1 Title

- 2 "A qualitative examination of the factors affecting the adoption of injury focused wearable
- 3 technologies in recreational runners"
- 4
- 5 Author List
- 6 Aisling Lacey. School of Health and Human Performance, Dublin City University, Dublin
- 7 Ireland. Insight SFI Research Centre for Data Analytics.

8 Dr. Enda Whyte. Centre for Injury Prevention and Performance, School of Health and

- 9 Human Performance, Dublin City University, Dublin, Ireland.
- 10 Dr. Sinéad O'Keefe. Centre for Injury Prevention and Performance, School of Health and
- 11 Human Performance, Dublin City University, Dublin, Ireland.
- 12 Dr. Siobhán O'Connor. Centre for Injury Prevention and Performance, School of Health
- 13 and Human Performance, Dublin City University, Dublin, Ireland.
- 14 Prof. Kieran Moran. School of Health and Human Performance, Dublin City University,
- 15 Dublin Ireland. Insight SFI Research Centre for Data Analytics.

16A qualitative examination of the factors affecting the adoption of injury focused17wearable technologies in recreational runners

18

19 1. Abstract

Purpose: Understanding users' perceived usefulness and ease of use of technologies will 20 21 influence their adoption and sustained use. The objectives of this study were to determine the 22 metrics deemed important by runners for monitoring running-related injury (RRI) risk, and 23 identify the barriers and facilitators to their use of injury focused wearable technologies. 24 Methods: A qualitative focus group study was undertaken. Nine semi-structured focus 25 groups with male (n=13) and female (n=14) recreational runners took place. Focus groups 26 were audio and video recorded, and transcribed verbatim. Transcripts were thematically 27 analysed. A critical friend approach was taken to data coding, and multiple methods of 28 trustworthiness were executed. Results: Excessive loading and inadequate recovery were 29 deemed the most important risk factors to monitor for RRI risk. Other important factors 30 included training activities, injury status and history, and running technique. The location and attachment method of a wearable device and the design of a smartphone application were 31 32 identified as important barriers and facilitators, with receiving useful injury-related feedback identified as a further facilitator. Conclusions: Overtraining, training-related and individual-33 34 related risk factors are essential metrics that need to be monitored for RRI risk. RRI apps 35 should include the metrics deemed important by runners, once there is supporting evidencebased research. The difficulty and/or ease of use of a device, and receiving useful feedback 36 will influence the adoption of injury focused running technologies. There is a clear 37 38 willingness from recreational runners to adopt injury focused wearable technologies whilst running. 39

41 **2.** Introduction

Wearable technologies, including mobile phones and smart watches, are devices that can 42 be worn or carried by an individual that can include measurement capabilities used to assess 43 44 and monitor physical activity, movement, health and well-being (1) (2). Advancements in 45 wearable technologies have made it possible for continuous, accurate and objective 46 monitoring of individuals (3). The use of wearable technologies has become increasingly 47 popular within the running community, with approximately 90% of runners using some form 48 of technology to monitor their training (4). Primarily, wearable devices in this market 49 function to collect data and provide summary reports to assist running performance (5,6,7). This is achieved by the tracking of personal running data (8,9), planning of running goals 50 51 (10), and/or by increasing a runner's motivation to train (9,11). However, despite the high 52 incidence of running related injuries (RRIs) (12,13), and the popular use of wearable devices 53 to manage other illnesses and injuries (14,15,16), there is a dearth of research investigating 54 the perceived usefulness of injury focused wearable technologies in runners. 55 Understanding the underlying factors that drive adoption of wearable technologies is a crucial step in ensuring their successful uptake (17). One such factor is the perceived 56 57 usefulness of a device to the user (18,19). Adapting the six-stage Translating Research into Injury Prevention Practice (TRIPP) framework (20) to the current context, it is clear that 58 59 understanding and including the factors contributing to RRI's, while understanding the 60 perceptions and behaviours of potential users in their own sporting context is pivotal in developing a useful device. Therefore, identifying the metrics perceived as important to 61 recreational runners for monitoring injury risk is a crucial step in ensuring successful injury 62 63 focused technology adoption.

Identifying runners' perceived barriers and facilitators to the use of wearable technologiesis also deemed essential for technology adoption (21); however, the majority of this research

66 has to date focused on *performance* insights as motivators to the use of wearable technologies 67 (21,22,23,24,25) rather than on injury. Only one study (Clermont et al., 2019) appears to have examined the barriers and facilitators to the use of running technologies for reducing RRIs. 68 69 This topic clearly requires further investigation. Previous research investigating runners' usage of wearable technologies in relation to 70 71 performance and injury has predominantly used questionnaires and surveys as the 72 methodological approach (8,21,22,23,24). However, to further explore runners' perceptions 73 of such topics, a qualitative study would provide more insightful and detailed understanding 74 (26,27). Therefore, the aim of this study was to conduct a qualitative examination of the 75 factors affecting the adoption of injury focused technologies in recreational runners, by (i) 76 identifying the metrics perceived as important for monitoring RRI risk, and (ii) identifying 77 the perceived barriers and facilitators to the use of injury focused technologies. 78 79 3. **Materials & Methods** 80 3.1. Design Constructivist grounded theory was deemed an appropriate methodological choice for 81 the current study, as a theory addressing the factors affecting the adoption of injury focused 82 83 running technologies in recreational runners is yet to be identified. Grounded theory (GT) consists of strategies for developing theories through the analysis of qualitative data (28,29). 84 85 It allows for the investigation of how and why people, communities or organisations experience and respond to events, challenges and problematic situations (30), and elicits rich, 86 87 narrative accounts of this experience in order to generate an inductive theory (31). 88 Constructivist grounded theory (CGT) is similar to GT in the sense that it involves constant comparative analysis and saturation; however, CGT assumes that rather than theories being 89 90 discovered as in GT, we construct theories through past and present experiences and

91	interactions with people, perspectives and practices (31). Constructivist grounded theory is an
92	iterative process that follows repeated cycles of data collection and analysis to allow for
93	continuous improvement, expansion and clarity of the emerging theory (32). There was a
94	need to identify both the perceived barriers and facilitators to adoption as certain factors may
95	act in a bi-directional manner, serving as both barriers and facilitators (33,34). Ethical
96	approval was granted by the local university's Ethics Committee. A semi-structured focus
97	group schedule was developed by the researchers, and followed an iterative process
98	throughout the pilot study phase (Supplementary Material A).
99	
100	3.2. Participants
101	A purposive sample of 27 adult recreational runners were recruited from local running
102	clubs via email. The sample included 13 male and 14 female recreational runners, aged 35.0
103	years \pm 10.7 years. A recreational runner was defined as someone running at least once per
104	week, for at least 6 months (35).
105	
106	3.3. Pilot study
107	To educate and train the primary author in efficient focus group moderation
108	techniques, and in the use of an analytical framework for analysing qualitative data for the
109	specific purposes of this study, a pilot study was conducted. Four male and five female
110	recreational runners were recruited as a convenience sample, aged 25.1 years \pm 2.2 years.
111	Four separate focus groups were facilitated by the primary author, each taking place via
112	remote video conferencing software (Zoom, version 5.7.0) and lasted 39.1 minutes \pm 5.4
113	minutes.
114	
115	3.4. Main Study Procedures

116 Prior to taking part in a focus group, participants were required to provide informed consent and complete a short pre-focus group questionnaire. The questionnaire was used to 117 118 gather demographic information, as well as details on participants' running habits, their usage 119 of running technologies and their experience with RRI's (Supplementary Material B). A RRI 120 was defined as any musculoskeletal pain in the lower back/lower limbs that causes a 121 restriction to or stoppage of running for at least 7 days or 3 consecutive scheduled sessions, 122 or that causes a runner to consult a healthcare professional (36). On completion of the 123 questionnaire, participants were contacted via email to arrange a suitable focus group time. 124 To encourage as much interaction as possible, the focus groups were stratified to include 125 participants of similar age, with similar running backgrounds. 126 Nine separate focus groups took place with 27 recreational runners (range= 2-4, 127 median = 3 participants per group). Focus groups were moderated by the primary author and lasted 45.1 minutes \pm 11.4 minutes. Each focus group began with a brief introduction to the 128 129 study and the aims of the focus group were outlined (Supplementary Material A). Participants 130 were encouraged to speak freely and given the opportunity to ask questions throughout. Group discussion began by each participant describing the types of running technologies they 131 132 use. Following this, a discussion regarding the barriers and facilitators to technology use progressed, with a specific emphasis placed on injury focused running technologies. 133 134 Conversation then moved to discuss participants' perceived risk factors for RRIs, and the 135 metrics they deemed important to monitor for RRI risk. On the closing of the focus groups, 136 participants were given another opportunity to ask questions and to provide further comments or statements that they felt may be important. A reflective and iterative approach was taken 137 138 with regard to focus group moderation and the content of the focus group schedule. Following each focus group, its success and the success of each discussion topic were 139

140 considered by the research team, with any potential changes being discussed and agreed141 upon, prior to execution.

- 142
- 143 **3.5.** Data Analysis

Frequencies and descriptive statistics were generated from the questionnaire 144 145 responses using SPSS (version 27.0; IBM Corporation). Focus groups were audio and video recorded using built in software available in Zoom (version 5.7.0), and transcribed verbatim 146 147 by the primary author. Participants were allocated an identification number during 148 transcription to maintain anonymity and protect their confidentiality, with responses coded by participant gender (e.g., male = M; female = F). The transcribed focus groups were coded by 149 150 the primary author using NVivo (QSR International). Constant comparative analysis was 151 conducted, initiated after transcription of the first focus group, and continued throughout the 152 data collection phase (37), and theoretical sampling continued until data saturation was 153 reached (38). A coding framework was developed and updated by the primary author 154 throughout the data collection phase, and was used in the coding of the transcribed focus groups (Supplementary Material C). Braun and Clarke's (2006) methodology for thematic 155 156 analysis was utilised during data analysis, which involved six key features: familiarisation 157 with the data, generating initial codes, searching for themes, reviewing themes, defining and 158 naming themes, and producing the report (39). From the identified codes, core categories 159 were identified, with subsequent themes and sub-themes emerging. The Standards for 160 Reporting Qualitative Research (40) (Supplementary Material D) were adhered to.

161

162

3.6. Trustworthiness

Multiple methods of trustworthiness were undertaken to ensure the rigorous andaccurate presentation of findings. A critical friend approach was used to enhance the

165 analytical process (41), and to establish reliability and ensure rigour of results (42). The goal 166 of critical friends is not to reach consensus or agree on all aspects of the findings, but rather 167 'encourage reflexivity by challenging each other's construction of knowledge' (42,43). The 168 approach also gives the opportunity for researchers to explore multiple interpretations of the data, reducing the effect of researcher bias (42,44). After all transcripts had been coded by 169 170 the primary author, a percentage of transcripts were coded by an external researcher with 171 experience in qualitative research (SOK). Taking a critical friend approach, researchers (AL 172 and SOK) met on multiple occasions to conduct a coding consistency check on the coded 173 transcripts. Codes, sub-themes, themes and core categories were critically reviewed and 174 discussed. A high level of agreement was reached, while any disagreements during the 175 analysis were discussed, with varying interpretations presented. This stage of analysis led to 176 the development of some additional codes, as well as the merging of existing codes. 177 Following this, trustworthiness was further enhanced through investigator 178 triangulation, in which the primary author met with two other members of the research team

179 (KM and EW). Similar approaches were taken to review and discuss the coded data, with any180 disagreements discussed and appropriate changes made.

Additionally, in the presentation of the representative and accurate findings, multiple examples and direct quotations from transcripts are provided (Supplementary Material E), indicating a broad and diverse contribution from participants during focus groups, reducing the chance of individual bias (45). Included quotations were agreed upon by researchers.

185

186 **4. Results**

187 Nine focus groups were conducted with 13 (48.1%) male and 14 (51.9%) female
188 recreational runners. Participants were aged 35.0 years ± 10.7 years (range: 23-53 years).
189 Running and injury histories are detailed in Table 1. All participants were currently using, or

- 190 had done so in the past, at least one form of wearable technology to monitor their running,
- 191 with GPS watches and mobile phones being the most popular devices [used by 55.6% (n=15)]
- and 48.1% (n=13) of participants respectively]. 192

193

Table 1: Participant running and injury history 194

Running history					
Is running your main sport?	Yes	No	Unsure		
(n=27)	63% (n=17)	33.3% (n=9)	3.7% (n=1)		
How long have you been	Less than 3 years	4-5 years	More than 5 years		
running? (n=27)	14.8% (n=4)	3.7% (n=1)	81.5% (n=22)		
How often do you run?	Once a week or less	2-3 times a week	4 times a week or more		
(n=27)	7.4% (n=2)	44.4% (n=12)	48.1% (n=13)		
Injury history					
Have you ever had a RRI?	Yes	No			
(n=27)	81.5% (n=22)	18.5% (n=5)			
Thinking of your worst	Less than 10 days	2-3 weeks	4 weeks or more		
injury, how much training did you miss? (n=21)	23.8% (n=5)	23.8% (n=5)	52.4% (n=11)		
How many RRI's have you	None	1 RRI	2 RRI's		
had in the last year? (n=21)	23.8% (n=5)	33.3% (n=7)	42.9% (n=9)		
How important is injury	Moderately important	Very important	Extremely important		
prevention to you? (n=22)	18.2% (n=4)	27.3% (n=6)	54.5% (n=12)		

195

n = number of participants, RRI = running-related injury

196

197

4.1. Metrics perceived as important for monitoring RRI risk

Three core categories of risk factors were identified as important for monitoring with 198

199 injury focused running technologies: overtraining, training-related risk factors, and

200 individual-related risk factors. Within each core category, various themes and sub-themes

201 emerged (Table 2).

Core categories	Themes (number of participants & focus groups to discuss theme)	Sub-themes (number of participants & focus groups to discuss sub-theme)	
Overtraining	Excessive loading	High accumulative load (12 participants in 7 focus groups)	
	(17* participants in $9^{\#}$ focus groups)	High intensity training (11 participants in 8 focus groups)	
		In-session fatigue (5 participants in 5 focus groups)	
		Less running experience (2 participants in 2 focus groups)	
-	Inadequate recovery	Fatigue & poor sleep (6 participants in 5 focus groups)	
	(13 participants in 7 focus groups)	Poor nutrition (6 participants in 4 focus groups)	
		Insufficient rest days (5 participants in 4 focus groups)	
		High stress (1 participant in 1 focus group)	
Training-related	Training activities	Concurrent training activities (12 participants in 6 focus groups)	
risk factors	(13 participants in 6 focus groups)	Previous training activities (2 participants in 2 focus groups)	
	Running technique	Foot strike technique (5 participants in 4 focus groups)	
	(10 participants in 5 focus groups)	Bilateral asymmetry (4 participants in 3 focus groups)	
		Cadence (3 participants in 3 focus groups)	
	Running environment	Terrain (8 participants in 7 focus groups)	
	(9 participants in 7 focus groups)	Weather (1 participant in 1 focus group)	

202 Table 2: Running-related injury risk factors perceived as important to monitor using wearable technology devices by recreational runners

	Footwear	Type of footwear (6 participants in 3 focus groups)	
	(8 participants in 5 focus groups)	Infrequent changing of footwear (4 participants in 4 focus groups	
Individual-related	Injury status & history	Ongoing niggle (7 participants in 6 focus groups)	
risk factors	(11 participants in 5 focus groups)	Previous injury (6 participants in 3 focus groups)	
	Population characteristics (5 participants in 3 focus groups) Psychological parameters	Age (4 participants in 3 focus groups)	
		Body mass index (3 participants in 2 focus groups)	
		Sub-optimal biomechanics (1 participant in 1 focus group)	
		Perception of run (2 participants in 2 focus groups)	
	(4 participants in 4 focus group)	Mood (2 participants in 1 focus groups)	
		Psychological readiness to run (1 participant in 1 focus group)	
	Type of runner (3 participants in 2 focus group)	Preferred distance/event (3 participants in 2 focus group)	

Note: Themes and sub-themes are presented in order of those most frequently discussed. * indicates out of 27 participants. # indicates out of 9
 focus groups.

205 206

4.1.1. Overtraining

207 Excessive loading and inadequate recovery were perceived to contribute to 208 overtraining, and increase an individual's risk for sustaining a RRI. Participants suggested that these factors be monitored by injury focused technologies. Overall, the most common 209 210 theme emerging from the discussion of risk factors for RRI's was excessive loading. Runners 211 perceived high accumulative loads, high intensity training, in-session fatigue, and lower 212 runner experience to contribute to excessive loading, increasing the risk for sustaining a RRI 213 (Table 2). One participant, for example, perceived the type and intensity of training to impact 214 the risk of injury; F6 - "The type of running you're doing. If you're doing interval training, 215 long distance, sprints, or the volume of training maybe... the impact of that on your injuries". 216 Another participant (M2) felt that these factors should be monitored in order to make sure 217 "the body is able to accumulate those miles" and how injury focused technologies could 218 function "to make sure that you're not going into a red zone" in terms of loading. Some 219 participants also discussed how in-session fatigue can lead to inappropriate running 220 technique, increasing the risk of sustaining an injury - M7- "the more tired I get and if I try and stick to a particular pace, the whole form goes out, and I would think that would lead to 221 more injuries in that regard". Running experience was also discussed with some participants 222 223 suggesting that less experienced runners were more at risk for sustaining an injury - M8 - "if you're new to running, you're far more injury prone... than if you've been running for 224 225 several years". Inadequate recovery was commonly discussed as a perceived risk factor for 226 developing RRI's (Table 2). With the first sub-theme of fatigue and poor sleep, one 227 participant (F8) described sleep as having a "huge impact" on injury risk and if they "don't 228 get enough sleep... your muscles just don't repair as quick, they don't recover as quick. 229 Insufficient rest days taken was also perceived to increase injury risk. One participant (F3) 230 described how many runners may be "over running" and "probably are injured because

they're not actually taking rest days", while also describing the importance of monitoring this
to ensure "*they're not over-doing it*". It was also perceived by some that inadequate nutrition
may increase the risk of a RRI, with one participant (F11) suggesting that "*so many people don't fuel themselves properly*" and "*so many runners don't eat enough*", which was
perceived as a "*huge factor*" for injury risk.

- 236
- 237

4.1.2. Training-related risk factors

238 Training-related risk factors for RRI onset included: training activities, running 239 technique, running environment, and footwear (Table 2). Other training activities that runners may be participating in, or have done in the past, were commonly discussed. It was perceived 240 241 that certain activities may either reduce or increase the likelihood of sustaining a RRI, and 242 that it is "very important to take into account what other sports they're doing" (M2). It was suggested that current and historic participation in various sports (e.g., Gaelic football, rugby, 243 244 golf, track events) "predisposed" (M2) runners to injury. Runners' who had not participated 245 in previous sports were perceived to be less at risk for injury as they haven't "*put their body*" through... [a] hard slog in another sport" (M9). Participation in activities such as yoga, 246 247 strength training and swimming were perceived to reduce the likelihood of injury - M3 -"Certainly with running, I've benefited by improving my stretching, by doing yoga, and I 248 249 think that makes me less injury prone". These factors were perceived as important to monitor 250 using injury focused technologies. With running technique, runners suggested that foot strike 251 technique, bilateral asymmetries, and cadence may be factors that influence the onset of RRI's. Although unclear as to how these factors may influence RRI risk, participants 252 253 perceived that they were important metrics to monitor. The terrain on which people ran was commonly perceived as a potential risk factor for injury, with one participant (M2) describing 254 255 this metric as "really important to take into consideration". Although some participants

256 suggested that running on harder terrains (such as concrete) increased the risk of sustaining a 257 RRI, there was generally a lack of consensus between participants as to which surfaces posed the greatest risk. However, this theme was frequently identified as an important metric to 258 monitor. Runners also perceived their type of footwear, and how the infrequent changing of 259 260 footwear may be important factors in relation to RRI risk. One participant (M7) described 261 their interest in understanding "how more injury prone you are, dependent on both the age of the runners you use, and the different brands of runner you use". Some participants 262 263 described how they would regularly change their footwear to reduce the risk of injury, and 264 how prolonged use of a single pair of shoes can increase the risk of injury; F11 - "I feel like so many people don't change their runners often enough and I really think that's a huge 265 266 factor in injuries".

267

268

4.1.3. Individual-related risk factors

269 The final core category of risk factors surrounded individual-related risk factors 270 (Table 2). Participants discussed the importance of tracking the ongoing injuries and/or "niggles" (F2) that they may have, and how monitoring these may give further insight into 271 272 the development or prevention of a more serious RRI. One participant (M7) queried whether 273 "niggles" were "precursors to an injury" or if they were "just the little aches and pains that we all get?". Some participants also described the impact that previous injuries may have on 274 275 the risk for further injuries, suggesting they should be monitored by injury focused 276 technologies. One participant (M6) described the relationship between previous injuries and 277 their current running, stating; "the injuries I have, they're all ... rugby related and contact 278 related, so I find the issues I have running are probably tied back to the issues that I've had playing rugby". In relation to population characteristics, participants generally perceived that 279 280 older age increased the risk of injury and how "when you're getting older, you're probably

294	4.2. Barriers to the use of injury focused running technologies
293	
292	[they're] likely to pick up" (M9).
291	'differences', runners "don't have a lot in common in relation to the type of injuries that
290	"different types" of runners "would have different injuries", and that because of their
289	preferred running distance may influence susceptibility to injury. It was suggested (M4) that
288	As the final sub-theme, it was perceived that the "type of runner" (M8) and differences in
287	with the perception that they "play a part in your training" (M10) and should be monitored.
286	during, tired after". Mood and "feelings" (M10) were also discussed by some participants,
285	participant (F14) described; "how hard did the run feel were you tired before starting, tired
284	perception of a run was also perceived to be important for monitoring injury risk, as one
283	forces, and I guess that that will be a straight impact on the risk factors" (M8). A runner's
282	by some to be a risk factor for injury, as "the more you weigh the higher your impact
281	going to get more injury prone" (M8). A greater body mass index (BMI) was also perceived

- 295 Difficulty of use and useless feedback received were identified as core categories of
- barriers to the use of injury focused running technologies (Table 3).

Core categories	Themes	Sub-themes (number of participants & focus groups to discuss sub- theme)	Secondary sub-themes (number of participants & focus groups to discuss secondary sub-theme)	Tertiary sub-themes (number of participants & focus groups to discuss tertiary sub-theme,
Difficulty of use	Application design	User input requirement (16* participants in 7 [#] focus groups)	Time consuming (>5 minutes) (13 participants in 6 focus groups)	
			High quantity of questions (>4 questions) (6 participants in 4 focus groups)	
			Repetitive/Irrelevant data required (6 participants in 3 focus groups)	
			High text input requirement (2 participants in 1 focus group)	
		Data use (2 participants in 1 focus group)	Ambiguity of data use (2 participants in 1 focus group)	
-	Device design Attachment method (12 participants in 6 foct groups)	<i>(12 participants in 6 focus)</i>	Uncomfortable/Irritating (8 participants in 5 focus groups)	
		groups)	Time consuming set up (3 participants in 3 focus groups)	
			Adapting/Additional clothing required (2 participants 2 focus groups)	
			Belt mechanism (5 participants in 3 focus groups)	Irritating/Uncomfortable (4 participants in 2 focus groups)

297 Table 3: Core categories, themes and sub-themes of perceived barriers to the use of injury focused running technologies.

		Not secure (1 participant in 1 focus group)
Location (11 participants in 4 focus	Lower back/Waist (8 participants in 3 focus groups)	Uncomfortable/Irritating (4 participants in 3 focus groups)
groups)		Not secure (4 participants in 2 focus groups)
	Wrist/Arm (3 participants in 2 focus groups)	Uncomfortable/Irritating (2 participants in 2 focus groups)
		Not secure (1 participant in 1 focus group)
	Obvious/Noticeable to others (3 participants in 2 focus groups)	
	Foot/Shoe (1 participant in 1 focus group)	Inconvenient (1 participant in 1 focus group)
	Chest/Torso (1 participant in 1 focus group)	Uncomfortable/Irritating (1 participant in 1 focus group)
		Not secure (1 participant in 1 focus group)
Specifications of device	Bulky (8 participants in 7 focus groups)	
(9 participants in 7 focus groups)	Large (3 participants in 2 focus groups)	

	Technical issues (4 participants in 2 focus	Frequent charging (3 participants in 2 focus groups)		
		groups)	Bluetooth connection issues (1 participant 1 focus group)	
			Broken device (1 participant in 1 focus group)	
			Unclean device (1 participant in 1 focus group)	
Useless feedback received	Irrelevant feedback (2 participants in 2 focus groups)			
	Too much feedback (2 participants in 2 focus groups)			
	Inaccurate feedback (1 participant in 1 focus group)			
	Feedback delivery (2 participant in 1 focus group)	Email (2 participants in 1 focus group)		

298 Note: Themes and sub-themes are presented in order of those most frequently discussed. * indicates out of 27 participants. # indicates out of 9

299 focus groups.

300 301

4.2.1. Application design

302	Participants discussed the potential of the application design acting as a barrier to
303	injury focused technology use, with a high demand on the user serving as a barrier. A large
304	time requirement was identified as a potential barrier to technology use, with M5 suggesting:
305	"realistically if it'll be any more than a couple minutes and people get bored putting in the
306	data". Participants discussed their tolerance and willingness to engage with such an
307	application, and it was identified that five minutes was deemed the maximum amount of time
308	runners were willing to spend using an application - M6 - "five minutes probably would be
309	my max". A high quantity of questions was described as "onerous" (F8) therefore identifying
310	a further potential barrier. Questions deemed as irrelevant and repetitive were also described
311	as "tedious" by one participant (M11) and suggest a further potential barrier.
242	

312

313

4.2.2. Device design

The second theme of barriers to the use of injury focused wearable technologies was 314 device design. Sub-themes of barriers included: attachment method, location, specifications 315 of the device, and technical issues (Table 3). Personal preference varied in relation to 316 unfavourable device attachment methods. The general consensus suggested that attachment 317 318 methods which would "take too long to get in place" (F11), required the runner to wear "some contraption" (M8), may "cause any discomfort or blistering" (M10), or one that was 319 320 loose-fitting, "bouncing around" (F6) or "going to fall off" (F6), were potential barriers to use. Differences in the preferred locations of a wearable device were evident, with some 321 describing the lower back as an undesirable location as it was perceived as uncomfortable or 322 323 that it may "rub against your skin and get a bit sore" (M8). Others suggested that wrist or 324 arm-based devices would be unsuitable as they "get annoying after a while" (M2). Variance 325 in the opinion made it difficult to determine any specific location as a barrier to use; however,

326	the general consensus was that locations perceived as uncomfortable, one's which resulted in
327	excessive movement of the device, or were "very obvious" (F11) to others would result in
328	reduced compliance, and therefore act as barriers to usage. It was frequently suggested that a
329	"bulky" (F9), "clunky" (M13) or "heavy" (F6) device would act as a barrier to technology
330	use, as runners perceived it may "impact their running" (F9) and may "annoy [them] during
331	the run" (M10). Finally, participants reported that a device with a short battery life which
332	would require frequent charging may discourage use as it can "put me off if the battery is low
333	<i>on it"</i> (F3).
334	
335	4.2.3. Useless feedback received
336	It was also mentioned by some participants that irrelevant or inaccurate data, or what
337	they perceived to be "too much" feedback would potentially discourage their use of injury
338	focused technologies. Some participants discussed their perception that useless data wasn't
339	"going to help [them]" (F1) in their training or recovery from injury.
340	
341	4.3. Facilitators to the use of injury focused running technologies
342	Finally, ease of use and receiving useful feedback were identified as core categories
343	of facilitators to the use of injury focused running technologies (Table 4).

Core	Themes	Sub-themes	Secondary sub-themes	Tertiary sub-themes
categories		(number of participants & focus groups to discuss sub- theme)	(number of participants & focus groups to discuss secondary sub-theme)	(number of participants & focus groups to discuss tertiary sub-theme,
Ease of	Application design	User-friendly system	Quick input session	
use	(25* participants in	(22 participants in 9 focus	(17 participants in 9 focus groups)	
	9 [#] focus groups)	groups)	Multiple choice questions	
			(7 participants in 5 focus groups)	
			Synced with other applications/devices	
			(7 participants in 5 focus groups)	
			Notification reminders	
			(6 participants in 4 focus groups)	
			Automatic downloading of data from device	
			(5 participants in 3 focus groups)	
		Current usage habits	Fits with current usage habits	
		(13 participants in 8 focus groups)	(13 participants in 8 focus groups)	
	Device design	Location	Lower back/Waist	Convenient
	(20 participants in	(13 participants in 8 focus	(8 participants in 6 focus groups)	(7 participants 5 focus groups)
	8 focus groups)	groups)		Discrete
				(2 participants 2 focus groups)
			Foot/Shoe	Convenient
			(8 participants in 5 focus groups)	(8 participants in 5 focus groups)
				Stable
				(1 participant in 1 focus group)
			Wrist/Arm	Convenient
			(5 participants in 5 focus groups)	(5 participants in 5 focus groups)
			Chest/Torso	Convenient
			(5 participants in 4 focus groups)	(5 participants in 4 focus groups)
			Ankle (2 participants in 2 focus groups)	Convenient
				(2 participants in 2 focus groups)

Table 4: Core categories, themes and sub-themes of perceived facilitators to the use of injury focused running technologies.

	TT			
[!		 I		Discrete
		i		(2 participants in 2 focus groups)
		i	Thigh (1 participant in 1 focus group)	Discrete
	I	L		(1 participant in 1 focus group)
		Attachment method	Discrete (non-specific attachment method)	
!		(11 participants in 8 focus	(7 participants in 5 focus groups)	l
		groups)	Comfortable	· · · · · · · · · · · · · · · · · · ·
		i	(non-specific attachment method)	i
		i	(6 participants in 5 focus groups)	I
		i	Convenient	· · · · · · · · · · · · · · · · · · ·
		i	(non-specific attachment method)	l
!		i	(6 participants in 5 focus groups)	1
!		i .	Belt mechanism	Convenient
!		i .	(5 participants in 4 focus groups)	(3 participants in 3 focus groups)
!		i		Stable
!		i		(2 participants in 2 focus groups)
!		i	Clip mechanism	Convenient
!		<u> </u>	(3 participants in 2 focus groups)	(3 participants in 2 focus groups)
!		Specifications of device	Small (5 participants in 4 focus groups)	I
		(8 participants in 5 focus	Lightweight	
		groups)	(5 participants in 4 focus groups)	l
!		Good technical features	Infrequent charging of device	
		(3 participants in 2 focus	(3 participants in 2 focus groups)	L
		groups)	Strong Bluetooth connection	i
	L	<u> </u>	(1 participants in 1 focus group)	<u> </u>
Receiving	Injury-related	Reduce injury risk		I
useful	feedback	(11 participants in 7 focus		i
feedback	(20 participants in	groups)		
	7 focus groups)	Monitor rehabilitation from		i
		injury		l .
		(10 participants in 5 focus		l .
		groups)		<u>.</u>

T		<u> </u>		
		Understand injury mechanisms		
		(7 participants in 6 focus		
		groups)		
		Advice/Recommendations		
		(6 participants in 3 focus		
		groups)		
		Extend running career		
		(3 participants in 1 focus		
		group)		
		Comparison to other users		
		(2 participants in 2 focus		
		groups)		
	Enhanced data	Performance insights	Performance progressions	
	(8 participants in 4	(4 participants in 4 focus	(2 participants in 2 focus groups)	
	focus groups)	groups)	Optimizing performance	
			(2 participants in 2 focus groups)	
		Additional data	Cadence/Stride information	
		(3 participants in 3 focus	(3 participants in 3 focus groups)	
		groups)	Technique	
			(2 participants in 2 focus groups)	
		[Power (1 participant in 1 focus group)	
		[Comparison to other users	
			(1 participant in 1 focus group)	
		[Monitor recovery from training	
			(1 participant in 1 focus group)	
		Feedback delivery	WhatsApp/Text	
		(2 participants in 1 focus	(2 participants in 1 focus group)	I
		group)	Choice of feedback delivery	1
			(2 participants in 1 focus group)	
	1 1 /1			. # · 1·

Note: Themes and sub-themes are presented in order of those most frequently discussed. * indicated out of 27 participants. # indicates out of 9
 focus groups.

347

4.3.1. Ease of use

Perceived ease of use was the first core category identified, with application design 348 and device design emerging as themes (Table 4). In relation to the application design, 349 350 participants suggested a "user-friendly system" (M2) that fitted with their current usage habits would facilitate use. In particular, technologies with quick and easy input sessions, 351 multiple choice and visual-based questions would encourage use. Participants suggested that 352 353 a time requirement of 30 seconds to 2 minutes would be optimal and facilitate their use. The 354 ability to sync a runner's current applications and technologies with a new device was 355 suggested by many as a facilitator. This was perceived to reduce the burden placed on users, while optimizing the reception of new and useful data; M3 - "especially if the information is 356 already there, maybe you can get it from Strava and tie it in". Participants suggested that 357 358 being prompted by their smartphone would enhance engagement and facilitate their use of an application; F9 - "a reminder... a notification coming up is really handy, because it's easy to 359 360 forget". It was suggested (M5) that data collected by a wearable device that "updates 361 automatically" would be "great" as reducing user demand would increase compliance; M5 -"the less that data we have to put in, the better". It was also commonly suggested that a 362 363 system and device that fitted into participants' current technology usage habits would be easily adoptable. One runner described how "at the end of the training session or running 364 session, I would automatically go to my smartphone, look at the Garmin app" (F8). 365

366

With regard to device design, the location, attachment method, and specifications of the device were sub-themes of facilitators identified (Table 4). Although some locations were deemed more preferable than others, there was a lack of agreement between participants on the most preferable location. Participants suggested that once the location was comfortable, convenient and allowed for the device to be stable, this would facilitate their use. One

372 participant (F11) described their perception of the lower back as a potential location and felt that "your shorts would hold it in place" and "it wouldn't be moving around too much". 373 Another other (M9) participant described the convenience of the foot/shoe as a potential 374 375 location because "if it's on my runners... I'm much more likely to just leave it there... rather than forget about it". Similar to that identified as a barrier, participants felt the attachment 376 method of a device may act as a facilitator to device use. Personal preference varied amongst 377 378 participants, however the overwhelming consensus suggests that a stable, comfortable, 379 discrete and convenient attachment method would facilitate device use. Participants 380 suggested that "if it fits ... properly" (M6), and "can be easily worn and it's not ... impacting you in any way" (F8), and "as long as it's not a cumbersome thing that's interfering with the 381 running" (M1), they would have "no problem wearing it" (M1). Participants discussed the 382 383 favourability of a "lightweight" (M8) and "unobtrusive" (M8) device, where "the smaller [it was] the better" (M10), and how this would facilitate use. Finally, it was suggested that a 384 385 device with a "good battery life" (F1) would enhance user compliance and facilitate device 386 use.

387

388

4.3.2. Receiving useful feedback

389 Participants discussed their willingness to engage with a device should it reduce their 390 risk of sustaining an injury and how potentially beneficial "a device that you can put in your 391 back pocket that will measure when you're putting your body under a level of stress that is likely to cause an injury" (M1) could be. Others discussed the commonality of injury and 392 how "everyone picks up a few niggles a year" (F11), or how there is "always that chance 393 394 that you're going to get injured" (F1), and their interest in using such a device to reduce this risk; "I think we've all had our fair share of niggles and injuries that you'd rather not have" 395 396 (F1). Others discussed the benefits of a device that could monitor their rehabilitation from

397 injury and potentially provide them with data to explain the mechanics of injury; "I'm sure 398 often there's obvious reasons that we don't even notice, but sure by having an app you'd be like 'Oh well, I did this, and I did this and I shouldn't have done this'" (F11). Others 399 400 described their interest in a device that could provide recommendations for "preventing the injury developing further" (F5), or receiving advice on "whatever you should do" (F5) to 401 402 best manage injuries. One final facilitator to encourage use of injury focused technologies 403 was enhanced data that runners could receive. Some participants described the desire for additional data that may give them "an edge" (F2) and that could potentially "improve 404 405 [them] as a runner" (M2). Participants suggested that receiving data related to performance progressions would facilitate their use, while some expressed their interest in receiving "the 406 407 extra thing" (F1) that they may not be getting with their current devices. Examples included 408 information regarding cadence, stride length, or the "biomechanics" (M13) of running 409 technique, while others were interested in *"reaffirming some data that I'm collecting*" already" (M13). 410

411

412 **5.** Discussion

The main objectives of the current study were to provide a qualitative examination of 413 414 recreational runners' opinions on: (i) the important metrics to monitor for RRI risk, and (ii) the perceived barriers and facilitators to the use of injury focused running technologies. 415 416 Overtraining, training-related, and individual-related risk factors are essential metrics that 417 need to be monitored for RRI risk. The most common metrics deemed important to monitor were excessive loading, followed by inadequate recovery, running environment, and training 418 419 activities. Injury status and history, running technique, footwear, and population characteristics were less commonly discussed. Difficulty of use of a device may act as a 420 421 barrier to the use of injury focused running technologies, while ease of use and receiving

useful feedback will act as facilitators. Common themes of barriers and facilitators were
identified, implying that many factors can act as barriers as well as facilitators (33). These are
important findings as the Technology Acceptance Model (TAM) (18) and the Unified Theory
of Acceptance and Use of Technology (UTAUT) (19) indicate that the perceived ease of use
and perceived usefulness of a device will influence usage behaviour and technology adoption
(46).

428

429

5.1. Metrics important for monitoring RRI risk

430 The broad range metrics perceived as important for monitoring RRI risk highlights 431 participants' awareness of the multifactorial aetiology associated with RRI's, as shown by 432 multiple systematic reviews (47,48,49,50). Overtraining, consisting of excessive loading and 433 inadequate recovery, was perceived as a leading risk factor for the development of RRI's in the current study, similar to the perceptions of recreational runners in previous studies 434 (27,47,52). Also similar to the findings of Clermont and colleagues (8), the current 435 436 participants identified longer distances and higher intensity sessions to be important metrics to monitor for excessive load, and subsequent injury risk. Inadequate recovery, which 437 438 included the sub-themes of fatigue and poor sleep, insufficient rest days, and poor nutrition 439 were also perceived to contribute to overtraining. Similar perceptions of the importance of 440 sleep and food intake for preventing injury have previously been reported by recreational 441 runners (8). Our findings in relation to overtraining also map to the biomechanical model of injury, whereby loading of tissues beyond their adaptive capability, combined with 442 insufficient recovery, results in injury (51,53). 443

444

Participants also identified the importance of monitoring certain training-related
metrics for risk of RRI's. It was perceived that terrain, concurrent and previous training

447 activities, running technique and footwear should be included in injury focused technologies. 448 Terrain received significant attention as an important risk factor. While some perceived harder terrains to increase the risk of injury, there was a lack of consensus as to which type of 449 450 terrain poses greater risks. Harder terrains with less deformation have been hypothesized to 451 result in higher impact forces, increasing the risk of injury (54,55). However, while some 452 individual studies have found harder surfaces to produce higher loading (54,56,57), other 453 studies have not (55,58). Previous systematic reviews (50,59) have not found terrain to be a 454 significant risk factor for injury. Our participants perceived that participation in other sports 455 (such as rugby, Gaelic football, golf and track events), both concurrently and in the past, 456 increased a runner's risk of RRIs. It has been suggested that additional participation in other 457 sports adds to the cumulative stress placed on the body (60); however, a recent systematic 458 review identified high quality evidence to indicate that previous sport activity is not 459 associated with increased RRI risk (50). Furthermore, a prospective study found that 460 increased weekly volume of other sport participation (i.e., concurrent training) reduced the 461 risk of RRI's (61). Running technique was also perceived as important to monitor by participants. They suggested foot strike technique, cadence, and bilateral asymmetry are 462 463 important, although they did not describe how these factors influenced RRI risk. In a similar study, certain aspects of running technique (such as joint motion, ground contact time, and 464 465 centre of mass motion) were actually the lowest ranked metrics by participants amongst a list 466 of factors presented to them by the authors as potentially preventing RRI's (8). Systematic reviews and meta-analyses have been unable to identify strong justifications for the role of 467 468 specific biomechanical risk factors in the onset of RRI's (62,63). Regarding foot strike 469 technique, while it has been suggested to be causative of RRI's, based on the increased load 470 that some techniques produce [especially rear-foot strike (64,65)], a systematic review concluded that there is very low evidence to suggest a relationship with RRI's in general 471

472 (66). In relation to increased cadence, while a systematic review found that increasing 473 cadence reduces the magnitude of key biomechanical factors (such as joint kinematics and kinetics, and whole body loading) associated with RRI's (67), a recent systematic review and 474 475 meta-analysis concluded that average cadence does not differ between injured and uninjured 476 runners (68). Regarding bilateral asymmetry, it has been suggested as a risk factor for RRI's 477 based on the premise that because one leg is subjected to more loading, it is predisposed to 478 injury (69,70). Again the literature is contrasting, with some studies finding significant limb 479 asymmetries in injured runners both retrospectively (71) and prospectively (72) compared to 480 uninjured runners, while some studies report no differences in asymmetry (69,74). No systematic review drawing an overall conclusion has been published to date. Footwear was 481 482 the final sub-theme of training-related metrics identified, with perceptions that older shoe age 483 increased injury risk. This perception may be associated with the theory that shoe cushioning 484 decreases loading on the body (74,75), and a decrease in cushioning capacity with extended 485 use increases the risk of RRI's (76,77). However, a recent systematic review concluded that 486 no evidence-based recommendations could be made for shoe age and preventing RRI's (78). 487

488 The final core category identified as important for monitoring RRI risk was 489 individual-related factors, including injury status and history, and population characteristics. 490 As a sub-theme of injury status and history, previous injury was only discussed in one third 491 of focus groups, despite being found to be the strongest risk factor for further RRI's in a 492 recent systematic review (50). A failure of runners to acknowledge the importance of 493 previous injury has also been reported (52). While this may reflect a sense of being 'unable to 494 change' the occurrence of having a previous injury, it clearly should be taken into account when monitoring for the purpose of preventing re-injury. A second sub-theme of injury status 495 and history was ongoing 'niggles', which was mentioned more than previous injury. 496

Different from an injury, in which a runner is forced to reduce or stop training for a period of
time (36), our participants' perception of 'niggles' is similar to previous research where
runners described 'complaints' as 'small pains' which they can continue to run with (27).
Population characteristics, including age and BMI, were mentioned by some participants in
the current study. It was perceived that older age and greater BMI increased the risk of RRI;
however a recent systematic review found conflicting and inconsistent findings for both age
and BMI as a risk factor for RRI in short and long-distance runners (50).

504

505 It is also important to note that some risk factors for RRI's were not mentioned in the 506 current study, despite being shown as potential risk factors in the literature. For example, sex 507 was not mentioned but has received some attention in the literature. Although findings are 508 mixed, systematic reviews have reported males (50, 79) and females (80,81) to be at a greater 509 risk for specific RRI's. Additionally, monitoring ground reaction forces (peak and rate) as an 510 indication of how hard someone strikes the ground was not mentioned by participants in the 511 current study, but previous systematic reviews (82) and meta-analyses (62,75) have investigated the relationship to RRI risk. While there are 'conflicting' (62) and 'inconsistent' 512 513 (Ceyssens et al., 2019) results for a relationship with general RRI's, high peak and rates of 514 loading have been found to contribute to the development of specific RRI's (74,75).

515

The findings of the current study both expand on the current evidence and report new findings in relation to the metrics deemed important by runners for monitoring RRI risk when using wearable technologies. Clearly, injury focused technologies should monitor risk factors that are deemed important by runners, where evidence-based research supports their relevance (e.g. excessive loading and inadequate recovery). The question for manufacturers is whether to monitor risk factors that are: (i) not deemed important by runners, but research

522 does support their relevance (e.g. previous injury), or/and (ii) that are deemed important by 523 runners, but current research does not support their relevance (e.g. terrain and foot strike technique). In the case of the first point, the authors would strongly advocate for including 524 525 factors supported by evidence-based research, with efforts made by manufacturers to educate 526 runners to why the metrics are potentially valuable. This is important in order to improve the 527 perceived usefulness of devices (18,19,20). In the case of the second point, the inclusion of 528 these metrics may be useful if they encourage technology adoption and uptake. However, this 529 must be balanced against overly complicating data capture, especially if monitoring the 530 metric requires the user to wear additional or more bulky sensors, or requires the input of 531 additional data, both of which can act as barriers to technology usage (discussed below). Also, a lack of research evidence (or mixed evidence) to support a relationship between a 532 533 metric and an increased risk of a RRI may not indicate that the relationship does not exist, but 534 may more reflect the limitations of current research. For example, examining the relationship 535 between running impact loading and injury has been predominantly limited to a one-off 536 assessment, frequently in a laboratory environment (83). Development of an app which incorporates a wearable sensor (e.g. an accelerometer) to monitor impact loading and collect 537 538 user input data on injury status would allow long-term and ongoing monitoring of runners in their natural environment. This would provide more precise and ecologically valid data to 539 540 better explore whether a relationship does exist.

541

The above findings are not only relevant to manufacturers, they are also important to coaches and clinicians in developing intervention strategies for injury prevention, where uptake and adherence by runners is improved when runner perception and intervention design are aligned (20). The findings also raise the question about how runners form their opinions that a metric is a risk factor for RRIs, when the research evidence would suggest it is not a

547	risk factor. These perceptions may be due to available information on popular running
548	websites. For example, a low cadence (84), heel-striking (85), and harder terrains such as
549	concrete (86) have been described as risk factors for RRI's on such websites. Clearly there is
550	a need for the science community to better educate runners.
551	
552	5.2. Difficulty/Ease of use
553	The first identified core category of both barriers and facilitators was in relation to the
554	perceived difficulty and ease of use of injury focused technologies.
555	
556	5.2.1. Device design
557	Participants indicated that excessive device weight and size are potential barriers to
558	technology use, with unobtrusive and comfortable devices facilitating use. They also
559	suggested that the attachment method of a device could act as a potential barrier and/or
560	facilitator to use. Varied preferences existed, however the overwhelming consensus
561	suggested that if a device caused irritation or was excessively mobile on the body and
562	interfered with running, this would act as a barrier to use; while a device that was stable and
563	discrete would facilitate use. These perceptions align with previous findings for comfort
564	(87,88,89,90,91), obtrusiveness (90,91) and device aesthetics (91) in wearable technologies
565	in general.
566	
567	One sub-theme which generated a large amount of discussion was where the device
568	was to be worn (wear-location); however no one location dominated as either a barrier or
569	facilitator. For example, some participants perceived the foot or shoe to be a highly suitable
570	location (a facilitator), while others perceived this location to be very unsuitable (a barrier).

571 To the best of the authors' knowledge, sensor location has not been previously investigated in

572 runners. However, it has been suggested that athletes of varying sports (e.g., volleyball) may find device location to be a potential barrier to use (92). Additionally, some participants 573 suggested that they would not like a device to be noticeable or obvious to others as they 574 575 would not like to be seen to be self-monitoring, a finding that has not previously been identified in recreational runners but has been found in relation to health based monitoring 576 577 with wearables (93). Therefore a device that could be worn on a variety of locations without 578 negatively impacting on the accuracy of the captured information would be advantageous. 579 Finally, a device with a short battery life was identified as a further barrier to technology use, 580 in line with previous studies on wearable devices (87,90,94).

- 581
- 582

5.2.2. Application design

583 Participants reported that their use of a device would be positively influenced by a 584 user-friendly system, with minimal user input requirement, in line with previous findings for 585 sport tracking technologies (92). Our participants suggested that as the time requirement and 586 manual input demand to engage with an application increased, their interest and tolerance to engage would decrease. Additionally, it was found that the format of questions within an 587 588 application could influence compliance. Questions requiring a high amount of text input 589 would discourage engagement, whereas questions formatted visually, with a quick response-590 time (e.g., tick-the-box) would encourage engagement. These findings have been reported in 591 previous research for users of a weight-loss application (95), and an athlete self-reported 592 measure (monitoring metrics including training, well-being, injury and nutrition) (96).

593

It was identified that if the use of an injury focused device could conform with participants' current usage habits, it would also facilitate use. Similarly, easily integrating new technologies with existing routines, and the absence of a need for behavioural change has been reported as means of enhancing technology adoption (97,98). Compatibility
between participants' current wearable devices and/or monitoring applications and a new
injury focused device was also identified as a facilitator. Our participants perceived that this
would reduce the manual input demand on the user, and result in more accurate and useful
information; factors which have been found to enhance wearable technology use
(25,87,89,96,98). This is important as minimising burden and maximising interest in users
leads to improved initial and sustained device compliance (96).

- 604
- 605

5.3. Receiving useful feedback

One final core category of facilitators identified was receiving useful feedback. 606 607 Receiving relevant, useful and accurate data regarding RRI risk was identified as a facilitator, 608 with participants describing their desire for feedback that could reduce their injury risk, 609 monitor their rehabilitation from injury, and help them understand the mechanisms of injury. 610 It is well understood that maintaining user interest (94,99) and receiving useful and accurate 611 data (89,98) can facilitate the use of wearable technologies; while the collection and reporting of inaccurate data and useless information have been suggested as barriers to use of physical 612 613 activity tracking technologies (25,87,88,89,90,92). In line with the TRIPP model for 614 enhancing injury prevention practices (20), and considering the TAM (18) and UTAUT (19) models for predicting technology usage, runners are more likely to use technologies if they 615 616 provide runners with an understanding of the mechanisms of injury, and prove to be useful in 617 preventing injury. Additionally, some participants suggested that receiving enhanced data, 618 specifically related to running performance, beyond what they are currently collecting would 619 facilitate their use of injury focused technologies. In the interest of developing a useful injury focused device, these findings are particularly beneficial as they may help to improve 620 621 perceived usefulness, and ultimately adoption and usage behaviour.

622 6. Strengths and Limitations

The current study provides a qualitative informative insight into the factors affecting the adoption of injury focused technologies in recreational runners. A representative sample was included, gathering the perceptions of runners of various ages and running backgrounds. Constant comparative analysis throughout the data collection phase, prior to data saturation, highlights another strength. Furthermore, during data analysis, the involvement of multiple coders with different research and lifestyle backgrounds reduced the impact of potential researcher biases on the interpretation of findings, enhancing the credibility of results.

630 Although all participants in the current study had used at least one form of wearable technology to monitor their running, bringing valuable experiences in the formation of 631 632 opinions; the authors believe that the thoughts and opinions of non-users, and those who 633 stopped using wearable technologies are equally as valuable, and should be included in further research. Participants were recruited from Irish running clubs, and therefore findings 634 635 may not accurately represent the opinions of the global population of recreational runners. 636 The current study did not stratify participants into 'type of runner' (e.g., casual, social or competitive) as in previous studies of recreational runners (8,21). Variance in opinion may 637 638 potentially exist between types of recreational runner, and to examine this could yield further 639 insights into the means of enhancing compliance. Finally, there was potential scope for 640 additional probing during the data collection phase, with some topics requiring further 641 exploration and explanation. This may potentially yield further information; an observation that should be considered by future researchers. 642

643

644 7. Conclusion

645 Overtraining, training-related, and individual-related risk factors are essential metrics646 that need to be monitored using wearable technologies for RRI risk. Some of the metrics

647 valued by participants are supported by scientific evidence (e.g., excessive loading and 648 inadequate recovery); however, they also identified factors that are not clearly supported by scientific evidence (e.g., terrain and foot strike technique), and placed less importance on 649 650 some factors that are more strongly supported by scientific evidence (e.g., previous injury). 651 Technology developers should include metrics deemed important by runners, once there is 652 supporting evidence-based research. Manufacturers should consider the impact of the 653 inclusion of any additional metrics (i.e., those perceived as useful but not supported by 654 evidence, and those supported by evidence but not perceived as useful) and their effect on 655 sensor wearability and excessive user input requirement. Difficulty of use of a device will act 656 as a barrier to the use of injury focused running technologies, while ease of use and receiving 657 useful feedback will act as facilitators. To further enhance user compliance, the authors 658 suggest technology developers manufacture an unobtrusive, discrete and comfortable device, designed with a user-friendly system. Findings suggest that if individual users could dictate 659 660 device location and attachment method, without affecting the accuracy of the technology to 661 monitor risk of injury, this would address these barriers. Preference was given to devices that would also provide runners with information on reducing their individual injury risk, monitor 662 663 rehabilitation from injury, and provide insight into the mechanisms of injury. Overall, there is 664 a clear willingness from recreational runners to adopt an injury focused wearable device whilst running. 665

666

667

669 8. Acknowledgements

- The authors would like to thank the focus groups participants for their participation.
- 671 This publication has emanated from research supported by Science Foundation Ireland (SFI)
- under Grant Number SFI/12/RC/2289_P2, co-founded by the European Regional
- 673 Development Fund.
- 674

675 9. Author Contributions

- 676 Conceptualization: AL, EW, KM
- 677 Data curation: AL, EW, KM
- 678 Formal analysis: AL, EW, SOK, KM
- 679 Funding acquisition: KM
- 680 Investigation: AL
- 681 Methodology: AL, EW, SOK, KM
- 682 Supervision: EW, KM
- 683 Visualisation: AL, EW, SOK, SOC, KM
- 684 Writing original draft: AL, EW, KM
- 685 Writing review & editing: AL, EW, SOK, SOC, KM

686 10. References

687		
688	1.	Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors
689		and systems with application in rehabilitation. Journal of Neuroengineering
690		and Rehabilitation. 2012; 9(21).
691		
692	2.	Bunn JA, Navalta JW, Fountaine CJ, Reece JD. Current State of Commercial
693		Wearable Technology in Physical Activity Monitoring 2015-2017.
694		International Journal of Exercise Science. 2018; 11(7):503-15.
695		
696	3.	Malasinghe LP, Ramzan N, Dahal K. Remote patient monitoring: a
697		comprehensive study. Journal of Ambient Intelligence and Humanized
698		Computing. 2019; 10(1):57-76.
699		
700	4.	De Jong AF, Fish PN, Hertel J. Running behaviors, motivations, and injury
701		risk during the COVID-19 pandemic: A survey of 1147 runners. PLoS ONE.
702		2021; 16(2):e0246300.
703		
704	5.	Giraldo-Pedroza, A, Chiu-Chun Lee W, Lam, WK, Coman R, Alici G. Effects
705		of Wearable Devices with Biofeedback on Biomechanical Performance of
706		Running - A Systematic Review. Sensors. 2020; 20(22):6637.
707		
708	6.	Moore IS, Willy RW. Use of Wearables: Tracking and Retraining in
709		Endurance Runners. Current Sports Medicine Reports. 2019; 18(12):437-44.
710		

711	7.	Jensen MM, Mueller F. Running with technology: Where are we heading? In:
712		Proceedings of the 26th Australian Computer-Human Interaction Conference
713		on Designing Futures: The Future of Design. 2014; Sydney, New South
714		Wales, Australia, December 2014. p. 527-30. Available at:
715		https://dl.acm.org/doi/10.1145/2686612.2686696.
716		
717	8.	Clermont CA, Duffett-Leger L, Hettinga BA, Ferber R. Runners' Perspectives
718		on 'Smart" Wearable Technology and Its Use for Preventing Injury.
719		International Journal of Human-Computer Interaction. 2019; 36(1):31-40.
720		
721	9.	Wiesner M, Zowalla R, Suleder J, Westers M, Pobiruchin M. Technology
722		Adoption, Motivation Aspects, and Privacy Concerns of Wearables in the
723		German Running Community: Field Study. JMIR Mhealth and Uhealth. 2018;
724		6(12):e201.
725		
726	10.	Karahanoglu A, Gouveia R, Reenalda J, Ludden G. How Are Sports-Trackers
727		Used by Runners? Running-Related Data, Personal Goals, and Self-Tracking
728		in Running. Sensors. 2021; 21(11):3687.
729		
730	11.	Menheere D, Lallemand C, van der Spek E, Megens C, Vande Moere A, Funk
731		M, Vos S. The Runner's Journey: Identifying Design Opportunities for
732		Running Motivation Technology. In: Proceedings of the 11th Nordic
733		Conference on Human-Computer Interaction: Shaping Society. 2020; New
734		York, NY, USA. p. 1-14.
735		

736	12. Kakouris N, Yener N, Fong, DTP. A systematic review of running-related
737	musculoskeletal injuries in runners. Journal of Sport and Health Science. 2021
738	
739	13. Desai P, Jungmalm J, Borjesson M, Karlsson J, Grau S. Recreational Runners
740	With a History of Injury Are Twice as Likely to Sustain a Running-Related
741	Injury as Runners With No History of Injury: A 1-Year Prospective Cohort
742	Study. The Journal of Orthopaedic and Sports Physical Therapy. 2021;
743	51(3):144-50.
744	
745	14. Celik Y, Stuart S, Woo WL, Godfrey A. Gait analysis in neurological
746	populations: Progression in the use of wearables. Medical Engineering and
747	Physics. 2021; 87:9-29.
748	
749	15. Jalloul N. Wearable sensors for the monitoring of movement disorders.
750	Biomedical Journal. 2018; 41:249-53.
751	
752	16. Papi E, Isei-Kuffour D, Chen YMA, McGregor AH. Use of wearable
753	technology for performance assessment: A validation study. Medical
754	Engineering & Physics. 2015; 37(7):698-704.
755	
756	17. Kalantari M. Consumers' adoption of wearable technologies: literature review,
757	synthesis, and future research agenda. International Journal of Technology
758	Marketing. 2017; 12(3):274-307.
759	

760	18. Davis FD. Perceived Usefulness, Perceived Ease of Use, and User Acceptance
761	of Information Technology. MIS Quarterly. 1989; 13(3):319-40.
762	
763	19. Venkatesh V, Morris MG, Davis GB, Davis FD. User Acceptance of
764	Information Technology: Toward a Unified View. MIS Quarterly. 2003;
765	27(3):425-78.
766	
767	20. Finch C. A new framework for research leading to sports injury prevention.
768	Journal of science and medicine in sport. 2006; 9(1-2):3-9.
769	
770	21. Janssen M, Walravens R. Thibaut E, Scheerder J, Brombacher A, Vos S.
771	Understanding Different Types of Recreational Runners and How They Use
772	Running-Related Technology. International Journal of Environmental
773	Research and Public Health. 2020; 17(7):2276.
774	
775	22. Feng Y, Agosto DE. From health to performance: Amateur runners' personal
776	health information management with activity tracking technology. Aslib
777	Journal Information Management. 2019; 71(2).
778	23. Stragier J, Vanden Abeele M, De Marez L. Recreational athletes' running
779	motivations as predictors of their use of online fitness community features.
780	Behaviour & Information Technology. 2018; 37(8):815-27.
781	
782	24. Pobiruchin M, Suleder J, Zowalla R, Wiesner M. Accuracy and Adoption of
783	Wearable Technology Used by Active Citizens: A Marathon Event Field
784	Study. JMIR Mhealth and Uhealth. 2017; 5(2):e24.

705	
785	
786	25. Vos S, Janssen M, Goudsmit J, Lauwerijssen C, Brombacher A. From
787	Problem to Solution: Developing a Personalised Smartphone Application for
788	Recreational Runners following a Three-step Design Approach. Procedia
789	Engineering. 2016; 147:799-805.
790	
791	26. Verhagen E, Bolling C. We are to ask new questions. Are we also brave
792	enough to change our approaches. Translational Sports Medicine. 2018;
793	1(1):54-5.
794	
795	27. Verhagen E, Warsen M, Bolling CS. "I JUST WANT TO RUN": how
796	recreational runners perceive and deal with injuries. BJM Open Sport and
797	Medicine. 2021; 7(3):e001117.
798	
799	28. Glaser B, Strauss A. The Discovery of Grounded Theory: Strategies for
800	Qualitative Research. Mill Valley, CA: Sociology Press; 1967.
801	
802	29. Charmaz K. Constructing grounded theory: A practical guide through
803	qualitative analysis. Sage; 2017
804	
805	30. Holt NL. Doing grounded theory in sport and exercise. In: Smith B, Sparkes
806	AC, editors. Routledge Handbook of Qualitative Research in Sport and
807	Exercise, London (GB): Routledge; 2016. p. 46-58.
808	

809	31. Gill MJ. How can I study who you are? Comparing grounded theory and
810	phenomenology as methodological approaches to identity work research. The
811	Oxford Handbook of Identities in Organisations. 2020; 295-310.
812	
813	32. Kennedy TJT, Lingard LA. Making sense of grounded theory in medical
814	education. Medical Education. 2006; 40(2): 101-8.
815	
816	33. Busetto L, Luijkx K, Calciolari S. González Ortiz LG, Vrijhoef HJM. Barriers
817	and facilitators to workforce changes in integrated care. International Journal
818	of Integrated Care. 2018; 18(2):17.
819	
820	34. Goswami SP., Mathews S, Rao A, Kasturi VJ. Factors of recovery as barriers
821	and facilitators: Two sides of the same coin. International Journal of Mind,
822	Brain and Cognition. 2019; 10(1-2).
823	
824	35. Mulvad B, Nielsen RO, Lind M, Ramskov D. Diagnoses and time to recovery
825	among injured recreational runners in the RUN CLEVER trial. PloS One.
826	2018; 13(10):p.e0204742.
827	
828	36. Yamato TP, Saragiotto BT, Dias Lopes A. A consensus definition of running-
829	related injury in recreational runners: A modified Delphi approach. Journal of
830	Orthopaedic & Sports Physical Therapy. 2015; 45(5):375-80.
831	
832	37. Boeije H. A Purposeful Approach to the Constant Comparative Method in the
833	Analysis of Qualitative Interviews. Quality & Quantity. 2002; 36:391-409.

834	
835	38. Aldiabat KM, Le Navenec CL. Data Saturation: The Mysterious Step in
836	Grounded Theory Methodology. The Qualitative Report. 2018; 23(1):245-61.
837	
838	39. Braun V, Clarke V. Using thematic analysis in psychology. Qualitative
839	research in psychology. 2006; 3(2):77-101.
840	
841	40. O'Brien BC, Harris IB, Beckman TJ, Reed DA, Cook DA. Standard for
842	reporting qualitative research: a synthesis of recommendations. Academic
843	Medicine. 2014; 89(9):1251-54.
844	
845	41. McGannon KR, Smith B, Kendellen K, Gonsalves CA. Qualitative research in
846	six sport and exercise psychology journals between 2010 and 2017: An
847	updated and expanded review of trends and interpretations. International
848	Journal of Sport and Exercise Psychology. 2021;19(3):359-79.
849	
850	42. Smith B, McGannon KR. Developing rigor in qualitative research: problems
851	and opportunities within sport and exercise psychology. International Review
852	of Sport and Exercise Psychology. 2018; 11(1):101-21.
853	
854	43. Cowan D, Taylor IM.'I'm proud of what I achieved; I'm also ashamed of what
855	I done': a soccer coach's tale of sport, status, and criminal behaviour.
856	Qualitative Research in Sport, Exercise and Health. 2016; 8(5):505-18.
857	

858	44. Sparkes AC, Smith B. Qualitative research methods on sport, exercise and
859	health: From process to product. London: Routledge; 2014.
860	
861	45. Tracy SJ. Qualitative Quality: Eight "Big-Tent" Criteria for Excellent
862	Qualitative Research. Qualitative Inquiry. 2010; 16(10):837-51.
863	
864	46. Kim T, Chiu W. Consumer acceptance of sports wearable technology: the role
865	of technology readiness. International Journal of Sports Marketing and
866	Sponsorship. 2018; 20(1).
867	
868	47. Saragiotto BT, Yamato TP, Junior LCH, Rainbow MJ, Davis IS, Dias Lopes
869	A. What are the main risk factors for running-related injuries? Sports
870	medicine. 2014; 44(8):1153-63.
871	
872	48. Gijon-Nogueron G, Fernandez-Villarejo M. Risk factors and protective factors
873	for lower-extremity running injuries. Journal of the American Podiatric
874	Medical Association. 2015; 105(6):532-40.
875	
876	49. Hulme A, Nielsen RO, Timpka T, Verhagen E, Finch C. Risk and protective
877	factors for middle-and-long-distance running-related injury. Sports Medicine.
878	2017; 47(5):869-86.
879	
880	50. Van Poppel D, van der Worp M, Slabbekoorn A, van der Heuvel SSP, van
881	Middelkop M, Koes BW, Verhagen AP, Scholten-Peeters GGM. Risk factors

882	for overuse injuries in short-and-long-distance running: A systematic review.
883	Journal of sport and health science. 2021; 10(1):14-28.
884	
885	51. Hreljac A. Etiology, prevention, and early intervention of overuse injuries in
886	runners: a biomechanical perspective. Physical Medicine and Rehabilitation
887	Clinics. 2005; 16(3):651-67.
888	
889	52. Saragiotto BT, Yamato TP, Dias Lopes A. What do recreational runners think
890	about risk factors for injury? A descriptive study of their beliefs and opinions.
891	Journal of Orthopaedic and Sports Physical Therapy. 2014; 44(10):733-8.
892	
893	53. Bertelsen ML, Hulme A, Petersen J, Brunf RK, Sørensen H, Finch CF, Parner
894	ET, Nielsen RO. A framework for the etiology of running-related injuries.
895	Scandinavian Journal of Medicine & Science in Sports. 2017; 27(11):1170-80.
896	
897	54. Tessutti V, Ribeiro AP, Trombini-Souza F, Sacco ICN. Attenuation of foot
898	pressure during running on four difference surfaces: Asphalt, concrete, rubber,
899	and natural grass. Journal of Sport Sciences. 2012; 30(14):1545-50.
900	
901	55. Van der Worp MP, De Wijer A, van Cingel R, Verbeek ALM, Nijhuis-van der
902	Sanden MWG, Stall JB. The 5- or 10-km Marikenloop Run: A prospective
903	study of the etiology of running-related injuries in women. Journal of
904	Orthopaedic & Sports Physical Therapy. 2016; 46(6):462-70.
905	

906	56. Dixon SJ, Collop AC, Batt ME. Surface effects on ground reaction forces and
907	lower extremity kinematics in running. Medicine and Science in Sports and
908	Exercise. 2002; 32(11):1919-26.
909	
910	57. Wang L, Hong Y, Li JX, Zhou JH. Comparison of plantar loads during
911	running on different overground surfaces. Research in Sports Medicine. 2012;
912	20(2):75-85.
913	
914	58. Taunton J, Ryan M, Clement D, McKenzie D, Lloyd-Smith D, Zumbo B. A
915	prospective study of running injuries: the Vancouver Sun Run "In Training"
916	clinics. British Journal of Sports Medicine. 2003; 37(3):239-44.
917	
918	59. Van Gent RN, Siem M, van Middelkoop M, van Os AG, Bierma-Zienstra
919	SMA, Koes BW. Incidence and determinants of lower extremity running
920	injuries in long distance runners: a systematic review. British Journal of Sports
921	Medicine. 2007; 41(8):469-80.
922	
923	60. Satterthwaite P, Norton R, Larmer P, Robinson E. Risk factors for injuries and
924	other health problems sustained in a marathon. British Journal of Sports
925	Medicine. 1999; 33:22-6.
926	
927	61. Malisoux L, Ramesh J, Mann R, Seil R, Urhausen A, Theisen D. Can parallel
928	use of different running shoes decrease running-related injury risk?
929	Scandinavian Journal of Medicine & Science in Sports. 2015; 25(1):110-5.
930	

931	62. Vannatta CN, Heinert BL, Kernozek TW. Biomechanical risk factors for
932	running-related injury differ by sample population: A systematic review and
933	meta-analysis. Clinical Biomechanics. 2020; 75:104991.
934	
935	63. Ceyssens L, Vanelderen R, Barton C, Malliaras P, Dingenen B.
936	Biomechanical Risk Factors Associated with Running-Related Injuries: A
937	Systematic Review. Sports Medicine. 2019; 49(7):1095-115.
938	
939	64. Daoud AI, Geissler GJ, Wang F, Saretsky J, Daoud YA, Lieberman DE. Foot
940	strike and injury rates in endurance runners: a retrospective study. Medicine
941	and Science in Sports and Exercise. 2012; 44(7):1325-34.
942	
943	65. Goss DL, Gross MT. Relationships among self-reported shoe type, footstrike
944	pattern, and injury incidence. US Army Medical Department Journal. 2012;
945	25-30.
946	
947	66. Burke A, Dillon S, O'Connor S, Whyte E, Gore S, Moran KA. Risk Factors
948	for Injuries in Runners: A Systematic Review of Foot Strike Technique and Its
949	Classification at Impact. The Orthopaedic Journal of Sports Medicine. 2021;
950	9(9).
951	
952	67. Schubert AG, Kempf J, Heiderscheit BC. Influence of stride frequency and
953	length on running mechanics: A systematic review. Sports Health. 2014;
954	6(3):210-7.
955	

956	68. Brindle RA, Taylor JB, Rajek C, Weisbrod A, Ford KR. Association between
957	temporal spatial parameters and overuse injury history in runners: A
958	systematic review and meta-analysis. Sports Medicine. 2020; 50(2):331-42.
959	
960	69. Zifchock RA, Davis I, Higginson J, McCaw S, Royer T. Side-to-side
961	differences in overuse running injury susceptibility: A retrospective study.
962	Human Movement Science. 2008; 27(6):888-902.
963	
964	70. Furlong LAM, Egginton NL. Kinetic asymmetry during running at preferred
965	and nonpreferred speeds. Medicine and Science in Sports and Exercise. 2018;
966	50(6):1241-8.
967	
968	71. Robadey J, Staudenmann D, Schween R, Gehring D, Gollhofer A, Taube W.
969	Lower between-limb asymmetry during running on treadmill compared to
970	overground in subjects with laterally pronounced knee osteoarthritis. PLoS
971	One. 2018; 13(10):e0205191.
972	
973	72. Bredeweg SW, Buist I, Kluitenberg B. Differences in kinetic asymmetry
974	between injured and noninjured novice runners: A prospective cohort study.
975	Gait & Posture. 2013; 38(4):847-52.
976	
977	73. Zifchock RA, Davis I, Hamill J. Kinetic asymmetry in female runners with
978	and without retrospective tibial stress fractures. Journal of Biomechanics.
979	2006; 39(15):2792-7.
980	

981	74. Davis IS, Bowser BJ, Mullineaux DR. Greater vertical impact loading in
982	female runners with medically diagnosed injuries: a prospective investigation.
983	British Journal of Sports Medicine. 2016; 50(14):887-92.
984	
985	75. Van der Worp H, Vrielink JW, Bredeweg SW. Do runners who suffer injuries
986	have higher vertical ground reaction forces than those who remain injury-free?
987	A systematic review and meta-analysis. British Journal of Sports Medicine.
988	2016; 50(8):450-7.
989	
990	76. Baltich J, Maurer C, Nigg BM. Increased vertical impact forces and altered
991	running mechanics with softer midsole shoes. PLoS One. 2015;
992	10(4):e0125196.
993	
994	77. Nigg BM, Baltich J, Maurer C, Federolf P. Shoe midsole hardness, sex and
995	age effects on lower extremity kinematics during running. Journal of
996	Biomechanics. 2012; 45(9):1692-7.
997	
998	78. Malisoux L, Delattre N, Urhausen A, Theisen D. Shoe cushioning influences
999	the running injury risk according to body mass: a randomized controlled trial
1000	involving 848 recreational runners. The American journal of sports medicine.
1001	2020; 48(2):473-80.
1002	
1003	79. Van der Worp MP, Ten Haaf DS, van Cingel R, de Wijer A, Nijhuis-van der
1004	Sanden MW, Staal JB. Injuries in runners; a systematic review on risk factors
1005	and sex differences. PloS One. 2015; 10(2):e0114937.

50

1006	
1007	80. Dempster J, Dutheil F, Ugbolue UC. The Prevalence of Lower Extremity
1008	Injuries in Running and Associated Risk Factors. Physical Activity and
1009	Health. 2021; 5(1):133-45.
1010	
1011	81. Messier SP, Martin DF, Mihalko SL, Ip E, DeVita P, Cannon DW, Love M,
1012	Beringer D, Saldana S, Fellin RE, Seay JF. A 2-year prospective cohort study
1013	of overuse running injuries: the runners and injury longitudinal study. The
1014	American journal of sports medicine. 2018; 46(9):2211-21.
1015	
1016	82. Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress
1017	fractures and the ground reaction force: a systematic review. Clinical
1018	Biomechanics. 2011; 26(1):23-8.
1019	
1020	83. Kiernan D, Hawkins DA, Manoukian M, McKallip M, Oelsner L, Caskey CF,
1021	Coolbaugh CL. Accelerometer-based prediction of running injury in National
1022	Collegiate Athletic Association track athletes. Journal of biomechanics. 2018;
1023	73:201–9.
1024	
1025	84. Runkeeper. How to Prevent Injury by Improving Your Running Cadence;
1026	[update 2021; cited 28 January 2022]. Available from:
1027	https://runkeeper.com/cms/health/how-to-prevent-injury-by-improving-your-
1028	running-cadence/
1029	

1030	85. Runner's World. Injured? Could your foot strike be to blame? [updated 2018;
1031	cited 28 January 2022]. Available from:
1032	https://www.runnersworld.com/uk/health/injury/a776362/injury-foot-strike/
1033	
1034	86. Runner's World. What is the best surface to run on to avoid getting
1035	injured?[updated 2015; cited 28 January 2022]. Available from:
1036	https://www.runnersworld.com/uk/health/injury/a760152/top-10-running-
1037	surfaces/
1038	
1039	87. Kononova A, Li L, Kamp K, Bowen M, Rikard RV, Cotton S, Peng W. The
1040	use of wearable activity among older adults: focus group study of tracker
1041	perceptions, motivators, and barriers in the maintenance stage of behaviour
1042	change. JMIR mHealth and uHealth. 2019; 7(4):e9832.
1043	
1044	88. Hermsen S, Moons J, Kerkhof P, Wiekens C, De Groot M. Determinants for
1045	Sustained Use of an Activity Tracker: Observational Study. JMIR mHealth
1046	and uHealth. 2017; 5(10):e164.
1047	
1048	89. Kuru A. Exploring experience of runners with sports tracking technology.
1049	International Journal of Human-Computer Technology. 2016; 32(11):847-60.
1050	
1051	90. Lazar A, Koehler C, Tanenbaum J, Nguyen DH. Why We Use and Abandon
1052	Smart Devices. In: Proceedings of the 2015 ACM International Joint
1053	Conference on Pervasive and Ubiquitous Computing. p. 635-646.
1054	

1055	91. Shih PC, Han K, Poole ES, Rosson MB, Carroll JM. Use and adoption
1056	challenges of wearable activity trackers. In: IConference 2015 Proceedings.
1057	
1058	92. Luczak T, Burch R, Lewis E, Chander H, Ball J. State-of-the-art review of
1059	athletic wearable technology: What 113 strength and conditioning coaches and
1060	athletic trainers from the USA said about technology in sports. International
1061	Journal of Sports Science & Coaching. 2020; 15(1):26-40.
1062	
1063	93. Bergmann JHM, McGregor AH. Body-worn sensor design: what do patients
1064	and clinicians want?. Annals of biomedical engineering. 2011; 39(9):2299-312
1065	
1066	94. Kinney DA, Nabors LA, Merianos AL Vidourek RA. College student use and
1067	perceptions of wearable fitness trackers. American Journal of Health
1068	Education. 2019; 50(5):298-307.
1069	
1070	95. Alnasser A, Kyle J, Aloumi N, Al-Khalifa A, Marais D. The Twazon Arabic
1071	Weight Loss App: App-Based Intervention for Saudi Women Obesity. JMIR
1072	mHealth and uHealth. 2019; 7(5):e10923.
1073	
1074	96. Saw AE, Main LC, Gastin PB. Impact of Sport Context and Support on the
1075	Use of a Self-Report Measure for Athlete Monitoring. Journal of Sports
1076	Science & Medicine. 2015; 14(4):732-9.
1077	
1078	97. Rogers EM. Diffusion of innovations. London: Simon & Schuster
1079	International. 2003

1080	
1081	98. Canhoto AI, Arp S. Exploring the factors that support adoption and sustained
1082	use of health and fitness wearables. Journal of Marketing Management. 2017;
1083	33(1-2):32-60.
1084	
1085	99. Bardus M, Borgi C, El-Harakeh M, Gherbal T, Kharroubi S, Fares EJ.
1086	Exploring the Use of Mobile and Wearable Technology among University
1087	Student Athletes in Lebanon: A Cross-Sectional Study. Sensors. 2021;
1088	21(13):4472.
1089	