible results of protein 322 

list.  323 

Meanwhile, pharmacophore models[52] can use bioinfo-pharmacology for highly 324 

efficient drug design. After ranking, top-ranked pharmacophore fingerprints or 325 
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alignments could be linked together for good pharmacological effects. And ultimately, 326 

improve the therapeutic effect of drugs, reduce toxic and side effects, improve the 327 

success rate of clinical trials of new drugs, save drug research and development costs.  328 

For the same reason, this method can also enhance network pharmacology and 329 

chrono-pharmacology. Network pharmacology[6] focuses on the application of 330 

protein network structures to improve drug discovery. By PageRank, the association 331 

between protein network structures and different drugs can be more accurately 332 

understood through comprehensive drug analysis of multiple targets rather than the 333 

previous single target. Thus, it has a good promotion effect on traditional herbal 334 

medicine research. In traditional herbal medicine, there may be multiple drug 335 

molecules in a single herb, and its complex multi-target problem can be efficiently 336 

analyzed by new methods. Another influenced area is chrono-pharmacology. Chrono-337 

pharmacology[53] is expert in the adaptation and anticipation mechanisms of the 338 

body concerning clock system regulation of various kinetic and dynamic pathways, 339 

including absorption, distribution, metabolism, and excretion of drugs and nutrients. 340 

By bioinfo-pharmacology, researchers can develop drugs for different time groups, 341 

which will bring precision medicine to this kind of diseases.  342 

Based on these potential improvements and high compatibility, we propose the 343 

concept of bioinfo-pharmacology for its ability to directly apply bioinformatics for 344 

drug discovery. Bioinfo-pharmacology is a method that uses bioinformatics, protein 345 

structure prediction, and PageRank for drug design. The main feature is that multiple 346 

targets target multiple molecules/pharmacophores. Overall, this approach builds a 347 

bridge between disease/treatment and drug development, bringing up more 348 

possibilities for future drug development.  349 

This research has some defects. 1: For the speed of calculating, we only choose the 350 

top 3 mRNAs and use the top 1 complex for MD simulation. Furthermore, the 351 

duration of molecular dynamics simulation is set to 50ns. These operations mitigate 352 

the rationality of the results relatively; 2. Theoretically, pharmacophore modeling has 353 

a better improvement under PageRank. But considering the purpose of the article, we 354 
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use AutoDock to dock all the marketing drugs.  355 

In summary, this paper proposes a new method of pharmacology—bioinfo-356 

pharmacology by PageRank. The results provide medical clues for the treatment of 357 

TH. Besides, it can help the functional research of proteins at the molecular level for 358 

experimental biologists. In addition, we can do drug combination analysis of drugs 359 

similarly. The new approach could have a huge impact on precision medicine, drug 360 

design, and traditional herbal medicine in the future. 361 

 362 

 363 

 364 
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Table 1. The target proteins of different groups. 547 

Group Target logFC Personalization 

0.5h 

CIART 0.46 0.42 

CHAC1 0.43 1.34 

NUDT22 0.40 1.32 

1h 

CDSN 0.52 0.41 

NR1D1 0.50 0.41 

CHAC1 0.50 1.41 

2h 

CIRP 0.80 0.36 

ARMCX5 0.66 0.39 

CCDC122 0.49 1.41 

4h 

CIRP 1.17 0.31 

RAMP3 0.91 0.35 

CEACAM1 0.87 1.82 

8h 

CIRP 1.57 2.97 

RAMP3 1.33 0.28 

NQO1 1.18 2.27 

18h 

CIRP 1.71 3.27 

NQO1 1.55 2.93 

RAMP3 1.32 0.29 

 548 
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Table 2. The docking parameters of target proteins. 552 

Protein 
name 

protein source X Y Z LEN-X LEN-Y LEN-Z 

ARMCX5 RoseTTAFold -7.06 31.20 -43.05 29.25 28.50 24.75 

CDSN RoseTTAFold 51.80 53.51 31.17 39.75 20.25 21.00 

CEACAM1 AlphaFold2 -41.13 3.42 5.67 39.75 22.50 22.50 

CHAC1 AlphaFold2 -3.04 -0.53 0.22 23.25 25.50 35.25 

CIART RoseTTAFold 36.79 -16.59 -36.23 28.50 38.25 22.50 

CIRP RoseTTAFold 14.48 2.86 -9.56 17.25 15.00 19.50 

NQO1 AlphaFold2 -1.86 -16.32 -9.20 29.25 29.25 28.50 

NR1D1 RoseTTAFold 0.34 35.70 10.28 39.75 25.50 24.75 

NUDT22 AlphaFold2 10.08 -12.04 14.09 17.25 38.25 22.50 

RAMP3 AlphaFold2 0.00 -10.93 -5.29 24.00 24.00 21.00 

CCDC122 RoseTTAFold 119.27 23.34 8.09 36.00 47.25 47.25 

 553 

 554 
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Table 3. The comprehensive rank of drugs at different groups. 556 

Gro
up Drug weighted_personalized_PageRan

k (*10-4) 

h0.5
h 

Fluzoparib 0.81 

Lorecivivint 0.80 

Vactosertib 0.80 

h1h 

Lorecivivint 0.81 

AC-430 0.81 

Raltegravir 0.80 

h2h 

Phthalocyanine 0.90 

Vazegepant 0.87 

Bemcentinib 0.86 

h4h 

Phthalocyanine 0.85 

3-(2-

AMINOQUINAZOLI
N-6-YL)-4-

METHYL-N-[3-
(TRIFLUOROMETH

YL)PHENYL]BENZ
AMIDE 

0.84 

Bemcentinib 0.84 

h8h 

Phthalocyanine 0.87 

MK-3207 0.86 

Lifirafenib 0.85 

h18h 

Phthalocyanine 0.87 

MK-3207 0.86 

Lifirafenib 0.85 

 557 
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Table 4. Rank of 2 drug combinations of different group. 

 drug1 drug2 

Pag-
eRank 
value 

of 
drug1 

per-
sentage 

Pag-
eRank 
value 

of 
drug2 

per-
sentage 

personal-
ized_weight_PageRank 

Drug-
pro-
tein-

expres-
sion fit 
score 

h0.
5h 

Lorecivivint Fluzoparib 0.41 49.85 0.42 50.15 0.83 2.30 

Vactosertib Fluzoparib 0.41 49.56 0.42 50.44 0.83 2.33 

2'-deoxy-N-(naphthalen-1-
ylmethyl)guanosine 5'-(dihydrogen 

phosphate) 
Fluzoparib 0.41 49.68 0.42 50.32 0.83 2.32 

h1h 

Lorecivivint AC-430 0.41 49.67 0.42 50.33 0.83 4.36 

Lorecivivint Raltegravir 0.42 50.12 0.41 49.88 0.83 4.40 

Lorecivivint Vactosertib 0.42 50.21 0.41 49.79 0.83 4.37 

h2h 

Phthalocyanine Vazegepant 0.42 51.42 0.40 48.58 0.82 4.65 

Phthalocyanine Bemcentinib 0.43 51.84 0.40 48.16 0.82 4.71 

Phthalocyanine Lifirafenib 0.43 52.28 0.39 47.72 0.82 4.64 

h4h 

3-(2-AMINOQUINAZOLIN-6-YL)-
4-METHYL-N-[3-
(TRIFLUOROME-

THYL)PHENYL]BENZAMIDE 

CD564 0.41 50.25 0.41 49.75 0.82 1.60 
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Adapalene 

3-(2-AMINOQUINAZOLIN-6-YL)-
4-METHYL-N-[3-
(TRIFLUOROME-

THYL)PHENYL]BENZAMIDE 

0.41 49.90 0.41 50.10 0.82 1.60 

3-(2-AMINOQUINAZOLIN-6-YL)-
4-METHYL-N-[3-
(TRIFLUOROME-

THYL)PHENYL]BENZAMIDE 

Phthalocyanine 0.42 50.52 0.41 49.48 0.82 1.60 

h8h 

Phthalocyanine MK-3207 0.41 49.91 0.41 50.09 0.83 3.94 

Phthalocyanine Lifirafenib 0.42 50.17 0.41 49.83 0.83 3.93 

Lifirafenib MK-3207 0.41 49.75 0.42 50.25 0.83 3.94 

h18
h 

Phthalocyanine MK-3207 0.41 49.91 0.41 50.09 0.83 4.95 

Lifirafenib MK-3207 0.41 49.77 0.42 50.23 0.83 4.95 

Phthalocyanine Lifirafenib 0.42 50.14 0.41 49.86 0.83 4.94 
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Figure 1. Representative workflow for bioinfo-pharmacology drug design. 1 
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Figure 2. Circular visualization of expression patterns and clustering of hypothermia 14 

treatment. Red indicates gene upregulation and blue indicates downregulation. 15 
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Figure 3. The 3D structures of target proteins. A. ARMCX5; B. CCDC; C. CDSN; D. 35 

CEACAM1; E. CHAC1; F. CIART; G. CIRP; H. NQO1; I. NR1D1; J. NUDT22; K. 36 

RAMP3. 37 
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Figure 4. The ConSurf analysis and predicted active sites of target proteins. The upper  55 

11 pictures are ConSurf analysis results. The last 11 pictures are predicted active sites. 56 

A&L. ARMCX5; B&M. CCDC; C&N. CDSN; D&O. CEACAM1; E&P. CHAC1; 57 

F&Q. CIART; G&R. CIRP; H&S. NQO1; I&T. NR1D1; J&U. NUDT22; K&V. 58 

RAMP3. The redder the amino acid, the more conservative it is. The greener the color, 59 

the less conservative it is. 60 
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Figure 5. The best docking molecular for each protein. A. ARMCX5; B. CCDC; C. 63 

CDSN; D. CEACAM1; E. CHAC1; F. CIART; G. CIRP; H. NQO1; I. NR1D1; J. 64 

NUDT22; K. RAMP3. 65 
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Figure 6. The RMSD and RMSF of MD simulation. A. The RMSD of proteins. B. The 71 

RMSF of proteins. C. The RMSD of each molecular of proteins. 72 
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