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Abstract 37 

Importance 38 
Pain is a silent global epidemic impacting approximately a third of the population. Pharmacological 39 
and surgical interventions are primary modes of treatment. Cognitive/behavioural management 40 
approaches and interventional pain management strategies are approaches that have been used to 41 
assist with the management of chronic pain. Accurate data collection and reporting treatment 42 
outcomes are vital to addressing the challenges faced. In light of this, we conducted a systematic 43 
evaluation of the current digital application landscape within chronic pain medicine. 44 

Objective 45 
The primary objective was to consider the prevalence of digital application usage for chronic pain 46 
management. These digital applications included mobile apps, web apps, and chatbots. 47 

Data Sources 48 
We conducted searches on PubMed and ScienceDirect for studies that were published between 1st 49 
January 1990 and 1st January 2021. 50 

Study Selection 51 
Our review included studies that involved the use of digital applications for chronic pain conditions. 52 
There were no restrictions on the country in which the study was conducted. Only studies that were 53 
peer-reviewed and published in English were included. Four reviewers had assessed the eligibility of 54 
each study against the inclusion/exclusion criteria. Out of the 84 studies that were initially identified, 55 
38 were included in the systematic review. 56 

Data Extraction and Synthesis 57 
The AMSTAR guidelines were used to assess data quality. This assessment was carried out by 3 58 
reviewers. The data were pooled using a random-effects model. 59 

Main Outcome(s) and Measure(s) 60 
Before data collection began, the primary outcome was to report on the prevalence of digital 61 
application usage for chronic pain conditions. We also recorded the type of digital application studied 62 
(e.g. mobile application, web application) and, where the data was available, the prevalence of pain 63 
intensity, pain inferences, depression, anxiety, and fatigue.  64 

Results 65 
38 studies were included in the systematic review and 22 studies were included in the meta-analysis.  66 

The digital interventions were categorised to web and mobile applications and chatbots, with pooled 67 
prevalence of  0.22 (95% CI -0.16, 0.60), 0.30 (95% CI 0.00, 0.60) and -0.02 (95% CI -0.47, 0.42) 68 
respectively. Pooled standard mean differences for symptomatologies of pain intensity, depression, 69 
and anxiety symptoms were 0.25 (95% CI 0.03, 0.46), 0.30 (95% CI 0.17, 0.43) and 0.37 (95% CI 70 
0.05, 0.69) respectively. 71 

A sub-group analysis was conducted on pain intensity due to the heterogeneity of the results 72 
(I2=82.86%; p=0.02). After stratifying by country, we found that digital applications were more 73 
likely to be effective in some countries (e.g. USA, China) than others (e.g. Ireland, Norway).  74 
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Conclusions and Relevance 76 
The use of digital applications in improving pain-related symptoms shows promise, but further 77 
clinical studies would be needed to develop more robust applications. 78 

 79 

Introduction 80 

High-quality research data generated by scientifically robust study designs, improved use of clinical 81 
data, and the development of cost-effective healthcare models can change how medicine is practiced 82 
in the modern world. Digital medicine (DM), wherein multimodal and multidimensional digital tools 83 
are used to intervene in accessing and providing healthcare, is now a fundamental part of these 84 
drivers of change.  85 

Despite relative growth profoundly impacting gross economic improvement, ‘bench to bedside’ 86 
pathways still take considerable time ( ). Equally robust research evaluations have not kept pace with 87 
a growing global population, although, the intellectual and healthcare evolution has modernised 88 
clinical practice by way of clinical research. Existing clinical evidence and incorporation of 89 
information technology has led to more prominent use of DM. A fundamental aspect of DM is to 90 
improve and promote evidence-based medicine (EBM) and/or evidence-based practices (EBP) within 91 
clinical and healthcare frameworks, underpinned by data science and technologies.  92 

The field of pain medicine in adults is a particularly challenging area of clinical practice for many 93 
reasons, including subjectivity associated with patient-reported outcomes and management of 94 
symptomatology with limited information on pathophysiology ( ). Considering this uncertainty, 95 
attempts by clinicians to categorise pain and decide on treatment interventions (Supplementary Table 96 
1), could benefit from the concepts of DM and its associates of EBM and EBP. Pain is often the 97 
commonest symptom that patients present with in outpatient clinics. The need for individualised care 98 
based on generalisable research is complicated by wide variables, subjective nature, and inherent bias 99 
which provide a unique set of challenges for a simple protocol to work. The use of cognitive 100 
technology such as artificial intelligence, in delivering personalised care, based on available 101 
evidence, is therefore an attractive proposition for pain medicine. 102 

[SUPPLEMENTARY TABLE 1] 103 

Pain medicine has been identified as a specialty that would vastly benefit from the personalisation of 104 
care.1 A current example of this need is the variable efficacy of pharmacotherapy in relieving chronic 105 
pain. Opioids, for instance, have been routinely used to treat chronic pain syndromes, despite only 106 
modest evidence for their use.2 This has the potential for significant harm in patients where it has 107 
been used inappropriately and may have influenced factors that led to the Opioid Crisis globally, 108 
especially so in the USA and UK. Traditional pain evaluation methods are vulnerable to recall error 109 
and bias as they rely on retrospective reporting of pain variations.3 Pain perception combined with 110 
measuring functional changes and physiological parameters affected by pain are important secondary 111 
outcome data to assess efficacy. Methods demanding frequent, repeated pain evaluation and pain-112 
associated features are required to formulate chronic pain management strategies.4,5 This approach 113 
was previously hindered both by the resources required for such vast data collection, and the 114 
complexity of the statistical analysis required to interpret the resulting datasets.6  115 
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To advance DM concepts and their use in pain medicine research, it is imperative to assess the global 117 
regulatory sphere. Over the last decade, a plethora of legislations and regulatory guidelines around 118 
DM have been developed by the World Health Organisation (WHO),7 Medicines and Healthcare 119 
products Regulatory Agency (MHRA),8 Food and Drug Administration (FDA)9 and National 120 
Institute for Health and Care Excellence (NICE)10 (Supplementary Table 2). However, there are 121 
complexities around evaluating Artificial Intelligence (AI)-based applications that fall under the 122 
category of DM. This includes those using algorithms based on machine learning (ML) models that 123 
may be categorised as a medical device. Furthermore, development of AI applications requires 124 
documentary evidence that the planning, designing, and development phases meet the globally 125 
accepted Internationally Organisation for Standardisation (ISO) standards. In order to achieve ISO 126 
standards, a high proficiency of conformances should be maintained by the research group 127 
responsible for developing the intervention that could be mass produced. As part of this 128 
standardisation process, the intervention may undergo several non-conformity assessments as well as 129 
vigorous testing and validation prior to being deployed.  130 

[SUPPLEMENTARY TABLE 2] 131 

The regulatory and standards required for novel innovations are also dependent on the disease 132 
classification. The current classification of chronic and acute pain conditions (Figure 1 and Figure 2 133 
respectively) employs the guidelines published by the International Association for the Study of Pain. 134 
Clinicians evaluating both chronic and acute chronic pain are considering changes to guidelines to 135 
provide better diagnoses and improve outcomes for patients. Advancements in the understanding of 136 
the pathophysiology of acute and chronic pain have resulted in effective pharmacological approaches 137 
to sub-populations of patients.  138 

[FIGURE 1] 139 

[FIGURE 2] 140 

A critical step of DM is the development of digital tools using large sets of datasets and aggregated 141 
data to create novel paradigms of care. This is also referred to as evidence-based digital medicine 142 
which uses EBM concepts. To disperse these paradigms, computer programming, utility and broad 143 
access of applications are vital. The development of smartphone applications is key to deliver the 144 
DM phenomenon to facilitate communication and engagement between clinicians and patients. A key 145 
element would be to personalise both treatments and applications using sensors and programming 146 
capabilities that would support significant benefits as summarised in Supplementary Table 3. 147 

[SUPPLEMENTARY TABLE 3] 148 

Evaluating the current DM landscape is equally important as developing novel applications. The 149 
accessibility of smartphones has given rise to multiple pilots of app-based longitudinal assessment 150 
programmes for chronic pain, which have shown promising early results.11,12 Furthermore, the use of 151 
validated lifestyle devices such as the FitBit® as monitoring adjuncts could be combined with 152 
questionnaires and activity programmes to allow regular functional reassessment among chronic pain 153 
patients.13  154 

Therefore, the primary aims of this study were to: (1) identify and report the current prevalence of 155 
DM application  in pain medicine ; (2) identify and report the current DM application use within pain 156 
medicine. To achieve this, we aimed to explore the prevalence of these types of assessments’ use and 157 
deployment of these using DM applications. 158 
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Materials and methods 159 

An evidence synthesis methodology was developed for the purpose of this study, with a systematic 160 
review protocol published on PROSPERO (CRD42021248232). The Preferred Reporting Items for 161 
Systematic Reviews and Meta-analyses (PRISMA) was used to report findings.  162 

Search strategy and study selection 163 
PubMed and ScienceDirect were used to identify relevant studies that were peer-reviewed and 164 
published in English between the 1st of January 1990 and 1st of January 2021. Search terms used 165 
included Chronic Pain, Pain Clinical Trials, Pain medicine, Pain medicine clinical research and 166 
Digital Clinical Trials. All studies using DM applications for chronic pain conditions were included. 167 
Only studies that were peer-reviewed and published in English were included. Suitable publications 168 
were selected using the PICO (Population/Participants, Intervention(s), Comparison, Outcome) 169 
strategy. An independent reviewer screened studies included within the study by reading the full text. 170 
Initial title and abstracts for identified articles were screened by 4 investigators. Inclusion and 171 
exclusion criteria were assessed against each study. This was followed with the screening of the full 172 
study article independently by 2 investigators and included into the final data pool.  173 

Data extraction and synthesis 174 
The data extraction process involved reading titles and abstracts followed by the application of the 175 
refinement protocol where the full text was reviewed and subsequently verified. Key study details 176 
such as study title, citation details, methods, findings, limitations, characteristics of the study and 177 
conclusions were extracted. Differing opinions were resolved by review and discussion between the 178 
lead authors. The authors remained unblinded regarding the publisher details. A full methodological 179 
description is demonstrated within the supplementary document (Figure 3).  180 

[FIGURE 3] 181 

Data analysis  182 
As all studies reported the mean and SD at several time points, a mathematical model was formulated 183 
as demonstrated in Supplementary Figure 1.  184 

[SUPPLEMENTARY FIGURE 1] 185 

BPI, NRS, PCP-S and pain evaluation questionnaires were used to assess pain intensity and pain 186 
interference; HADS, CES-D, BDI, PHQ-9, DASS, GAD-7 and STAI were used to assess depression 187 
and anxiety; FSS and MOS sleep scale were used to assess fatigue and sleep. All studies reported the 188 
mean and SD of the questionnaires across several timepoints, at baseline and follow-up. The baseline 189 
questionnaire score was subtracted from the follow-up questionnaire score to standardize the data and 190 
remove the initial effect. Score changes between these two time points reflect the treatment effect. 191 
(��� � ���) represented the change in the questionnaire scores between baseline (0) and follow-up (1) 192 
in the treatment group, which also indicated an improvement of treatments, and (��� � ���) 193 
represented the change in the questionnaire scores between baseline (0) and follow-up (1) in the 194 
control group.  195 

Therefore, (��� � ���) - (��� � ���) showed the mean difference (MD) of the change of score between 196 
the two groups, which is the outcome of focus. If (��� � ���) - (��� � ���) is positive, it indicates the 197 
treatment was beneficial for patients in improving symptoms of pain. However, if (��� � ���) - 198 
(��� � ���) is negative, it indicates the treatment had no effect on improving pain.  199 
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) - ( ) 200 

 201 

The scales of the questionnaires were different, therefore standardized mean differences (SMD) were 202 
used to illustrate the change in the mean score of the treatment group versus the control group from 203 
baseline to follow-up. The traditional form of SMD was 204 
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where 
� � 
�� � 
�� , 
��,  ��� , ���  are the number, mean and standard variation of treatment 206 
group. 
��,  ��� , ��� are the number, mean and standard variation of the control group. The 95% 207 
confidence interval (CI) was obtained by 208 

 209 

where  �. �. ����� � ����� �����. 210 

��� was transformed according to the traditional form, and ��� and �. �. ����� were calculated for each 211 
study, with a random effect model used to pool the estimators. Funnel plot graphs demonstrated the 212 
publication bias. Subgroup analysis and I2 were used to explain heterogeneity and Egger’s test was 213 
used to detect publication bias. All procedures were finished with STATA 16.1. 214 

Risk of bias  215 
The risk of bias (RoB) table (below) has been used to demonstrate the risk of bias within the 216 
randomised controlled trials used in the systematic review and meta-analysis. The RoB is reflective 217 
of a fixed set of biases within domains of study design, conduct and reporting. This combined with 218 
the quality check allows the findings of the study to be scientifically justified, and clinically viable. 219 

[TABLE 3] 220 

AMSTAR was used also to assess methodological quality, where the total scores range from 0-11 221 
(see Figure 4, below). An article would be considered as good quality with a score of 8-11, moderate 222 
4-7 and low 0-3. 223 

[FIGURE 4] 224 

Outcomes 225 
Outcomes of this study were reported via the meta-analysis which was based on the availability of 226 
statistics reported by the systematically included studies. The following are the outcomes of this 227 
study:  228 
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- Prevalence of DM applications, including categories  229 
- Prevalence of chronic pain conditions using DM applications for self-reporting purposes 230 
- Prevalence of pain outcomes of depression, anxiety, pain inferences, and fatigue and sleep 231 

problems 232 
- Clinical significance of the prevalence data  233 
- Research significance of the prevalence data  234 
- Critical interpretation of the identified data  235 
- Common themes identified within the prevalence data 236 

 237 

Results 238 

The search yielded 84 publications, with 3811,16-52 included as part of the systematic review (Table 1). 239 
Of the 38 studies, 7 were cross-sectional and lacked a control group.  Eight studies comprised of a 240 
control and treatment group, although they either lacked statistical information completely or 241 
inconsistencies were identified that were associated with the mean and SD at baseline and beta 242 
coefficients at follow-up timepoints. Therefore, 1625,28,29,31,33,35-40,43,46,50-52 were excluded and 2211,16-243 
24,26,27,30,32,34,41,42,44,45,47-49 were included into the final meta-analysis (Table 2).  244 

[TABLE 1] 245 

[TABLE 2] 246 

Meta-analysis  247 
All 22 studies included in the meta-analysis reported more than one pain-related symptom. One 248 
primary outcome reported in 15 studies was pain intensity. 11 reported depressive symptoms and 9 249 
anxiety symptoms. Pain interference was reported by 4 studies. Fatigue and sleep problems were 250 
included as secondary outcomes in two and one study respectively. Meta-analyses were conducted 251 
for each outcome separately.  252 

[FIGURE 5a] 253 

Pain intensity 254 

All 15 studies provided the mean and SD. Therefore, the meta-analysis was based on the mean and 255 
SD. Figure 6 demonstrates a pooled SMD of 0.25  with a 95%CI of 0.03-0.46. SMD is statistically 256 
higher than 0; therefore, pain scores within the treatment group reduced compared to the control 257 
group, suggesting DM applications can significantly reduce symptoms of pain. A high heterogeneity 258 
of I2 =82.86% was identified for this group (p=0.02). A subgroup analysis was conducted to analyse 259 
the possible source of heterogeneity. 260 

[FIGURE 5b] 261 

Depression 262 

The 11 studies reporting depressive symptoms used various assessment tools, including the Centre 263 
for Epidemiological Studies-Depression (CES-D), Beck Depression Inventory (BDI), Patient Health 264 
Questionnaire-8 and -9 (PHQ-8, PHQ-9), Hospital Anxiety and Depression Scale (HADS) and the 265 
Depression Anxiety Stress Scales (DASS). Ruehlman and colleagues (2012) used CES-D and DASS 266 
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to assess the depression of the participants twice. To avoid duplication we used only one (CES-D) of 267 
the means and SD of these two assessments so that 11 studies were included in meta-analysis. Figure 268 
7 showed that the pooled SMD was 0.30 with a 95%CI of 0.17-0.43, suggesting the use of DM 269 
applications reduced depression symptoms compared with the usual standard care, with an elevated 270 
heterogeneity of I2 = 34.72% (p=0.00). 271 

[FIGURE 5c] 272 

Anxiety 273 

Within the 9 studies reporting anxiety as a clinical outcome among chronic pain participants, the 274 
pooled SMD was 0.37 with a 95%CI of 0.05-0.69 (Figure 8). The SMD is significantly greater than 275 
0, indicating anxiety symptoms among participants following use of DM applications improved more 276 
than the control group. Additionally, a treatment effect greater than 0 was seen in each individual 277 
study, thus each study concluded that DM applications improve anxiety symptoms compared with 278 
controls. Heterogeneity seen within this dataset was high with I2 = 88.34% (p=0.02), indicating a 279 
significant effect of the DM applications compared with the control group. 280 

[FIGURE 6a] 281 

Pain interference 282 

Four studies reported pain interference, an important outcome in pain research. Figure 6a 283 
demonstrates a pooled SMD of 0.15 with a 95%CI of -0.05–0.34. SMD was not significantly higher 284 
than 0, suggesting that the improvement within the treatment group was not significantly greater than 285 
control group. DM applications appear to have no effect on participants exposed to the application 286 
based on an  , indicating mild heterogeneity. Therefore, a lack of a statistically obvious effect has 287 
been observed within the pooled dataset.  288 

Fatigue/sleep 289 

Two studies reported on fatigue and one study on sleep issues. The forest plots for these factors are 290 
illustrated below (Figures 6b and 6c).  291 

[FIGURE 6b] 292 

[FIGURE 6c] 293 

The pooled SMD for fatigue was 0.29, indicating the treatment group improved following the 294 
completion of the DM application use. However, this conclusion is not statistically significant given 295 
the 95%CI of -0.18-0.76. This could be due to the presence of only 2 studies, and more is needed to 296 
reach a conclusion. 297 

The pooled SMD for sleep issues was -0.04 with a 95%CI of -0.4-0.32. This indicates that DM 298 
applications did not improve sleep-related issues and is of a lower score compared to the control 299 
group. However, to provide a more comprehensive conclusion to this phenomenon, further studies 300 
would be required.  301 

 302 
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Subgroup analysis  303 

Subgroup analysis was conducted to identify the source of raised heterogeneity when considering 304 
studies reporting on pain intensity. Initial analysis considered the categories of DM applications 305 
which included web-applications, mobile apps and chatbots. The analysis is demonstrated in Figure 306 
7. 307 

[FIGURE 7] 308 

The pooled SMD for web-applications was 0.22, indicating web-applications could reduce the 309 
intensity of pain compared to the control group. The pooled SMD of mobile apps was 0.30. This 310 
demonstrates a larger effect size in relieving the intensity of pain compared to control groups and to 311 
those using web-applications.  The pooled SMD for chatbots was -0.02, indicating chatbots have a 312 
limited effect in reducing the intensity of pain in patients compared to the controls. Heterogeneity 313 
remained high in all three subgroups, so a second subgroup analysis was conducted based on 314 
exposure of pain symptoms. The pain exposure sub-group analysis included identified specific pain 315 
conditions: fibromyalgia, back pain, chronic pain, osteoarthritis pain, menstrual pain, and cancer-316 
related pain (Figure 8).  317 

[FIGURE 8] 318 

Heterogeneity could only be calculated in three of the subgroups. It remained high within these 319 
pooled subgroups, although at a lower level compared to previous analyses. Cancer-related pain 320 
reported the highest level of heterogeneity (I2=92.23%). Chronic pain and osteoarthritis pain groups 321 
reported an I2  of 82.44% and 85.19% respectively. However, due to the limited number of studies, 322 
pain and digital application exposures, the effect size could not be comprehensively assessed. A third 323 
subgroup analysis was conducted based on geographical locations (Figure 9a and 9b). 324 

[FIGURE 9a] 325 

[FIGURE 9b] 326 

A sub-group analysis by country found that DM applications appear to be effective within 327 
populations in America, China, Germany, and Netherlands, while for Ireland and Norway, a 328 
statistically significant effect was lacking. Only mild heterogeneity levels were indicated for America 329 
(I2=61.54%) and Germany (I2=45.91%). The heterogeneity may well be due to nationality and 330 
ethnicity.  331 

Sensitivity analysis  332 

Based on the meta-analysis and the sub-group analysis conducted to demonstrate pain intensity 333 
outcomes from the digital tools reported by Anderson et al,49 Chiauzzi et al42 and Sun et al,34 the 334 
standard mean deviation (SMD) was high. The primary populations of Chiauzzi and colleagues 335 
(2010) and Anderson and colleagues (2004) were African American followed by Hispanic, whilst 336 
Sun et al (2017) reported on a population of Chinese patients. Similar ethnicity and race patterns 337 
were found among 12 of the 15 studies in the meta-analysis. Of these, 5 reported ethnicity, although 338 
over 50% of the sample size was Caucasian. The other 7 did not provide specific percentages of the 339 
Caucasian representation. A sensitivity analysis was conducted to assess ethnic variability within the 340 
pooled sample size, which resulted in a SMD of 0.14 with a 95%CI of -0.07-0.35 (Figure 10).   341 
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[FIGURE 10] 342 

The sensitivity analysis reveals DM applications appear to benefit patients. However, to conclusively 343 
demonstrate a statistical significance more studies would be required. The p-value where the reported 344 
SMD was greater than 0 was 0.2, indicating there is a 90% probability that the DM application would 345 
have a positive impact on the patient’s pain. It is equally vital to recognize that the predominantly 346 
African American and Hispanic population-based studies reported a SMD of 0.76 with a 95% of 347 
0.48-1.05, and a study consisting entirely of African American and Hispanic participants reported a 348 
SMD of 0.19 (95%CI -0.21-0.59). Sun et al (2017) reported a SMD of 1.34 with a 95% CI of 0.72-349 
1.96. Therefore, DM applications appear to have a positive impact on patients.  350 

The sensitivity analysis shown in Figure 16 demonstrates strong heterogeneity. The main source of 351 
heterogeneity could be the difference in the treatment interventions deployed by way of the DM 352 
application. As this is associated with the interventions themselves rather than the DM applications, it 353 
is beyond the scope of this study, and could be explored in the future. Pooled SMD of web-354 
application, mobile apps and chatbots were 0.22, 0.1 and -0.02 respectively. Figure 11 demonstrates 355 
that the most effective DM application could be mobile apps since web-applications are not a self-356 
reported method.  357 

[FIGURE 11] 358 

Publication bias 359 

Publication bias was assessed and reported using funnel plots and Egger’s test to examine the small-360 
study effect. Publication bias appears to be smaller among studies associated with fatigue and sleep, 361 
and higher in studies demonstrating pain intensity, depression, anxiety, and pain interferences. There 362 
is a lack of significant publication bias based on the funnel plot (Figure 12a, below). The Egger’s test 363 
p-value is 0.932, indicating the lack of a small study effect. However, there are 5 studies that fell 364 
outside the 95%CI which could affect our detection of publication bias. The p-value is not high but it 365 
is limited by the data and experimental quality.  366 

[FIGURE 12a] 367 

[FIGURE 12b] 368 

[FIGURE 12c] 369 

[FIGURE 12d] 370 

Figures 12b and 12c indicate a lack of publication bias statistically for depression and anxiety, with 371 
Egger’s test p-values of 0.838 and 0.712 respectively. Pain inferences (Figure 12d), which was 372 
included in four studies, had an Egger’s test p-value of 0.43, which demonstrates we cannot detect a 373 
publication bias. The low numbers of studies reporting outcomes for fatigue and sleep problems 374 
meant analysis of publication bias was not possible.     375 

 376 

 377 

 378 
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Discussion 379 

The prevalence of DM applications within pain research appear to be moderate and is focused around 380 
developed countries such as America and Germany. China appears to be the only country within Asia 381 
to have conducted a study to assess the use of DM applications among patients with chronic pain. 382 
This demonstrates an urgent need to conduct evaluations of these DM applications in low-income 383 
and middle-income countries to optimise and evaluate the efficacy and acceptability among patients 384 
and clinicians. Patient-reported DM applications identified in the systematic review could be 385 
categorised primarily as mobile apps and chatbots, as EHR systems were used to assess pain-386 
associated outcomes. As a result of these differences, the prevalence of DM applications was meta-387 
analysed at a granular level to identify and report pain outcomes such as depression, anxiety, pain 388 
intensity and pain inference that were assessed by the tools. The lack of uniformity among the 389 
assessments used within the applications are another issue that requires further elaboration if these 390 
are to be used by clinicians as part of a patient’s ongoing clinical management. The assessments used 391 
also appear to be non-specific to a particular group of patients. Often, the studies did not report on 392 
underlying conditions or if the pain conditions had a clinical diagnosis. Thus, it is challenging to 393 
demonstrate that users demonstrated true clinical benefit. This suggests there is little quantifiable data 394 
to provide a comprehensive conclusion in terms of the generalisability and feasibility of these 395 
applications globally. 396 

We identified multiple themes and sub-themes in this analysis that were pooled as mobile 397 
applications, EHR and chatbots. Mobile applications have grown rapidly to support the management 398 
of pain disorders such as migraine, back pain and fibromyalgia by offering educational components, 399 
exercise platforms, relaxation techniques and mindfulness-based options to name a few. These 400 
options provide feedback and allow engagement and adherence of the users. This may explain why 401 
mobile applications demonstrated better results compared with other DM applications in the 402 
management of chronic pain. Another facet to consider is the inclusion of these datasets to maintain a 403 
structured approach to deliver effective continuity of care provision. Trials promoting the evaluation 404 
of data in a comprehensive manner through systems that allow the standardisation and acceptance of 405 
quality data would increase the acceptance of digitised data. Trials involving DM applications that 406 
incorporate AI-based clinical algorithms to assist with the evaluation of pain and outcomes in 407 
patients with cancer appear encouraging.53  408 

Ledel Solem and colleagues (2019) reported adult participants were in favour of using DM-based 409 
self-management interventions for chronic pain management.54 Patients felt that the accessibility, 410 
usability, and personalisation were vital for DM tools, and suggested that these should be further 411 
developed to distract them from pain, regardless of pain intensity and cognitive capacity.  412 

The benefits of harnessing DM within the context of pain medicine could improve both clinical and 413 
patient-reported outcomes. Evidence-gathering to support therapeutic efficacy for pharmacological or 414 
surgical treatments requires effective and robust methodology, yet rigid traditional trial designs 415 
remain inefficient and struggle with implementation into clinical practice, limiting sustainability 416 
within healthcare systems. Computer-based technology could address these obstacles in research. The 417 
flexibility and accessibility of digital technology enables a more convenient and improved consenting 418 
process. This could allow easier enrolment and participation in studies for populations disadvantaged 419 
by mobility or literacy issues. Increased recruitment and retention lead to larger study populations 420 
with greater data validity, and aids researchers by speeding up recruitment and assessment of large 421 
trial populations.  422 
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Digital clinical trials are key in collating all the above factors, as it is a fundamental tool in assessing 423 
the efficacy and safety of novel drugs, medical devices, and health system interventions. Traditional 424 
clinical trials have demonstrated the validity, acceptability, and sustainability of the interventions, 425 
whilst digital clinical trials could leverage technologies to engage and report trial-specific 426 
measurements associated with the interventions being tested at a lower cost.59 Conceptualising digital 427 
clinical trials for pain medicine could have added benefits, especially for patients who could report 428 
pain episodes daily. That would allow digital analytics to assess considerations clinicians need to 429 
make when developing clinical treatments. Additionally, data science approaches could be leveraged 430 
in this instance to develop novel clinical methods to best utilise trial data with ‘real-world’ data to 431 
develop aggregated datasets. These could be used to promote multi-morbid clinical research, which is 432 
vital in furthering clinical practices associated with pain medicine.  433 

Limitations  434 
Unified approaches of conducting DM application assessments were lacking across all 3 categories 435 
identified and reported within the scope of this study. As a result, the pooled analysis conducted 436 
limits the generalizability of the findings. It is evident that the lack of validation in digital 437 
applications is another rate-limiting factor in furthering the use of these among clinical populations.  438 

Conclusion  439 
The pain medicine ecosystem has a plethora of research studies, although those in population 440 
research, prevention, clinical trials, and education, as well as training, need to evolve if 441 
improvements are to be made clinically. This could integrate evolving DM concepts, including AI 442 
applications, that could improve patient-reported outcomes. It is, therefore, important to conduct 443 
further well-designed digital clinical trials.  444 

Another concern based on evidence ascertained in this study is the minimal use of clinical trials to 445 
test DM applications; therefore, the efficacy and efficiency of these, as well as the generalizability to 446 
a wider population, remain limited. Pragmatic and novel methods of conducting clinical trials would 447 
be beneficial in providing credible evidence before these DM applications are used within clinical 448 
practice. Alternatives such as simulation studies using real-world environments could be used to test 449 
novel DM applications, given the complexities around conducting pain research. Similarly, it may be 450 
beneficial for patients to gain access to DM applications more quickly, especially those managing 451 
chronic pain. Therefore, a paradox of “no evidence, no implementation vs. no implementation, no 452 
evidence” is a challenge to clinicians, patients, policymakers, and clinical researchers alike. Using 453 
simulation methods, where possible, could provide an alternative method to overcome this paradox, 454 
although there may be limitations that would need considering as it not always feasible to design 455 
precise simulations or perform competency validation. The proliferation of digital technologies 456 
would provide the leverage to optimise global care by way of mobile platforms, to open better 457 
avenues, and to measure outcome data from wearable devices. These applications use real-world data 458 
that could benefit patients and clinicians alike. Thus, the use of DM in pain medicine could promote 459 
a myriad of benefits. 460 

 461 

 462 
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Tables 723 

Table 1. Characteristics of the systematically included studies 724 

Author Diagnosis/Treatment 
method 

Digital 
application 
and method 
of 
application 
delivery 

Study type 

 

Sample size 

 

Country Exposure 

 

Bossen et al 
(2013) 

Intervention Web-based 
intervention 

 

RCT 199 Netherlands osteoarthritis 
pain 

Hedman-
Lagerlöf, et 
al (2018) 

Intervention Web-based 
intervention 

 

RCT 140 Sweden fibromyalgia 

 

Krein et al 
(2013) 

Intervention Web-based 
intervention 

 

RCT 229 USA chronic low 
back pain 

 

Rini et al 
(2015) 

Intervention Web-based 
intervention 

 

RCT 113 USA osteoarthritis 
pain 

 

Williams et 
al (2010) 

Intervention Web-based 
intervention 

 

RCT 118 USA fibromyalgia 

 

Wilson et al 
(2015) 

Intervention Web-based 
intervention 

 

RCT 92 USA chronic 
noncancer pain 

 

Raj et al 
(2017) 

Intervention Web-based 
intervention 

 

RCT 214 Norway cancerrelated 
pain 

 

Guillory et al 
(2015) 

Chatbots Text 
message and 
mobile app 

RCT 
Feasibility 

 

68 USA chronic 
noncancer pain 
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Berman et al 
(2009) 

Chatbots Web-based 
intervention 

 

RCT 78 USA chronic pain 

 

Carpenter et 
al (2012) 

Chatbots- Cognitive 
behavioral therapy 
with chapters 

 

Web-based 
intervention 

 

RCT Pilot 

 

141 USA chronic low 
back pain 

 

Menga et al 
(2014) 

Chatbots- Cognitive 
behavioral therapy 
with chapters 

 

Web-based 
intervention 

 

RCT 44 USA Fibromyalgia 

 

O'moore et al 
(2018) 

Chatbots- Cognitive 
behavioral therapy 
with chapters 

 

Web-based 
intervention 

 

RCT 69 USA osteoarthritis 
pain 

 

Gentili et al 
(2020) 

Mobile app based 
acceptance therapy 

 

Mobile 
based 
intervention 

 

RCT pilot 

 

31 Sweden chronic pain 

 

Minen et al 
(2019) 

Mobile app based 
behavioral 

therapy 

 

Mobile 
based 
intervention 

 

Crosssectional 
- Feasibility 

 

51 USA migraine 

 

Toelle et al 
(2019) 

Mobile app based 
therapy 

Mobile 
based 
intervention 

 

RCT 94 Germany Chronic 
nonspecific low 
back pain 

 

Blödt et al 
(2018) 

Mobile app based 
self-acupressure 

 

Mobile 
based 
intervention 

 

RCT - 
Pragmatic 

 

221 Germany menstrual pain 

 

Irvine et al Mobile app based Mobile 
based 

RCT 597 USA chronic low 
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(2015) self-management 

 

intervention 

 

back pain 

 

Schatz et al 
(2015) 

Mobile app based 
coping, pain and 
activity 

 

Mobile 
based 
intervention 

 

RCT 46 USA chronic pain for 
paediatric 
sickle cell 

 

Nebojsa et al 
(2017) 

Mobile app and an 
wearable activity 
monitor 

 

 

Mobile 
based 
intervention 

RCT 211 USA osteoarthritis 
pain 

 

 

Sun et al 
(2017) 

Mobile app for pain 
management 

Mobile 
based 
intervention 

RCT 46 China cancer-related 
pain 

 

Guétin et al 
(2016) 

Mobile app delivering 
music therapy for 
pain 

Mobile 
based 
intervention 

RCT 106 France chronic pain 

 

Jamison et al 
(2017) 

Mobile app based 
daily assessment and 
treatment 

 

Mobile 
based 
intervention 

RCT - pilot 

 

90 USA chronic pain 

 

Jibb et al 
(2017) 

Mobile apps Mobile 
based 
intervention 

 

RCT -
pragmatic 

 

40 Canada cancer-related 
chronic pain 
among the 
adolescent 

 

Lee et al 
(2017) 

Mobile app-based 
exercise program 

 

Mobile 
based 
intervention 

 

Crosssection 
single group 
repeated 
measure 

 

23 Korea neck pain 

 

Oldenmenger 
et al (2016) 

Mobile apps Web-based 
intervention 

 

quantitative 

 

48 Netherlands cancer-related 
pain 
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Huber et al 
(2017) 

Mobile app and EHR 

 

Mobile 
based 
intervention 

 

Retrospective 
RCT 

 

180 Germany chronic low 
back pain 

 

Calner et al 
(2017) 

Intervention Web-based 
intervention 

 

RCT 109 Sweden musculoskeletal 
pain 

 

Chiauzzi et 
al (2010) 

Intervention -  self-
management 

 

Web-based 
intervention 

 

RCT 199 USA chronic pain 

 

Davis et al 
(2013) 

Intervention of 
mindfulness 

 

Web-based 
intervention 

 

RCT 79 USA fibromyalgia 

 

Dowd et al 
(2015) 

Online mindfulness-
based cognitive 
therapy intervention 

 

Web-based 
intervention 

 

RCT 124 Ireland chronic pain 

 

Lin et al 
(2020) 

Mobile apps Web-based 
intervention 

 

RCT 302 Germany multimodal 
pain 

 

Nordin et al 
(2016) 

Intervention for web 
behaviour change 

 

Web-based 
intervention 

 

RCT 109 Sweden Multimodal 
pain 

 

Ruehlmana 
et al (2012) 

Intervention self-
management 

 

Web-based 
intervention 

 

RCT 305 USA chronic pain 

 

Ström et al 
(2000) 

Intervention – self-
management 

 

Web-based 
intervention 

 

RCT 45 Sweden recurrent 
headache 

 

Anderson et 
al (2004) 

Intervention - video 
and booklet 

 

Web-based 
intervention 

 

RCT 97 USA Cancer-related 
pain 
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Lovell et al 
(2010) 

Intervention – video 
and booklet 

 

Web-based 
intervention 

 

RCT 217 Australia Cancer-related 
pain 

 

Guétin et al 
(2018) 

Smartphone-based 
intervention 

 

Mobile-
based 
intervention 

 

RCT 62 France chronic painful 
conditions 

 

Oldenmenger 
et al (2018) 

Intervention – internet 
applications 

 

Web-based 
intervention 

cohort study 

 

 

84 Netherlands Cancer-related 
pain 

*EHR = Electronic Health Records; RCT = Randomised clinical trial 725 

 726 

Table 2. Studies included within the meta-analysis 727 

Study 
ID 

Author Digital 
applications 

Study 
type 

Sample 
size 

Country Exposure P-value 

1 Bossen et 
al (2013) 

web-
application 

RCT 199 Netherlands osteoarthritis 
pain 

0.33 (pain 

intensity); 0.09 
(depression); 
0.007 (anxiety) 

 

2 Hedman-
Lagerlöf et 
al (2018) 

web-
application 

RCT 140 Sweden fibromyalgia <0.001 
(depression); 
<0.001 
(anxiety); 
<0.001(fatigue) 

 

3 Rini et al 
(2015) 

web-
application 

RCT 113  

 

USA osteoarthritis 
pain 

Not provided 

4 Williams 
et al 
(2010) 

web-
application 

RCT 118 USA fibromyalgia Not provided 

 

5 Wilson et web- RCT 92 USA chronic 0.22 (pain 
intensity); 0.25 
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al (2015) application noncancer pain (depression) 

 

6 Raj et al 
(2017) 

web-
application 

RCT 214 Norway cancer-related 
pain 

Not provided 

 

7 Berman et 
al (2019) 

chatbots RCT 78 USA chronic pain Not provided 

8 Menga et 
al (2014) 

chatbots RCT 44 USA Fibromyalgia 0.005 (severity 
of fibromyalgia) 

9 O'moore et 
al (2018) 

chatbots RCT 69 Australia osteoarthritis 
pain 

Not provided 

10 Gentili et 
al (2020) 

Mobile apps RCT 94 Germany chronic low 
back pain 

0.021(pain 
intensity) 

 

11 Blödt et al 
(2018) 

Mobile apps RCT 221 Germany menstrual pain 0.026 (pain 
intensity) 

 

12 Schatz et 
al (2015) 

Mobile apps RCT 46 USA chronic pain 0.1 (negative 
affect) 

 

13 Sun et al 
(2017) 

Mobile apps RCT 46 China cancer-related 
pain 

<0.01 (pain 
intensity) 

14 Calner et 
al (2017) 

Mobile apps RCT 109 USA musculoskeletal 
pain 

0.37 (intensity) 

 

15 Chiauzzi et 
al (2010) 

Mobile apps RCT 199 USA chronic pain Not provided 

 

16 Dowd et al 
(2015) 

Mobile apps RCT 124 Ireland chronic pain Not provided 

 

17 Lin et al 
(2020) 

Mobile apps RCT 302 Germany multimodal 
pain 

0.01 (pain 
intensity); <0.01 
(depression); 
0.44 (anxiety); 
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<0.01 (pain 
interference) 

18 Ruehlmana 
et al 
(2012) 

Mobile apps RCT 305 USA chronic pain 0.2 (pain 
intensity); 0.06 
(depression); 
0.15 (anxiety); 
0.3 (pain 
interference) 

19 Ström et al 
(2000) 

Mobile apps RCT 45 Sweden recurrent 
headache 

Not provided 

 

20 Anderson 
et al 
(2004) 

web-
application 

RCT 84 Netherlands Cancer-related 
pain  

 

Not provided 

 728 

  729 

Table 3. Risk of bias, according to the revised risk-of-bias tool for randomised trials (RoB 2.0) 730 

Author Randomisation 
process 

Deviations 
from the 
intended 
interventions 

Missing 
Outcome 
Data 

Measurement 
of the 
Outcome 

 

Selection 
of the 
reported 
result 

Overall 

 

Bossen et al 
(2013) 

some concerns* low risk low risk low risk low risk some 
concerns 

 

Hedman-
Lagerlöf, et al 
(2018) 

low risk low risk low risk low risk low risk low risk 

Krein et al 
(2013) 

low risk low risk low risk low risk low risk low risk 

Rini et al 
(2015) 

low risk low risk low risk low risk low risk low risk 

Williams et al 
(2010) 

low risk low risk low risk low risk low risk low risk 

Wilson et al low risk low risk low risk low risk low risk low risk 
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(2015) 

Raj et al 
(2017) 

low risk low risk low risk low risk low risk low risk 

Guillory et al 
(2015) 

low risk low risk low risk low risk low risk low risk 

Berman et al 
(2009) 

low risk low risk low risk low risk low risk low risk 

Carpenter et 
al (2012) 

low risk low risk low risk low risk low risk low risk 

Menga et al 
(2014) 

low risk low risk low risk low risk low risk low risk 

O'moore et al 
(2018) 

low risk low risk low risk low risk low risk low risk 

Gentili et al 
(2020) 

low risk low risk low risk low risk low risk low risk 

Minen et al 
(2019) 

high risk** low risk low risk low risk low risk high risk 

Toelle et al 
(2019) 

some 
concerns*** 

low risk low risk low risk low risk some 
concerns 

Blödt et al 
(2018) 

low risk low risk low risk low risk low risk low risk 

Irvine et al 
(2015) 

low risk low risk low risk low risk low risk low risk 

Schatz et al 
(2015) 

low risk low risk low risk low risk low risk low risk 

Nebojsa et al 
(2017) 

low risk low risk low risk low risk low risk low risk 

Sun et al 
(2017) 

low risk low risk low risk low risk low risk low risk 

Guétin et al 
(2016) 

low risk low risk low risk low risk low risk low risk 

Jamison et al low risk low risk low risk low risk low risk low risk 
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(2017) 

Jibb et al 
(2017) 

low risk low risk low risk low risk low risk low risk 

Lee et al 
(2017) 

high risk** low risk low risk low risk low risk high risk 

Oldenmenger 
et al (2016) 

low risk low risk low risk low risk low risk low risk 

Huber et al 
(2017) 

low risk low risk low risk low risk low risk low risk 

Calner et al 
(2017) 

low risk low risk low risk low risk low risk low risk 
low risk 

Chiauzzi et al 
(2010) 

low risk low risk low risk low risk low risk low risk 

Davis et al 
(2013) 

low risk low risk low risk low risk low risk low risk 

Dowd et al 
(2015) 

low risk low risk low risk low risk low risk low risk 

Lin et al 
(2020) 

low risk low risk low risk low risk low risk low risk 

Nordin et al 
(2016) 

low risk low risk low risk low risk low risk low risk 

Ruehlmana et 
al (2012) 

 

low risk low risk low risk low risk low risk low risk 

Ström et al 
(2000) 

low risk low risk low risk low risk low risk low risk 

Anderson et al 
(2004) 

low risk low risk low risk low risk low risk low risk 

Lovell et al 
(2010)  

low risk low risk low risk low risk low risk low risk 

Guétin et al 
(2018) 

low risk low risk low risk low risk low risk low risk 
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Oldenmenger 
et al (2018) 

 

high risk** low risk low risk low risk low risk high risk 

 * Some concerns due to missing information regarding the allocation concealment. 731 
** High risk because of lack of randomisation. 732 
*** Some concerns due to deviation from the protocol resulting in a 53:48 distribution of participants. 733 
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Figure 3. Representation of the PRISMA Flowchart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4. Mathematical model for data analysis 
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Exclusion 
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 47 studies 
 

34 studies 

 13 studies 
were excluded 
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Figure 6. Forest plot of pain intensity 
 

 
 
Figure 7. Forrest plot of depression 
 

 
 
Figure 8. Forest plot for anxiety 
 

 
Figure 9. Forrest plot for pain interference 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.22271773doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271773
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 
Figure 10. Forest plot of fatigue 
 

 
 
 
Figure 11. Forrest plot of sleep 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 Subgroup analysis for pain intensity (web-application, mobile apps, chatbots) 
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Figure 13. Subgroup analysis for pain intensity (by pain type) 
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Figure 14a Subgroup analysis for pain intensity (by  country) 
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Figure 14b Geographical spread of data collected for the systematic review 
 
 

 
 
 
 
 
Figure 15. Sensitivity analysis without  3  BAME studies33,41,60 
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Figure 16. Sensitivity analysis without  3  BAME studies33,41,60 

(sub-grouped by digital applications)  
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Figure 17. (a) funnel plot for pain intensity; (b) egger’s test for pain intensity. 
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Figure 18. (a) funnel plot for depression; (b) egger’s test for depression. 
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Figure 19. (a) funnel plot for anxiety; (b) egger’s test for anxiety. 

   

 
 
Figure 20. Funnel plot for pain inferences 
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Figure 1. Chronic Pain Classification Tree (CPCT) 
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Figure 2. Acute Pain Classification Tree 
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