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Abstract

Epidemiologists often study the associations between a set of exposures and multiple biologically

relevant outcomes. Frequently used scale and context dependent regression coefficients may not offer

practically meaningful comparison and can further complicate the interpretation when these outcomes do

not have similar units. Additionally, while scaling up a hypothesis driven study based on preliminary data,

epidemiologists face a major uncertainty of how large the sample size should be. Frequently used p-value

based sample size calculation emphasizes on precision and might lead to very large sample size for small

or moderate effect sizes. This is not only costly but also might allow detection of irrelevant effects. Here

we introduced a new concept “δ-score” by modifying Cohen’s f2. δ-score is scale independent and under a

new hypothesis testing framework quantifies the maximum Cohen’s f2 with certain optimal properties. We

also introduced “Sufficient sample size”, which is the sample size required to attain the δ-score. Finally,

we demonstrated the utility of δ-score and sufficient sample size using data on adults from 2017–2018
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US National Health and Nutrition Examination Survey for association between mixture of Per-and poly-

fluoroalkyl substances and metals with serum high-density and low-density lipoprotein-cholesterols.

Keywords: Cohen’s f2, Environmental Health; Weighted Quantile Sum Regression; Sample size

1 Introduction

Estimating effect size with considerable high precision is the currency of epidemiological research. Given a

hypothesis of interest and a set of specific aims, preliminary data is collected. Collecting data and process-

ing biological samples is costly and therefore this stage protects against waste of resources when the study

does not progress as planned. Next depending on the obtained effect estimate and resource constraints, a

larger study is planned. For example, consider a scenario where an epidemiologist wants to study the asso-

ciation between Perfluoroalkyl substances (PFAS) and alanine aminotransferase (ALT), a liver enzyme and

cytokeratin-18 (CK-18), a marker of liver-cell death, in school age children. PFAS belong to a diverse class

of environmental pollutants with “emerging concern” that interfere with multiple metabolic and hormonal

systems in human (Futran Fuhrman et al. (2015)). ALT and CK-18 may or may not be measured in similar

units and quantify different aspects of liver injury. Although, animal studies have shown biologically plau-

sible cause-effect relationship between PFAS exposure and increase in ALT/CK-18 levels, their associations

in humans are not well studied (Cano et al. (2021)).

Now assume, the regression estimates for both the associations be two unit increase per one unit increase

in PFAS. If the units of ALT and CK-18 are different, the comparison between these estimates become dif-

ficult. Even a conversion to scale free outcomes makes the interpretation non-intuitive. Further, if ALT and

CK-18 are on the same scale, two unit increase in ALT has a very different clinical and practical implication

than two unit increase in CK-18, with one having higher potential for public health intervention than the

other. Moreover, assume that at the current sample size, none of these associations are statistically signif-

icant. Based on their hypothesis, the epidemiologist decides to scale up their studies and apply for a grant

based on their preliminary data. A p-value based sample size calculation yields large and comparable sample

sizes and corresponding effect sizes become statistically significant. This situation leads to some quandaries,

firstly, the increase in precision due to increase in sample size, may not reflect practically meaningful effect
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size and rather guarantees that any irrelevant and tiny effect sizes are detectable (Ioannidis et al. (2014),

Wasserstein and Lazar (2016)). Secondly, for practically meaningful and statistically significant effect size,

the high precision induced by large sample size may not be needed, as long as the effect size do not change

considerably as sample size increases. Measuring PFAS/ALT/CK-18 in child serum is a time consuming and

costly process, therefore even at a small/moderate sample size if the effect estimate allows for a contextual,

biological and/or clinical implication, there may not be any further need to increase the sample size without

a strong justification for higher precision.

A long established index to report strength of explanatory association in a more fundamental way is

Cohen’s f2 (Cohen (1988)), which evaluates the impact of additional variables over the baseline covariates.

Through the past three decades, Cohen’s f2 continues to be extensively used in behavioral, psychological

and social sciences, due to its immense practical utility and ease of interpretation (Schäfer and Schwarz

(2019)). In this paper, we propose δ-score by modifying Cohen’s f2 to evaluate strength of explanatory

association in a more fundamental and scale-independent way. Similar to Cohen’s f2, δ-score moves the

contextual reference to baseline covariates and evaluates the effect size contributed solely by a set of expo-

sures or exposure-mixtures on top of those baseline covariates. Further, under a special hypothesis testing

framework, we show that δ-score quantifies the maximum Cohen’s f2 and admits some useful optimal prop-

erties. The idea was naturally extended to a new concept “Sufficient sample size” which is an estimate of

the sample size required to attain the δ-score. Through illustrative examples and application in 2017–2018

US National Health and Nutrition Examination Survey (NHANES) data, we quantify δ-scores and Suffi-

cient sample sizes for the association between mixture of Per-and poly-fluoroalkyl substances and metals

on lipoprotein-cholesterols and demonstrate that Sufficient sample sizes are usually smaller than the p-value

based sample size estimates.

2 Methods

Consider a common problem of testing if a set of exposures in a regression model is associated with the

outcome after adjusting for covariates and/or confounders. For example, consider a linear model, y =

X0b0 +X1b1 + ε, and we are interested to know the strength of the association of X1 after adjusting for
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X0 and formulate the hypothesis, H0 ∶ Effect size of X1 = 0 vs H1 ∶ Effect size of X1 = δ, where δ is

a pre-defined meaningful quantity and δ > 0. In the sections below, we first briefly discuss Cohen’s f2 in

linear regression. Next we move on to formulate an error calibrated hypothesis testing framework. Lastly,

we introduce the idea of δ-score and Sufficient sample size under that framework.

2.1 Cohen’s f 2 in Linear Regression

Consider the linear regression model noted above and assume ϵ ∼ N(0, σ2In), where In is an identity

matrix of dimension n × n. Let γn be the non-centrality parameter, then γn equals 0 when y is generated

under H0. When y is generated under the alternative, γn has the form of γn =
∥(In−PX0

)X1b1∥
2

σ2 , where

PX0 =X0 (X
t
0X0)

−1
Xt

0 is the projection matrix on to the linear space spanned by the column vectors of

X0 (Wilks (1938), Brown et al. (1999)) (section S.1 of supplementary material). For the common regression

design in which the predictor vector of each subject is drawn from a common population, γn grows linearly

on n. Note that γn does not depend on y but depends on the design matrix X and underlying parameter b1

and σ2. A long established index of quantifying additional impact in linear regression is Cohen’s f2,

f2
=
R2

y,X0,X1
−R2

y,X0

1 −R2
y,X0,X1

,

where R2
y,X0,X1

and R2
y,X0

are the squared multiple correlation for X0,X1 under H1 and X0 under

H0 respectively. The f2 quantifies the proportion of association with y accounted by X1 on top of the

association accounted by X0, a concept that most researcher can relate to intuitively (Selya et al. (2012)).

In linear regression, Cohen’s f2 and non-centrality parameter γn can be connected through the following

lemma.

Lemma 1.
nf2

γn

P
ÐÐÐ→
n→∞

1.

See the proof in section S.2 of supplementary material. Further discussion on Cohen’s f2 in generalized

linear models is presented in section S.3 of supplementary material.
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2.2 Formulation of error calibrated cutoff in a new hypothesis testing framework

Following the hypothesis in (1) and for a meaningful value of δ > 0, we specify our main hypothesis as

below

H0 ∶ f
2
= 0 vs H1 ∶ f

2
≥ δ. (1)

Let the test statistic be S(y) = p1F (y) for a linear regression and S(y) = Λ(y) for other generalized linear

models. T be a type 1 and type 2 error calibrated cutoff which depends on sample size n and unknown

parameters p1 and effect size δ. Then given cutoff T, one can define a testing procedure by its type 1 and

type 2 errors as below:

α(T) = P (S(y) > T ∣ f2
= 0) = P (χ2

p1
> T) (1 + o(1))

β(T) = P (S(y) < T ∣ f2
= δ) = P (χ2

p1
(γn) < T∣γn = nδ) (1 + o(1)) ,

where χ2
p1

denotes central chi-squared random variable with p1 degrees of freedom and χ2
p1
(γn) denotes

non-central chi-squared random variable with p1 degrees of freedom and γn as the non-centrality parameter.

Our central idea is to choose T so that type 1 error α(T) and the type 2 error β(T) satisfy the relationship,

α(T) = θβ(T), with 0 < θ ≤ 1 and θ is pre-specified. Using the chi-square approximation to S(y), we can

solve for the calibrated cutoff T by equation

P (χ2
p1
> T∣γn = 0) = θP (χ2

p1
(γn) < T∣γn = nδ) . (2)

When T is fixed, the left size of equation (2) remains constant as n → ∞ while the right side diminishes

to 0 rapidly under non-centrality parameter nδ. Therefore, equation (2) implies T → ∞ as n → ∞. In

the Theorem stated below we elaborate more on T. The results in theorem 1 depend on the normality

approximation of the non-central chi-square distribution, i.e. for large n, equation (2) was rewritten as,

P (χ2
p1
> T∣γn = 0) = θΦ

⎛

⎝

T − p1 − nδ
√
2(p1 + 2nδ)

⎞

⎠
+ o(1). (3)
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For ease of interpretation and theoretical derivations, we consider θ = 1 in the following sections, i.e. the

case when both the type 1 and type 2 errors decay at the same rate. The cases with θ ≠ 1 can be developed

similarly.

Theorem 1. Consider the hypothesis of interest to be H0 ∶ f
2 = 0 vs. H1 ∶ f

2 ≥ δ, where f2 denotes

Cohen’s f2. Assume data y is generated under the alternative with f2 = δ. Then following the constraint

α(T) = β(T) as in (2) and for large n, the error calibrated cutoff T has the following expression,

T = (
δn

2K − 1
+ c1n

1
2K ) (1 + o(1)) (4)

Further, the type 1 error or the type 2 error rates can be expressed as,

d

dn
log{α(T)} =

d

dn
log{β(T)} = −

δ(K − 1)2

2(2K − 1)2
+ o(1) (5)

where, K → (2 +
√
2)(1 + o(1)) and c1 is a constant of integration.

The proof is presented in section S.4 of supplementary material. Theorem 1 sheds light on the structure

of the cutoff T and the rates of corresponding type 1 or type 2 errors when the sample size n is large. Since

both errors go to 0 as n→∞, this procedure for testing of hypothesis is consistent while keeping error rates

equal. It should be noted that both the errors decay at an exponential rate and therefore deems useful even

at moderate sample sizes. In order to convince the accuracy of Theorem 1, we presented the type 1 and

type 2 error rates as well as the rate of change of T with respect to n using the results from theorem 1 and

corresponding numerical results from equation (3). As seen from Table 1, irrespective of the Cohen’s f2, as

n increases, the rate of change of T, log (type 1) and log (type 2) converge to the corresponding theoretical

rates specified in Theorem 1. We also conducted a Monte Carlo simulation to estimate the calibrated type

1 and type 2 errors for different values of n, p1 and f2 (see section S.5 and Table 1 of supplementary

material). Moreover, detailed discussion on the properties of the error calibrated cutoff T and the type 2

error is presented in section S.6 of supplementary material.
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Table 1: Rates of cutoff T, log (type 1) or log (type 2) with respect to sample size n, based on Theorem 1
and equation (3)

Numerical approximation using Using Theorem
Equation (3) (1)

p1 f2 n d
dn

T d
dn

log (α) d
dn

T d
dn

log (α)

1 2.5% 250 0.0042895 -0.0031 0.0042893 -0.0021
1 10% 250 0.0171573 -0.0100 0.0171573 -0.0086
5 2.5% 250 0.0043764 -0.0025 0.0042893 -0.0021
5 10% 250 0.0172491 -0.0090 0.0171573 -0.0086
1 2.5% 500 0.0042896 -0.0028 0.0042893 -0.0021
1 10% 500 0.0171573 -0.0094 0.0171573 -0.0086
5 2.5% 500 0.0043764 -0.0024 0.0042893 -0.0021
5 10% 500 0.0172491 -0.0087 0.0171573 -0.0086

2.3 Notion of δ-score

We can borrow the common convention for f2 (Cohen (1988)) and call f2 ≥ 0.02, f2 ≥ 0.15 and f2 ≥ 0.35 as

representing small, moderate and large effect size respectively. This can serve as the guidance in understating

the effect size obtained from the data. Further, given the data, one can utilize this hypothesis by sequentially

choosing and testing increasing values of δ as long as the null gets rejected and finally stopping when the

null can no longer be rejected. Finally, this brings us to the question that given any data whether there exists

any maximum δ such that the null will always be rejected. Let the likelihood ratio test statistic be Λ(y). We

reject the null if and only if T(δ) ≤ Λ(y). Hence, T(δ) attains a maximum at the upper bound Λ(y). Denote

this δ at which T(δ) attains the maximum as δ∗ and consider the reformulated hypothesis (1) as below, with

δ∗ as the final choice of δ,

H0 ∶ f
2
= 0 vs H1 ∶ f

2
≥ δ∗. (6)

We note some interesting properties of δ∗ through the following corollary,

Corollary 1. Under the hypothesis in (6), let δ∗ be the unique solution to the equation T(δ∗) = Λ(y). Then

δ∗ admits the following properties:

• δ∗ is the maximum value of Cohen’s f2 such that the null is still rejected.

• For any h ≥ −δ∗, the asymptotic type 1 error, P (χ2
p1
> T(δ∗ + h)∣γn = 0) is a monotonically decreas-
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ing function of h, whereas the asymptotic type 2 error, P (χ2
p1
(γn) < T(δ∗ + h)∣γn = Ey {Λ(y)}) is

a monotonically increasing function of h.

See the proof in Section S.8 of supplementary material. Further, for large n, δ∗ undertakes asymptotic

convergence (Lemma 3.1 of Vuong (1989)) and we define “δ-score” as noted below:

δ-score ∶= Ey {δ
∗
} , n→∞.

Under the hypothesis testing framework in (1), δ-score captures the asymptotic and maximum Cohen’s f2

contributed solely by the larger exposure model on top of baseline covariate only model. Unlike usual Null

Hypothesis Significance Testing based sequential testing (Schönbrodt et al. (2017)), this framework does not

inflate the type 1 error and circumvents the issue through its use of the error calibrated cutoff and keeps the

error rates in balance. Instead of simply estimating Cohen’s f2, this procedure introduces hypothesis testing

for an error balanced decision making.

2.4 Notion of Sufficient sample size

δ-score can be estimated by bootstrapping a large size N (say N = 5000 or 10000) with replacement from

the original sample of size n, with n < N . Moreover, because of its convergence, one can find a much smaller

bootstrapped size and corresponding estimated δ-score such that it will be in a “practically close neighbour-

hood” of the converged δ-score based on very large bootstrap size. We define that smaller bootstrapped size

as Sufficient sample size.

Consider the equivalence tests for the ratio of two means with prespecified equivalence bounds (Schuirmann

(1987) and Phillips (1990)). Let δs and δopt be the underlying random variables for two separate δ-scores to

be estimated under sample sizes N and ns respectively. To formulate the test of non-equivalence between

these two estimated δ-scores, consider the hypothesis below,

H0 ∶ µ(log{
δs

δopt
}) < lR or µ(log{

δs

δopt
}) > lU vs H1 ∶ lR ≤ µ(log{

δs

δopt
}) ≤ lU (7)

where, lR and lU are the lower and upper equivalence bounds with lR < 0 and lU > 0. The null hypothesis
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will be rejected to favour the alternative if a two-sided 100(1 − 2α)% CI is completely included within lR

and lU . We will assume lR = log(0.8) and lU = log(1.25) following typical practice (Phillips (2009)) but

less stricter values can be chosen for practical purposes. µ ( δs

δopt
) and σ ( δs

δopt
) are approximated by using

Taylor series expansions (detailed in Section S.2 of supplementary material). The mean and variance after

logarithmic transformation are found using direct application of delta theorem on δs

δopt
. Finally, we declare

alternative hypothesis if the 2α level CI on µ (log { δs

δopt
}) is within the equivalence limits, i.e.,

lR ≤ log (µ̂{
δs

δopt
}) −

t1−α,M−1
√
M

σ̂ ( δs

δopt
)

µ̂ ( δs

δopt
)

and log (µ̂{
δs

δopt
}) +

t1−α,M−1
√
M

σ̂ ( δs

δopt
)

µ̂ ( δs

δopt
)
≤ lU

where, t1−α,M−1 is the 100(1 − α)%th quantile in a standard t-distribution. As long as the hypothesis of

non-equivalence in (7) is rejected in favour of the alternative, ns can be regarded as a “sufficient sample

size” at equivalence bounds of [log( 8
10
), log( 10

8
)] with a corresponding δ-score of µ̂(δs).

3 Illustration with a simulated example

Consider a normally distributed outcome and one single exposure with five baseline covariates with sample

size of 300. Further assume, the R2 for the baseline covariate only model is 20%, and the true and unknown

δ-score due to the exposure is 5.8%. Therefore, the R2 for the larger model with a single exposure and

five covariates is 20.8% (the mean correlation between the covariates is set at 0.3 and the error variance is

assumed to be 5). See Section S.7 of the supplementary material for the data generating process.

Assume a researcher collected this data and intends to find the association between the outcome and

the exposure after controlling for the five baseline covariates. As a first step, δ-score is estimated by

bootstrapping a size N = 5000 from original sample of n = 300. The estimated Impacts score is 6.1%

(which is very close to the true impact of 5.8%). Similarly, δ-scores are estimated at bootstrapped sizes

N = 200,300,400,500,600 and 2500 to illustrate the gradual convergence as the bootstrap size increases

(Fig. 1-A). Further note that, even when precision increases with bootstrap size, the mean of regression

coefficients remain stable (Fig. 1-B) while the p-values keep getting smaller (Fig. 1-D).
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Figure 1: Results from simulated example. (A) Illustration of δ-scores for different bootstrapped sizes and
its eventual convergence, (B) Mean β estimates and Standard errors of the exposure-outcome association,
(C) Sufficient sample sizes with respect to choices of equivalence bounds (D) Negative log (base = e) p-
values as bootstrapped sizes increase

For the original sample size of n = 300, the corresponding p-value of the regression estimate of the

exposure, is not significant. The researcher therefore might want scale up the study to collect more data

and increase the original sample size based on statistical power calculation and sample size determination

- which estimates that a total sample size of around 1000 is required assuming 80% power and type 1

error fixed at 5%. Sufficient sample size estimation using δ-score strikes a balance between precision and

utility. We estimated µ (log { δs

δopt
}) based on 2000 iterations and used the hypothesis of non-equivalence

in (7) to compare the δ-scores at N = 200,300,400,500,600 and 2500 with respect to the estimated δ-

10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 15, 2022. ; https://doi.org/10.1101/2022.03.02.22271732doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271732
http://creativecommons.org/licenses/by/4.0/


score at N = 5000 (Fig. 1-C). At N = 600, the µ (log { δs

δopt
}) and its 95% CI lies within the bounds of

lR = log(8/10) and lU = log(10/8), whereas at N = 500,400 and 300, it breaches the upper bound of lU =

log(10/8) but stays within the bounds of lR = log(7/10) and lU = log(10/7). Accordingly, the researcher

can choose a sufficient sample size of N = 600 or N = 300 at equivalence bounds of [log(8/10), log(10/8)]

or [log(7/10), log(10/7)] respectively with corresponding δ-scores 7% and 7.9%. These δ-scores are within

a close neighbourhood of the converged δ-scores of 6% (based on the bootstrapped size of N = 5000).

4 Application in exposure-mixture association of PFAS and metals

with serum lipids among US adults

PFAS are exclusively man-made EDCs and environmentally persistent chemicals which are used to manu-

facture a wide variety of consumer and industrial products, non-stick, stain and water resistant coatings, fire

suppression foams, and cleaning products (Liu et al. (2018) and Jain and Ducatman (2018)). Both PFAS

and metals have been associated with increase in cardiovascular disease (CVD) or death using many cross-

sectional and longitudinal observational studies and experimental animal models (Meneguzzi et al. (2021)).

Hypercholesterolemia is one of the significant risk factors for CVD and it is characterized by the presence of

high levels of cholesterol in the blood. High serum low-density lipoprotein (LDL), total serum cholesterol

levels, and low levels of high-density lipoprotein (HDL) in the blood are one of the incriminating factors for

the pathogenesis of this disorder (Buhari et al. (2020)). Using the theory discussed in the sections above,

we aim to quantify the δ-scores of PFAS and metal mixtures on serum lipoprotein-cholesterols and estimate

sufficient sample sizes.

4.1 Study Population

We have used a cross-sectional data from the 2017–2018 US NHANES (CDC and NCHS (2018)). The

present study has data on 683 adults. Data on baseline covariates (age (in years), gender, ethnicity, body mass

index (bmi) (in kg/m2), smoking status, ratio to family income to poverty) were downloaded and matched

by IDs of the NHANES participants. See Table 2 for details on characteristics of the study population. To
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adjust for oversampling of non-Hispanic black, non-Hispanic Asian, and Hispanic in NHANES 2017-2018,

a weight variable was added in the regression models. List of individual PFAS, metals and their lower limit

of detection can be found in section S.9 in the supplementary material.

Table 2: Study characteristics of the population under investigation - data from National Health and Nutrition
Examination Survey 2017–2018

Total Male Female % observations ≥ LLOD
Sample size (n) 683 339 344

Baseline Covariates
Age (years) 49.51 (18.77) 50.38 (18.81) 48.65 (18.73)
Ethnicity
Mexican American 88 43 (49%) 45 (51%)
Other Hispanic 58 23 (40%) 35 (60%)
Non-Hispanic White 260 135 (52%) 125 (48%)
Non-Hispanic Black 155 79 (51%) 76 (49%)
Other Race - Including Multi-Racial 122 59 (48%) 63 (52%)
Body mass index (kg/m2) 29.59 (7.90) 28.67 (6.36) 30.49 (9.09)
Smoking Status
Never 402 170 (42%) 232 (58%)
Smoked at least 100 cigarettes in life
but don’t smoke now 163 100 (61%) 63 (39%)
Smoked at least 100 cigarettes in life
and smoke now 118 69 (58%) 49 (42%)
Ratio of family income to poverty 2.56 (1.61) 2.64 (1.63) 2.48 (1.59)

Outcomes
HDL-C (mg/dL) 53.91 (15.53) 49.19 (13.10) 58.56 (16.33)
LDL-C (mg/dL) 109.35 (37.11) 108.99 (35.35) 109.71 (38.83)

PFAS exposures (Unadjusted geometric means with 95% confidence intervals)
PFDeA (ng/mL) 0.20 (0.19, 0.21) 0.21 (0.19, 0.22) 0.20 (0.18, 0.22) 68.73 %
PFHxS (ng/mL) 1.10 (1.03, 1.17) 1.49 (1.38, 1.61) 0.81 (0.74, 0.89) 99.12%
Me-PFOSA-AcOH (ng/mL) 0.13 (0.12, 0.14) 0.14 (0.13, 0.15) 0.12 (0.11, 0.13) 38.64%
PFNA (ng/mL) 0.42 (0.39, 0.44) 0.46 (0.42, 0.5) 0.38 (0.34, 0.42) 91.74%
PFUA (ng/mL) 0.14 (0.13, 0.15) 0.14 (0.13, 0.15) 0.14 (0.13, 0.15) 41.59%
n-PFOA (ng/mL) 1.28 (1.22, 1.35) 1.52 (1.42, 1.64) 1.08 (1, 1.17) 99.41%
n-PFOS (ng/mL) 3.26 (3.04, 3.5) 4.11 (3.74, 4.51) 2.59 (2.35, 2.86) 99.41%
Sm-PFOS (ng/mL) 1.28 (1.19, 1.37) 1.73 (1.58, 1.89) 0.95 (0.86, 1.04) 98.82 %

Lead, Cadmium, Total Mercury, Selenium, & Manganese exposures
(Unadjusted geometric means with 95% confidence intervals)

Cd (µg/L) 0.32 (0.3, 0.34) 0.29 (0.27, 0.32) 0.35 (0.32, 0.38) 91.36%
Pb (µg/dL) 0.91 (0.86, 0.96) 1.09 (1, 1.18) 0.76 (0.7, 0.82) 100%
Mn (µg/L) 9.45 (9.21, 9.7) 8.91 (8.62, 9.22) 10.01 (9.64, 10.41) 100%
THg (µg/L) 0.78 (0.72, 0.84) 0.81 (0.73, 0.9) 0.75 (0.67, 0.83) 84.77%
Se (µg/L) 188.62 (186.75, 190.52) 189.28 (186.57, 192.04) 187.97 (185.38, 190.6) 100%

Data presented as mean(SD) or n(%); LLOD: lower limit of detection (in ng/mL); LDL-C: low-density lipoprotein-
cholesterol (mg/dL) ; HDL-C: high-density lipoprotein-cholesterol (mg/dL); PFDeA: Perfluorodecanoic acid; PFHxS:
Perfluorohexane sulfonic acid; Me-PFOSA-AcOH: 2-(N-methylperfluoroctanesulfonamido)acetic acid; PFNA: Perflu-
orononanoic acid; PFUA: Perfluoroundecanoic acid; PFDoA: Perfluorododecanoic acid; n-PFOA: n-perfluorooctanoic
acid; Sb-PFOA: Branch perfluorooctanoic acid isomers; n-PFOS: n-perfluorooctane sulfonic acid; Sm-PFOS: Perfluo-
romethylheptane sulfonic acid isomers; Pb: Lead; Cd: Cadmium; THg: Total Mercury; Se: Selenium; Mn: Manganese
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4.2 Methods

We will use Weighted Quantile Sum regression (Carrico et al. (2015)) but other exposure-mixture models

such as Bayesian weighted quantile sum regression (Colicino et al. (2020)) and Bayesian kernel machine

regression (Bobb et al. (2014)) can also be utilized, as long as the likelihood ratio test statistic can be

estimated. All the PFAS and metals were converted to decile. As an additional analysis, both the serum

cholesterols were also dichotomized using their 90th percentile, to demonstrate the effectiveness of δ-scores

on binary outcomes. δ-scores were estimated using bootstrapped sizes of 5000 from the original sample of

size 683 and the process was iterated 100 times.

4.3 Results

For metals and PFAS, the δ-scores of continuous HDL-C were 9.6%[95% CI: (9.1%,10.0%)] and 10.7%[95%

CI: (10.2%,11.1%)] respectively, whereas for continuous LDL-C, those were 14.7%[95% CI: (14.2%,15.2%)]

and 16.2%[95% CI: (15.6%,16.7%)] respectively. Both the mixtures have relatively higher δ-scores on

LDL-C than HDL-C. Further, for both the cholesterols, metal-mixture has slightly higher δ-score than the

PFAS-mixture (Fig.2 - A and B). PFAS and Metal mixtures have higher δ-scores for LDL-C than HDL-C.

Further, after dichotomizing both the cholesterols at their 90th percentile, the δ-scores for metal-mixture

remained similar to the continuous cholesterol outcome (HDL-C: 9.8%[95% CI: (9.4%,10.2%)] and LDL-

C: 17.2%[95% CI: (16.6%,17.8%)]), but slightly decreased for PFAS-mixture (HDL-C: 6.9%[95% CI:

(6.5%,7.2%)] and LDL-C: 11.5%[95% CI: (11.0%,12.0%)]). The decrease might have been due to some

loss of information while dichotomizing the outcome (Fig.2 - C and D).
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Figure 2: δ-scores of EDC exposure-mixture to quantify the variability in serum lipoprotein-cholesterols

Sufficient sample sizes were also estimated for this dataset at the equivalence bounds of [log( 75
100
),

log( 100
75
)]. For both metal and PFAS-mixtures, the µ (log { δs

δopt
}) and their corresponding 95% CI for

bootstrap size 683, lie well within the equivalence bounds. Further even at a decreased sample size of 483,

the µ (log { δs

δopt
}) and their 95% CIs , still remain with the equivalence bounds. Therefore, N = 483, is a

sufficient sample size at equivalence bounds [log( 75
100
), log( 100

75
)] for both metal and PFAS-mixture (Fig.

3). But further decrease in the bootstrap size, would not be sufficient, at this pre-fixed equivalence bounds.

One can further modify the bootstrap size N = 483 to obtain a precise estimate of sufficient sample size.
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Figure 3: Sufficient sample sizes to estimate the δ-scores in serum lipoprotein-cholesterols explained solely
by EDC exposure-mixture at equivalence bounds of [ 75

100
, 100

75
]

5 Concluding remarks

In this paper, we introduced the idea of δ-score for and Sufficient sample size for exposure-outcome asso-

ciation. δ-score is easily interpretable, scale independent and because of its connect to Cohen’s f2, δ-score

allows for direct comparisons between several outcomes measured on different scales or separate studies

or in meta-analysis. Thereafter, δ-score can be potentially used to compare and choose between multiple

outcomes with varying units and scales. Further, sample size determination based on preliminary data might

utilize Sufficient sample size in designing more cost-efficient human studies.

This framework has its limitation, the bootstrapped estimation of δ-score assumes the original sample is

well representative of the true target population. Any estimation of δ-score, therefore carries this implicit
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assumption. But such an assumption is at the core of many statistical analyses and a well designed study can

ideally alleviate such issues or could be corrected to be well representative. In addition, this current theory

is based on likelihood ratio test of nested models but future work can extend this framework to strictly non-

nested or overlapping models. Progress can also be made to estimate δ-score on high dimensional setting

which can be utilized in Metabolomics studies.

6 Supplementary Information

Supplementary material is provided in a separate file. All the R codes used in the article are available on

GitHub.
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