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Abstract 

Objective: To explore potential causal genetic variants and genes underlying the 

pathogenesis of uterine leiomyomas (ULs). 

Methods: We conducted the summary data-based Mendelian randomization (SMR) 

analysis and performed functional mapping and annotation using FUMA to examine 

genetic variants and genes that are potentially involved in the pathogenies of ULs. 

Both analyses used summarized data of a recent genome-wide association study 

(GWAS) on ULs, which has a total sample size of 244,324 (20,406 cases and 223,918 

controls). For the SMR analysis, we performed separate analysis using CAGE and 

GTEx eQTL data. 

Results: Using the CAGE eQTL data, our SMR analysis identified 13 probes tagging 

10 unique genes that were pleiotropically/potentially causally associated with ULs, 

with the top three probes being ILMN_1675156 (tagging CDC42, PSMR=8.03×10-9), 

ILMN_1705330 (tagging CDC42, PSMR=1.02×10-7) and ILMN_2343048 (tagging 

ABCB9, PSMR=9.37×10-7). Using GTEx eQTL data, our SMR analysis did not identify 

any significant genes after correction for multiple testing. FUMA analysis identified 

106 independent SNPs, 24 genomic loci and 137 genes that are potentially involved in 

the pathogenesis of ULs, seven of which were also identified by the SMR analysis. 

Conclusions: We identified many genetic variants, genes, and genomic loci that are 

potentially involved in the pathogenesis of ULs. More studies are needed to explore 

the exact underlying mechanisms in the etiology of ULs. 

Keywords: uterine leiomyomas; expression quantitative trait loci; summary 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.06.22271955doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.06.22271955


4 
 

Mendelian randomization; genome-wide association study; functional mapping 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.06.22271955doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.06.22271955


5 
 

Introduction 

Uterine leiomyomas (ULs), also called myomas or uterine fibroids, are benign tumors 

in the smooth muscle tissue in myometrium[1, 2]. The overall prevalence of UL is 

about 70% in women of reproductive age, and approximately 25% of UL patients 

suffer from apparent clinical symptoms and require treatment[3]. ULs are the most 

prevalent benign tumor in female reproductive tract and the leading indication for 

hysterectomy. ULs represent a major cause of morbidity in women of childbearing 

age and account for excessive menstrual bleeding, pelvic pain or pressure, infertility, 

and pregnancy complications[4]. To date, the only definitive treatment for ULs, 

including the familial subtype, is hysterectomy, which creates a great challenge if 

fertility preservation is desired. ULs also cause tremendous economic burden. For 

example, the annual cost of ULs in the US alone, including direct medical costs and 

indirect financial losses, is estimated to be up to $34.4 billion, higher than the 

combined cost of breast and colon cancer[5].  

 UL is a complex, multi-factorial gynecological benign disease with highly 

variable tumor size, tumor location and clinical manifestations. Many factors have 

been reported to be associated with the risk of ULs, including biological, 

demographic, reproductive and lifestyle factors[6-8]. Furthermore, previous studies 

also suggested that genetics plays an important role in the pathogenesis of ULs. For 

example, African-American women, or generally women with African origin, are 

more predisposed to develop ULs, with a prevalence as high as 80% [9], suggesting 

ethnicity-specific factors, potentially ethnicity-specific genetic structure, underlying 
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the pathogenesis of ULs. Familial clustering between first-degree relatives and twins 

was also observed as well as multiple inherited syndromes in which fibroid 

development occurred[10, 11]. Moreover, many GWAS and candidate gene studies 

have identified several genetic variants/loci associated with the susceptibility of 

ULs[12-17]. However, the role of putative risk factors and the underlying biological 

mechanisms underpinning ULs remain largely unclear, which has contributed to the 

slow progress in the development of effective treatment options for ULs. More studies 

are needed to explore genetic variants/genes that are potentially causally associated 

with ULs to better understand the pathogenesis of ULs. 

 Mendelian randomization (MR) uses genetic variants as the proxy to 

randomization. Recently, it has been widely adopted to explore pleiotropic/potentially 

causal effect of an exposure on the outcome (e.g., ULs)[18]. Confounding and reverse 

causation, which are commonly encountered in traditional association studies, can be 

greatly reduced by MR. This method has been successful in identifying gene 

expression probes or DNA methylation loci that are pleiotropically/potentially 

causally associated with various phenotypes, such as neuropathologies of Alzheimer’s 

disease and severity of COVID-19[19, 20] . 

 In this paper, we attempted to prioritize genes that are potentially causally 

associated with ULs through a summary data-based MR (SMR) approach. We also 

performed functional mapping and annotation to further explore genetic variants and 

genomic loci that are potentially involved in the pathogenesis of ULs.  

Methods 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.06.22271955doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.06.22271955


7 
 

GWAS data for ULs 

The GWAS summarized data for ULs were provided by a recent genome-wide 

association meta-analysis of ULs[14]. The results were based on meta-analyses of 

ULs using data from four population-based cohorts (Women's Genome Health Study, 

UK Biobank, Queensland Institute of Medical Research, and North Finnish Birth 

Cohort), with a total sample size of 244,324 (20,406 cases and 223,918 controls). 

Genotyping was done on different platforms, and imputation was performed using the 

reference panel from the 1000 Genomes Project European dataset (1000G EUR) 

Phase 3 or the Haplotype Reference Consortium (HRC) panel. For each cohort, 

logistic regression or linear mixed model association analysis was done, assuming an 

additive genetic model and adjusting for age, BMI, and/or the first five principal 

components, and/or array type, as appropriate. The GWAS summarized data can be 

downloaded at 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001-

GCST010000/GCST009158/. 

eQTL data 

The SMR analysis used cis-eQTL genetic variants as the instrumental variables (IVs) 

for gene expression. We performed separate SMR analysis using eQTL data from two 

sources. Specifically, we used the V7 release of the GTEx eQTL summarized data for 

uterus[21], which included 70 participants, and the CAGE eQTL summarized data for 

whole blood[22], which included 2,765 participants. The eQTL data can be 

downloaded at https://cnsgenomics.com/data/SMR/#eQTLsummarydata. 
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SMR analysis 

The SMR analysis was done using the software SMR. Detailed information regarding 

the SMR method was reported elsewhere[28]. The existence of linkage in the 

observed association was assessed using the heterogeneity in dependent instruments 

(HEIDI) test. PHEIDI<0.05 means rejection of the null hypothesis. That is, the observed 

association could be due to two distinct genetic variants in high linkage 

disequilibrium with each other. We adopted the default settings in SMR (e.g., PeQTL <5 

× 10-8 and minor allele frequency [MAF] > 0.01) and used false discovery rate (FDR) 

to adjust for multiple testing. The SMR analytic process is illustrated in Figure 1.  

FUMA analysis 

To better understand the genetic mechanisms underlying ULs, we also conducted a 

FUMA analysis to functionally map and annotate the genetic association, again using 

the GWAS summary results of ULs. FUMA is an on-line platform that integrates 

information from multiple resources for easy implementation of post-GWAS analysis, 

such as functional annotation and gene prioritization[23]. It has two processes, 

SNP2GENE, which annotate SNPs regarding their biological functions and map them 

to genes, and GENE2FUNC, which annotates the mapped genes in biological 

contexts. In SNP2GENE, we performed both positional mapping and eQTL mapping 

using GTEx v8 of whole blood and uterus. We selected all types of genes in gene 

prioritization and adopted the default settings otherwise (e.g., maximum P-value of 

lead SNPs being 5×10-8 and r2 threshold for independent significant SNPs being 0.6). 

In GENE2FUNC, we adopted the default settings (e.g., using FDR to correct for 
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multiple testing in the gene-set enrichment analysis). 

 Data cleaning and statistical/bioinformatical analysis was performed using R 

version 4.1.2 (https://www.r-project.org/), SMR 

(https://cnsgenomics.com/software/smr/), and FUMA (https://fuma.ctglab.nl/). 

Results 

Basic information of the summarized data 

In the SMR analysis, the CAGE eQTL has a much larger number of participants than 

that of the GTEx eQTL data (2,765 vs. 70), so is the number of eligible probes (8,523 

vs. 999). After checking allele frequencies among the datasets and LD pruning, there 

were more than 6 million eligible SNPs in each SMR analysis. In the FUMA analysis, 

about 8.6 million SNPs were used as the input. The detailed information was shown in 

Table 1.   

Pleiotropic association with UL 

Using the CAGE eQTL data, our SMR analysis identified 13 probes tagging 10 

unique genes that were pleiotropically/potentially causally associated with ULs, with 

the top three probes being ILMN_1675156 (tagging CDC42, PSMR=8.03×10-9), 

ILMN_1705330 (tagging CDC42, PSMR=1.02×10-7) and ILMN_2343048 (tagging 

ABCB9, PSMR=9.37×10-7; Table 2). There were three probes tagging CDC42 (Figure 

2) and two probes tagging ABCB9 (Figure 3) that showed significant pleiotropic 

association with ULs. Using GTEx eQTL data, we did not identify any genes that 

were pleiotropically/potentially causally associated with ULs after correction for 

multiple testing (Table 2). 
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Functional mapping and annotation 

FUMA analysis identified 106 independent significant SNPs, 33 lead SNPs (Table 

S1-S3), and 24 genomic risk loci (Figure 4; Table S4). In addition, FUMA identified 

137 genes that are potentially involved in the pathogenesis of ULs (Table S5). These 

137 genes are distributed in 20 genomic risk loci, with four genomic risk loci 

containing no identified genes (Figure 4 & Table S5). Of the 137 identified genes, 7 

were also identified by SMR analysis, including CDC42, SLC38A1, ABCB9, 

MPHOSPH9, SBNO1, MRPS31 and CD68. Expression of the prioritized genes in 30 

tissues can be found in Table S6 and Figure S1.  

 Gene-set enrichment analysis (GSEA) was undertaken to test the possible 

biological mechanisms of the 137 candidate genes implicated in ULs (Table S7). A 

total of 96 gene sets with an adjusted P < 0.05 were identified. We found enrichment 

signals related with uterine fibroids (adjusted P=2.00×10-51). In addition, we also 

found enrichment of sex-related signals such as 

GO_REGULATION_OF_GONAD_DEVELOPMENT (adjusted P=0.023), 

endometriosis (adjusted P=7.3×10-4), sex hormone-binding globulin levels (adjusted 

P=0.003), and sex hormone levels (adjusted P=0.024; Table S7).  

Discussion 

In this study, we conducted SMR and FUMA analysis to prioritize SNPs and genes to 

better understand the genetic mechanisms underlying ULs. We identified multiple 

genetic variants, genes, genomic risk loci and gene sets that may be involved in the 

pathogenesis of ULs. These findings provided helpful leads to a better understanding 
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of the pathogenesis of ULs and highlight potential therapeutic targets for the treatment 

of ULs.  

   Several probes tagging CDC42 (cell division control protein 42 homolog) showed 

significant pleiotropic association with ULs using CAGE eQTL data (Table 2) in the 

SMR analysis using CAGE eQTL data. This gene was also identified by the FUMA 

analysis. CDC42 is a member of the Rho family and is implicated in a variety of 

cellular functions including cell cycle progression, survival, transcription, actin 

cytoskeleton organization, and membrane trafficking[24]. CDC42 has been linked to 

multiple human cancers and is involved in the initiation of many cellular responses 

during oncogenic processes, such as transition from epithelial to mesenchymal, cell-

cycle progression, migration/invasion, tumor growth, angiogenesis, and oncogenic 

transformation[25, 26]. Several studies reported that CDC42 might also play an 

essential role in the pathogenesis of fibroid. For example, genome-wide analysis 

revealed that the 1p36.12 region, where CDC42/WNT4 is located, was associated with 

uterine fibroids[13, 14, 16]. Interestingly, the genetic variant rs10917151 in 

CDC42/WNT4 seems to have ancestry-specific effect on the risk of uterine fibroids. 

Specifically, the A allele was associated with a reduced risk of uterine fibroids in 

women of African ancestry (OR=0.84) and an increased risk in women of European 

ancestry (OR=1.16)[13]. Since rs10917151 has been reported to be involved in 

hormone-related traits (e.g., endometriosis and endometrial cancer), it probably plays 

a role in the development of leiomyomas via influencing hormone metabolism[16]. 

Meanwhile, another study showed that the deregulation of CDC42 influences 
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fibroblasts activation which is essential in the pathogenesis of ULs[27]. Given the fact 

that increased cellular proliferation is present in fibroid compared with the adjacent 

uterine tissue and the function of CDC42 in influencing cell cycle, further 

investigation is needed to elucidate the role of CDC42 in the development of 

leiomyoma and the potential of this gene as a promising target for the prevention and 

treatment of ULs. 

 We also found that two probes tagging ABCB9 (ATP binding cassette subfamily B 

member 9) showed significant pleotropic association with ULs in the SMR analysis 

using CAGE eQTL data. This gene was also identified in the FUMA analysis. ABCB9 

belongs to the superfamily of ATP-binding cassette (ABC) transporters which fulfill 

diverse physiological functions in different cellular localizations ranging from the 

plasma membrane to intracellular membranous compartments[28]. ABCB9, located on 

12q24.31, is an antigen processing-like (TAPL) transporter that has been found to be 

involved in the development and progression of various malignant tumors, such as 

ovarian cancer and non-small cell lung cancer[29, 30]. The genetic variant rs2270788 

in ABCB9 was found to be associated with both the risk and tumor size of ULs in 

African American participants[31]. ABCB9 was downregulated in women with a high 

level of progesterone serum (>1.5 ng/ml), compared with women with a lower level 

of progesterone serum (<1.5 ng/ml)[32]. Since progesterone is a major promoter of 

leiomyoma development and growth[33], the role of ABCB9 in fibroids in general, 

and its function in progesterone-driven growth of leiomyomas in particular, needs 

further exploration.  
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 The recent GWAS study on ULs also performed two-sample Mendelian 

randomization analysis[14]. However, the MR analysis was different from our SMR 

analyses in that their objective was to examine the causality of genetic association 

between UL and heavy menstrual bleeding (HMB). Their study identified 29 

independent loci for ULs, with 27 of them on the autosomal chromosomes while our 

FUMA analysis identified a total of 24 genomic loci on the autosomal chromosomes. 

The definition of genomic locus was different between their approach and FUMA: 

their genomic locus was defined as regions of the genome containing all SNPs in LD 

(r2 > 0.6) with the index SNPs (independent SNPs, i.e., SNPs in low LD (r2<0.1) with 

nearby (≤500 kb) significantly associated SNPs), with any adjacent regions within 

250 kb of one another being combined and classified as a single locus. In FUMA, 

independent significant SNPs (P<5×10-8 and independent from each other at r2<0.6) 

were first identified. Then, all known SNPs in LD (r2 > 0.6) with one of the 

independent SNPs were included, using the pre-calculated LD structure based on 

1000G. As a results, SNPs that were not originally in the GWAS results could also be 

included. This may partly explain the difference in the findings.      

 Our study has limitations. The GWAS analysis was done in participants of 

European ancestry. As such, our findings might not be generalized to other ethnicities. 

The number of eligible probes used in SMR analysis was limited, especially in the 

analysis using GTEx eQTL. As a result, we could not rule out the possibility of 

missing some important genes that were not tagged in the eQTL data. In addition, the 

FDR approach to correct for multiple testing resulted in additional possibilities of 
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missing important genes. The HEIDI test was significant for some of the observed 

associations, implying the existence of horizontal pleiotropy (Table 2).  

Conclusions  

We identified many genetic variants, genes and genomic loci that are potentially 

involved in the pathogenesis of ULs. More studies are needed to explore the 

underlying mechanisms in the etiology of ULs. 
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Figure legends 

Figure 1. Flow chart for the SMR analysis.  

A) SMR analysis using CAGE eQTL data from blood; and B) SMR analysis using 

GTEx eQTL data  

eQTL, expression quantitative trait loci; GWAS, genome-wide association studies; 

LD, linkage disequilibrium; SMR, summary data-based Mendelian randomization; 

SNP, single nucleotide polymorphism   

 

Figure 2. Pleiotropic association of CDC42 with ULs using CAGE eQTL. 

 

Top plot, grey dots represent the -log10(P values) for SNPs from the GWAS of ULs, 

with solid rhombuses indicating that the probes pass HEIDI test. Middle plot, eQTL 

results. Bottom plot, location of genes tagged by the probes.  

eQTL, expression quantitative trait loci; GWAS, genome-wide association studies; 

HEIDI, heterogeneity in dependent instruments; SMR, summary data-based 

Mendelian randomization; SNP, single nucleotide polymorphism; ULs, uterine 

leiomyomas 

 

Figure 3. Pleiotropic association of ABCB9 and MPHOSPH9 with ULs using 

CAGE eQTL data. 

Top plot, grey dots represent the -log10(P values) for SNPs from the GWAS of ULs, 

with solid rhombuses indicating that the probes pass HEIDI test. Middle plot, eQTL 

results. Bottom plot, location of genes tagged by the probes.  

eQTL, expression quantitative trait loci; GWAS, genome-wide association studies; 

HEIDI, heterogeneity in dependent instruments; SMR, summary data-based 

Mendelian randomization; SNP, single nucleotide polymorphism; ULs, uterine 

leiomyomas 

 

Figure 4. Genetic risk loci identified by FUMA analysis using GWAS data on 

ULs.  

Genomic risk loci are displayed in the format of ‘chromosome:start position-end 
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position’ on the Y axis. For each genomic locus, histograms from left to right depict 

the size, the number of candidate SNPs, the number of mapped genes (using 

positional mapping and eQTL mapping), and the number of genes known to be 

located within the genomic locus, respectively. 

eQTL, expression quantitative trait loci; GWAS, genome-wide association studies; 

SNP, single nucleotide polymorphism; ULs, uterine leiomyomas 
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Table 1. Basic information of the eQTL and GWAS data. 

 

Data Source Total # of participants Number of eligible genetic variants or 

probes 

eQTL data    

 CAGE 2,765 8,523 

 GTEx 70 999 

GWAS data for SMR analysis   

 WGHS 3,375/9,465 - 

 NFBC 363/5,000 - 

 QIMR 1,484/3,701 - 

 UKBB 15,184/205,752 - 

 Total 20,406/223,918 CAGE: 6,198,856; GTEx: 6,697,624 

GWAS data for FUMA analysis 20,406/223,918 8,589,006 

GWAS: genome-wide association studies; QTL, quantitative trait loci; WGHS, Women's Genome Health Study; QIMR, Queensland Institute of 

Medical Research; UKBB, UK Biobank, NFBC, North Finnish Birth Cohort 
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Table 2. The top hit probes identified in SMR analysis*. 

eQTL data Probe Gene CHR Top SNP PeQTL PGWAS Beta SE PSMR PHEIDI Q value 

Uterus ENSG00000198496.6 NBR2 17 rs2292595 4.34×10-27 0.0002 0.0359 0.0100 0.0003 0.1417 0.2211 

ENSG00000155393.8 HEATR3 16 rs11642695 3.78×10-12 4.66×10-5 0.0871 0.0248 0.0004 0.5173 0.2211 

ENSG00000101751.6 POLI 18 rs4940321 1.31×10-8 5.47×10-5 -0.0960 0.0291 0.0010 0.4576 0.3252 

ENSG00000164535.10 DAGLB 7 rs13235365 5.58×10-13 0.0004 0.0404 0.0126 0.0014 0.9852 0.3505 

ENSG00000226752.3 PSMD5-AS1 9 rs4837796 3.37×10-28 0.0031 0.0265 0.0093 0.0043 0.8854 0.7269 

ENSG00000164048.9 ZNF589 3 rs11718329 2.06×10-10 0.0019 0.0419 0.0150 0.0051 0.3164 0.7269 

ENSG00000164045.7 CDC25A 3 rs4511915 3.80×10-13 0.0035 0.0314 0.0115 0.0065 0.1342 0.7269 

ENSG00000188878.12 FBF1 17 rs9674908 1.20×10-8 0.0022 -0.0578 0.0213 0.0068 0.6307 0.7269 

ENSG00000027001.7 MIPEP 13 rs75783226 1.95×10-9 0.0025 0.0498 0.0185 0.0070 0.1324 0.7269 

ENSG00000229759.1 MRPS18AP1 3 rs11130163 7.36×10-15 0.0052 0.0260 0.0099 0.0085 0.6590 0.7269 

Whole blood ILMN_1675156 CDC42 1 rs2473290 7.00×10-118 2.82×10-9 0.0896 0.0155 8.03×10-9 1.56×10-8 6.84×10-5 

ILMN_1705330 CDC42 1 rs2473290 2.08×10-32 2.82×10-9 0.1778 0.0334 1.02×10-7 3.83×10-5 0.0004 

ILMN_2343048 ABCB9 12 rs4148856 1.17×10-23 1.96×10-8 -0.2064 0.0421 9.37×10-7 0.3185 0.0027 

ILMN_2343047 ABCB9 12 rs641760 9.79×10-17 7.64×10-9 -0.2509 0.0528 2.01×10-6 0.1106 0.0043 
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ILMN_1654421 MPHOSPH9 12 rs10772996 7.72×10-19 6.34×10-8 -0.2501 0.0541 3.73×10-6 0.9425 0.0064 

ILMN_1767642 C11orf46 11 rs12364889 1.81×10-34 8.32×10-7 0.1410 0.0309 5.10×10-6 0.0977 0.0072 

ILMN_2266948 SLC38A1 12 rs11183420 5.41×10-36 2.33×10-6 0.1401 0.0316 9.36×10-6 0.0048 0.0107 

ILMN_1691188 UIMC1 5 rs353491 4.49×10-17 2.28×10-7 0.2164 0.0490 1.00×10-5 0.1816 0.0107 

ILMN_2359907 CD68 17 rs56319762 2.76×10-51 5.07×10-6 0.1093 0.0250 1.26×10-5 0.0157 0.0119 

ILMN_1654552 MRPS31 13 rs7324090 5.69×10-10 1.44×10-9 -0.3700 0.0853 1.44×10-5 0.3289 0.0122 

ILMN_1706531 ABCC5 3 rs4074672 3.24×10-169 1.61×10-5 0.0552 0.0129 1.94×10-5 0.2197 0.0150 

ILMN_1738424 CDC42 1 rs2038106 7.64×10-30 4.44×10-6 0.1430 0.0337 2.21×10-5 1.23×10-9 0.0157 

ILMN_1739943 SBNO1 12 rs1569068 1.30×10-10 2.92×10-8 0.3387 0.0807 2.73×10-5 0.8568 0.0179 

*We showed the top ten pleiotropic association for the SMR analysis using GTEx eQTL data. And all the significant pleiotropic association, after correction 

of multiple testing using FDR, in the SMR analysis using CAGE eQTL data. The GWAS summarized data were provided by the study of Gallagher et al. and 

can be downloaded at 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST009001-GCST010000/GCST009158/. The CAGE and GTEx eQTL data can be downloaded 

at https://cnsgenomics.com/data/SMR/#eQTLsummarydata. 

PeQTL is the P-value of the top associated cis-eQTL in the eQTL analysis, and PGWAS is the P-value for the top associated cis-eQTL in the GWAS 

analysis. Beta is the estimated effect size in SMR analysis, SE is the corresponding standard error, PSMR is the P-value for SMR analysis and PHEIDI is the P-

value for the HEIDI test. 

FDR was calculated at P=10-3 threshold. 
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Bold font means statistical significance after correction for multiple testing using FDR. 

CAGE, Consortium for the Architecture of Gene Expression; CCT, central corneal thickness; CHR, chromosome; eQTL, expression quantitative trait loci; 

GTEx, Genotype-Tissue Expression; HEIDI, heterogeneity in dependent instruments; SNP, single-nucleotide polymorphism; SMR, summary data-based 

Mendelian randomization; FDR, false discovery rate; GWAS, genome-wide association studies 
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