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Abstract

In environmental epidemiology, analysis of environmental mixture in association to health effects is

gaining popularity. Such models mostly focus on inferences of hypotheses or summarizing strength of

association through regression coefficients and corresponding estimates of precision. Nonetheless, when a

decision is made against alternative hypothesis, it becomes increasingly difficult to tease apart whether the

decision is influenced by sample size or represents genuine absence of association and whether the result

warrants further investigation. Similarly, in case of a decision made in favour of alternative hypothesis,

a significant association may indicate influence of large sample and not a strong effect. Moreover, the

disparate type 1 and type 2 errors, might render these inferences unreliable. Using Cohen’s f2 to evaluate

the strength of explanatory associations in a more fundamental way, we herein propose a new concept,

optimal impact, to quantify the maximum explanatory association solely contributed by an environmental-

mixture after controlling for confounders and covariates such that the type 2 error remains at its minimum.
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optimal impact is built upon a novel hypothesis testing procedure in which the rejection region is deter-

mined in a way that type 1 and type 2 errors are balanced. Even when an association does not achieve

statistical significance, its optimal impact might deem it meaningful and strong enough for further in-

vestigation. This idea was naturally extended to estimate sample size in designing studies by striking a

balance between explanatory precision and utility. The properties of this framework are carefully studied

and detailed results are established. A straightforward application of this procedure is illustrated using

an exposure-mixture analysis of per-and-poly-fluoroalkyl substances and metals with serum cholesterols

using data from 2017–2018 US National Health and Nutrition Examination Survey.

Keywords: Cohen’s f2, Exposure mixture models, Environmental Epidemiology

1 Introduction

There has been a welcome surge of interest in estimating health effects of exposure-mixture in environmen-

tal epidemiology (Bobb et al. (2014), Carrico et al. (2015), Colicino et al. (2020), Keil et al. (2020), Wheeler

et al. (2021), Ferrari and Dunson (2021)). These developments are certainly promising but most of these

methods use traditional null hypothesis significance testing (NHST) for exposure mixture-outcome associa-

tions. However, NHST has been severely criticized as a contributor to replication crisis in psychology, and

biomedical sciences (Nakagawa and Cuthill (2007), Szucs and Ioannidis (2017)). NHST may contribute

to selective reporting and subjectivity since it does not require us to designate what the data under alterna-

tive hypothesis should predict. Even for large sample sizes, it guarantees that any irrelevant and tiny effect

sizes are detectable (Ioannidis et al. (2014), Wasserstein and Lazar (2016)). Additionally, the strength of

association in these models is determined through regression coefficients and precision estimates like stan-

dard errors and p-values. Therefore as a direct consequence, when a decision is made against alternative

hypothesis, it becomes increasingly difficult to tease apart whether the decision is influenced by sample size

or it genuinely represents an absence of association. Similarly, in case of a decision made in favour of the

alternative hypothesis, a significant association might indicate the influence of large sample and not a strong

effect. In addition, the dependence on sample size and disparate type 1 and type 2 errors, further complicates

reliability of any inference.

To circumvent such issues, researchers are starting to report in-sample scale-independent partial R2 or F
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type statistics along with regression estimates to indicate strength of explanatory association to quantify the

effect of environmental mixture on health outcomes. But simply reporting these statistics does not alleviate

the curses of NHST or imbalances of type 1 and type 2 errors. A long established index to report strength

of explanatory association in a more fundamental way is Cohen’s f2 (Cohen (1988)), which evaluates the

impact of additional variables in the context of multiple linear regression. Through the past three decades,

Cohen’s f2 continues to be extensively used in behavioral sciences, sociology and biomedical sciences, due

to its immense practical utility and ease of interpretation.

In this paper, we propose herein optimal impact using Cohen’s f2 to evaluate strength of explanatory

association in a more fundamental and scale-independent way, by quantifying the maximum explanatory

association solely contributed by an environmental-mixture on top of confounders and covariates such that

the type 2 error remains at its minimum. optimal impact is built upon a novel hypothesis testing procedure in

which the rejection region is determined in a way that type 1 and type 2 errors are balanced and both expo-

nentially diminish to 0 as n→∞, under a meaningful deviation from null (and not just any deviation). This

is similar to formulating a medical diagnostic test in which the threshold is adjusted to balance sensitivity

and specificity (Zhou et al. (2011)). Utilizing the nuances in optimal impact, we also shed light on sample

size estimation in designing time and cost effect studies from the perspective of explanatory power.

In subsections 2.1 and 2.2, we discuss Cohen’s f2 in linear and generalized linear models. Next, in 2.3,

we develop the framework of type 1 and type 2 calibrated hypothesis testing. In subsection 2.4, we discuss

theoretical implications of this hypothesis testing framework and consequently in subsection 2.5 we develop

the concept of optimal impact. In section 3 we present a simulated example for illustration. In section 4, we

estimate optimal impact of per-and-poly-fluoroalkyl substances and metals for serum cholesterols based on

data from 2017–2018 US National Health and Nutrition Examination Survey (NHANES). Finally, we end

this paper with a discussion.

2 Methods

Consider a common problem of testing if an exposure-mixture in a regression model is associated with

outcome after adjusting for covariates or confounders. For example, consider linear model , y = X0b0 +
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X1b1 + ε, and we are interested to know the impact of the association of X1 after adjusting for X0 and

formulate the hypothesis,

H0 ∶ Additional impact of association = 0 vs.

H1 ∶ Additional impact of association = δ
(1)

where δ is a pre-defined meaningful quantity and δ > 0. For example, Selya et al. (2012) reports that after

controlling for gender and smoking quantity, the additional impact of the association between the outcome

(nicotine dependence) and exposure (smoking frequency) is found to be 0.32.

Let, S(y) be a test statistic based on observed data y and T be a type 1 and type 2 error calibrated cutoff

which depends on sample size n and unknown parameters p1 and effect size δ. Then one can define a testing

procedure by its type 1 and type 2 errors as below

type 1 error = P (S(y) > T∣Additional impact = 0)

type 2 error = P (S(y) < T∣Additional impact = δ).
(2)

2.1 Cohen’s f 2 in Linear Regression

Consider standard multiple linear regression model with error ϵ ∼ N (0, σ2In), where In is an identity

matrix of dimension n × n. Let b̂0,H0 be the maximum likelihood estimate (MLE) for model with only

design matrix X0 whereas b̂0,H1 and b̂1,H1 be the MLEs for the model with design matrices X0 and

X1. The standard test to compare a null and alternative is through F statistic, F (y) = (SSR0−SSR1)/p1

SSR1/(n−p0−p1)
,

where SSR0 = (y − X0b̂0,H0)t(y − X0b̂0,H0) is the sum of squared errors under H0 and SSR1 =

(y −X0b̂0,H1 −X1b̂1,H1)t(y −X0b̂0,H1 −X1b̂1,H1) is the sum of squared errors under H1. Then

F (y) ∼ Fp1,n−p0−p1(γn), where p1 and n − p0 − p1 are the degrees of freedom and γn is the non-centrality

parameter. As n → ∞ while p0, p1 remain fixed, this F distribution can be approximated by chi-squared

distribution, limn→∞ p1F (y) ∼ χ2
p1
(γn). The non-centrality parameter γn equals 0 when y is generated

under H0. When y is generated under the alternative, γn has the form of γn =
∥(In−PX0

)X1b1∥
2

σ2 , where

PX0 = X0 (Xt
0X0)

−1
Xt

0 is the projection matrix on to the linear space spanned by the column vectors
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of X0 (Wilks (1938), Brown et al. (1999)) (Section S.1 of the supplementary material). γn quantifies the

additional impact in y due to X1 relative to the error variance σ2. For the common regression design in

which the predictor vector of each subject is drawn from a common population, γn grows linearly on n.

Note that γn does not depend on y but depends on the design matrix X and underlying parameter b1 and

σ2. A long established index of quantifying additional impact in linear regression is Cohen’s f2,

f2 =
R2

y,X0,X1
−R2

y,X0

1 −R2
y,X0,X1

,

where R2
y,X0,X1

and R2
y,X0

are the squared multiple correlation for X0,X1 under H1 and X0 under

H0 respectively. The f2 quantifies the proportion of impact in y accounted by X1 on top of the impact

accounted by X0, a concept that most researcher can relate to intuitively (Selya et al. (2012)).We then

establish the following Lemma to connect Cohen’s f2 and non-centrality parameter γn in linear regression.

Lemma 1.

f2 PÐÐÐ→
n→∞

γn
n
.

The proof is presented in Section S.2 of the supplementary material. We can borrow the common con-

vention for f2 (Cohen (1988)) and call f2 ≥ 0.02, f2 ≥ 0.15 and f2 ≥ 0.35 as representing small, moderate

and large effect size respectively. This can serve as the guidance in understating the effect size obtained from

the data.

2.2 Cohen’s f 2 in Generalized Linear Models.

Now consider a generalized linear model (McCullagh and Nelder (1989)). Let, the outcome variable y

follows the exponential family, exp[{yθ−b(θ)}/a(ϕ)+c(y,ϕ)]. Let µ = E(y) and g(.) be the link function.

µ is related to the canonical parameter θ through the function µ = b′(θ), where b′ denotes the first derivative

of b. Then the model is completed by η = g(µ) =X0b0+X1b1. Here the standard test is likelihood ratio test

for testing of hypothesis, Λ(y) = 2{ℓ(b̂1,H1 , b̂0,H1 ∣X0,X1) − ℓ(b̂0,H0 ∣X0)}. As the sample size n→∞,

the likelihood ratio statistic Λ(y) follows a central chi-squared distribution χ2
p1

with p1 degrees of freedom,

when y is generated under the model in H0. Λ(y) follows a non-central chi-squared distribution χ2
p1
(γn)
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with degrees of freedom p1 and non-centrality parameter γn, when y is generated under H1. However, there

is no simple and explicit form for γn. Self et al. (1992) and Shieh (2000) defined γn in likelihood ratio

test for generalized linear models as γn ∶= Ey∼H1{Λ(y)}. Similar to the non-centrality parameter in linear

regression, γn grows linearly with n since Ey∼H1{Λ(y)} = n{2a−1(ϕ) {b′(θ)[θ − θ∗] − [b(θ) − b(θ∗)]}}+

o(1) (where θ and θ∗ denote the canonical parameter values evaluated at (b0,b1) and (b∗0,b1 = 0) and b∗0 is

the limiting value of b̂0,H0 as described in equation (2.2) of Self and Mauritsen (1988) (see Cordeiro (1983)

and section 2 of Shieh (2000) for a detailed derivation)).

Consider the adjusted coefficient of determination for generalized linear models as shown below (note

that the definition of squared multiple correlation is generally accepted for linear regression but it is not

directly applied to a generalized linear models (for example a logistic regression) and there remains a lack

of general consensus discussed in literature (see Liao and McGee (2003) for more details)), R2
l = 1 −

ℓ(y∣ Any predictor X)
ℓ(y∣ Intercept Only Model) . Then Cohen’s f2 in generalized linear models can be written as,

f2 = 2
⎧⎪⎪⎨⎪⎪⎩

R2
l,H1
−R2

l,H0

1 −R2
l,H1

⎫⎪⎪⎬⎪⎪⎭
∶= 2
⎧⎪⎪⎨⎪⎪⎩

ℓ(b1,H1 ,b0,H1 ∣X0,X1) − ℓ(b0,H0 ∣X0)
ℓ(b1,H1 ,b0,H1 ∣X0,X1)

⎫⎪⎪⎬⎪⎪⎭
, (3)

where, R2
l,H0

and R2
l,H1

are the adjusted coefficient of determinations under the null and the alternative

respectively. Similar to Lemma 1, we connect f2 and γn in generalized linear models as below,

Lemma 2.

f2 PÐÐÐ→
n→∞

γn
O(n)

.

For simplicity and keeping similarity with Lemma 1 the O(n) is not expanded further. The proof and

more details are presented in Section S.3 of the supplementary material. Both the Lemma (1) and (2) help

connect the non-centrality parameters and Cohen’s f2, which will be utilized later in the following sections.
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2.3 Constructing a type 1 and type 2 error balanced hypothesis testing framework

2.3.1 Formulation of Error Calibrated Cutoff.

Let the test statistic be S(y) = p1F (y) for a linear regression and S(y) = Λ(y) for other generalized linear

models as in Section 2.1. For a given cutoff T, the type 1 error and type 2 error are given by

α(T) = P (S(y) > T ∣H0) = P (χ2
p1
> T) (1 + o(1))

β(T) = P (S(y) < T ∣H1) = P (χ2
p1
(γn) < T∣γn = nδ) (1 + o(1)) ,

(4)

where χ2
p1

denotes central chi-squared random variable with p1 degrees of freedom and χ2
p1
(γn) denotes

non-central chi-squared random variable with p1 degrees of freedom and γn as the non-centrality parameter.

Our central idea is to choose T so that type 1 error α and the type 2 error β satisfy the relationship, α(T) =

β(T). Using the chi-square approximation to test statistic S(y), we can solve for the calibrated cutoff T by

equation

P (χ2
p1
> T∣γn = 0) = P (χ2

p1
(γn) < T∣γn = nδ) . (5)

When T is fixed, the left size of equation (5) remains constant as n → ∞ while the right side diminishes

to 0 rapidly under non-centrality parameter nδ. Therefore, equation (5) implies T → ∞ as n → ∞. In

the Theorem stated below we elaborate more on T. The results in theorem 1 depend on the normality

approximation of the non-central chi-square distribution, i.e. for large n, equation (5) was rewritten as,

P (χ2
p1
> T∣γn = 0) = Φ

⎛
⎝

T − p1 − nδ√
2(p1 + 2nδ)

⎞
⎠
+ o(1). (6)

Theorem 1. Consider the hypothesis of interest to be H0 ∶ f2 = 0 vs. H1 ∶ f2 ≥ δ, where f2 denotes

Cohen’s f2. Assume data y is generated under the alternative with f2 = δ. Then following the constraint

α = β as in (5) and for large n, the error calibrated cutoff T has the following expression,

T = ( δn

2K − 1
+ c1n

1
2k ) (1 + o(1)) (7)
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Further, the type 1 error (α) or the type 2 error (β) rates can be expressed as,

d

dn
log{α(T)} = d

dn
log{β(T)} = − δ(K − 1)2

2(2K − 1)2
+ o(1) (8)

where, K → (2 +
√
2)(1 + o(1)) and c1 is a constant of integration.

The proof is presented in Section S.4 of the supplementary material. Theorem 1 sheds light on the

structure of the cutoff T and the rates of the corresponding type 1 or type 2 errors when the sample size

n is large. Since both the errors go to 0 as n → ∞, this procedure for testing of hypothesis is consistent

while keeping the error rates equal. It should be noted that both the errors decay at an exponential rate and

therefore deems useful even at moderate sample sizes. In order to convince the accuracy of Theorem 1,

we presented the type 1 and type 2 error rates as well as the rate of change of T with respect to n using

the results from theorem 1 and corresponding numerical results from equation (6). As seen from Table 1,

irrespective of the Cohen’s f2, as n increases, the rate of change of T, log (type 1) and log (type 2) converge

to the corresponding theoretical rates specified in Theorem 1. Further, the error rates only depend f2 but

not on p1 (the number of the exposures on top of the baseline covariates). In addition, through Monte Carlo

simulation we showed the calibrated type 1 and type 2 errors remain approximately same under T in a linear

regression framework (Section S.5 and Table S.1 of the supplementary material).

2.4 Type 2 error function

Theorem 1 suffices when the data is generated under the Cohen’s f2 = δ and the alternative is set at H1 ∶

f2 = δ. But what happens when the true f2, under which the data is generated, is not δ ? To highlight and

investigate these subtleties, let us assume that the true Cohen’s f2 = ϵ, under which the data is generated.

Then given the hypothesis in (1), the type 2 error function is, β(ϵ) = P (χ2
p1
(γn) < T(δ)∣γn = nϵ).

2.4.1 Case 1: when 0 < ϵ < δ.

Note that, β(0) → 1 as n → ∞. Since 1 − β(0) = β(δ) → 0 when n → ∞, there exists a point

ϵ∗ ∈ (0, δ) such that β(ϵ) > 0.5 for ϵ ∈ (0, ϵ∗) and β(ϵ) ≤ 0.5 for ϵ ∈ [ϵ∗, δ). The ϵ∗ is the root to
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P (χ2
p1
(γn) < T(δ)∣γn = nϵ∗) = 1

2
. The following corollary introduces an asymptotic expression for ϵ∗

under the hypothesis (1).

Corollary 1. Under the hypothesis (1) and as n→∞, ϵ∗ = δ
2K−1

+ o(1) with K = (2 +
√
2)(1 + o(1))

2.4.2 Case 2: when ϵ ≥ δ.

First note that β(ϵ) is monotonically decreasing in ϵ (see Section S.6 of the supplementary material). There-

fore the type 2 error is even smaller when the true Cohen’s f2 is larger than δ. Hence asymptotically the

β(ϵ) → 0 (see supplementary material). Now we investigate what happens to the type 2 error when y is

generated while ϵ lies between (0, δ).

2.4.3 Neutral effect size, null and alternative neighborhood.

When true Cohen’s f2, ϵ ∈ [0, ϵ∗), T prefers the H0 with probability greater than 1
2

. Therefore, we can think

of the interval [0, ϵ∗) as an expanded null hypothesis which nicely connects to the interval null hypothesis

discussed in literature (Morey and Rouder (2011), Kruschke (2013) and Liao et al. (2020), Midya and Liao

(2021)). We name ϵ∗ as the “neutral effect size”. Note that, ϵ∗ decreases as n increases although very slowly

due to a term O ( 1

n1− 1
2K
) and eventually converges to δ

2K−1
. The interpretation of “neutral effect size” is

that, as long as the true Cohen’s f2, denoted by ϵ, originates below ϵ∗, the probability of rejecting the H0

gets smaller than 1
2

even when the true effect size ϵ is far from zero. Whereas, if true effect size ϵ originates

above ϵ∗, the probability of rejecting the null becomes greater than 1
2

. Similarly, an interval of the form

{x∣x > ϵ∗} can be conceived such that, for any ϵ > ϵ∗, the probability of rejecting the null remains greater

than 1
2

. The interval denoted is named as the “alternative neighborhood”.

To demonstrate the concepts discussed above, β(ϵ), i.e. the type 2 error function is plotted for n = 250

and n = 1000 at p1 = 5 and δ = 10% in Figure 1 with ϵ from 0 to 10% on x-axis. β(ϵ) decreases smoothly

starting from 0 as ϵ increases. The neutral effect sizes, ϵ∗ are 2.6% and 2.2% for n = 250 and n = 1000

respectively. The shaded red region denotes the “alternative neighborhood” with type 2 error below 1
2

,

whereas the shaded blue region denotes the “null neighborhood” with type 2 error above 1
2

. As long as the

true effect size (ϵ) of the underlying data, is greater than the neutral effect size, the error calibrated cutoff T

will favour the alternative. Whereas the null will be favoured only when the true effect sizes are less than

9
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the neutral effect sizes. Note that, neutral effect size, ϵ∗ decreases from 2.6% to 2.2% as the sample size

n increases but the rate of decrease is very slow. This plot therefore reinforces the idea that no matter how

large the sample size is, this error calibrated cutoff will only reject null in the favour of the alternative if and

only if the true effect size originates from a neighbourhood {f2∣f2 > ϵ∗}.

2.5 Putting estimation in the type 1 and type 2 error balanced hypothesis testing

framework

2.5.1 Notion of optimal impact .

What should be a prudent choice of δ ? The aim should be to choose larger δ with minimum type 2 error.

Since for any data, f2 ≥ 0, choosing a slightly smaller deviation from zero, minimizes the type 2 error but

rapidly increases the type 1 error.

For any given δ, we reject the null if and only if Λ(y) ≥ T(δ). Given this simplicity of the decision

rule, one can choose the maximum value of δ such that the alternative H1 ∶ f2 = δ will always be preferred

against the null; but when that maximum value of f2 is crossed, the null can no longer be rejected. Denote

this particular choice of Cohen’s f2 by δ∗. Since T(δ) is an increasing function of δ, one can obtain an

unique δ∗ by solving,

δ∗ = argmaxδ>0{T(δ) ≤ Λ(y)∣Λ(y) > T(δ = 0)}.

Note that, while considering δ∗, we exclude those scenarios where Λ(y) < T(δ) for all δ, implying that the

null H0 ∶ f2 = 0 will be accepted, no matter what δ is chosen.

Corollary 2. Under the hypothesis in (1), the maximum value of Cohen’s f2 such that the asymptotic type

2 error is at its minimum, is given by:

δ∗ = Λ(y) − c1n
1

2K

n
(2K − 1) + o(1)

To contextualize and interpret δ∗, consider the following hypothesis and the null and alternative neigh-

borhood it induces.

H0 ∶ f2 = 0 vs H1 ∶ f2 = δ∗. (9)

10
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Note that an asymptotic estimate of the true Cohen’s f2, is given by Λ(y)
n

(Lemma (1) and (2)). The

neutral effect size for the hypothesis in (9) is Λ(y)−c1n
1

2K

n
= ϵ∗ (say) (from Corollary (1) and (2)). Therefore

asymptotically, the null neighborhood is [0, ϵ∗) and the alternative neighborhood is {f2∣f2 ≥ ϵ∗}. As long

as the true Cohen’s f2 ≥ ϵ∗, the null will be rejected in support of the alternative. But if one chooses a

larger δ = δ∗ + h, for any h > 0, in hypothesis (9) the alternative neighborhood will be squeezed to {f2∣f2 ≥

ϵ∗ + h
2K−1

}. Hence, even if the true Cohen’s f2 is larger than ϵ∗ and lies within [ϵ∗, ϵ∗ + h
2K−1

), the null will

no longer be rejected. Further, note that the type 2 error function β(h) = P (χ2
p1
(γn) < T(δ∗ + h)∣γn = nδ̂)

can be expressed as, β(h) = Φ(
nh

2K−1−p1
√

2(p1+2Λ(y))
)+o(1) and it attains minimum when h = 0, i.e. when δ attains

its maximum at δ∗. Any h > 0 therefore rapidly increases the type 2 error as the sample size increases. In

summary, for a given data, δ∗ quantifies the maximum “impact” by any exposure-mixture in a larger model

on top of the smaller baseline model, such that the type 2 error is at its minimum.

Definition 1. Considering the stochasticity in y and given sample size n, we define, impact ∶= Ey{δ∗} and

optimal impact ∶= Ey {δ∗} with n→∞.

impact depends on the sample size n. But it is a function of Λ(y) and undertakes asymptotic convergence

based on weak law of large numbers (Lemma 3.1 of Vuong (1989)). Under this framework, therefore, the

expected impact converges to an optimal quantity, Ey {Λ(y)n
(2K − 1)} as n → ∞. The implication of

optimal impact is very vital. Under the hypothesis in (9), it captures the optimal “sample size stabilized”

impact in outcome impacted solely by the larger exposure-mixture model on top of baseline covariate only

model, such that the asymptotic type 2 error is at its minimum.

2.5.2 Data driven estimation of optimal impact and sufficient sample size.

optimal impact can be estimated by bootstrapping a large size N (say N = 5000 or 10000) with replacement

from the original sample of size n, with n < N . Moreover, because of its convergence, one can find a sample

size and a corresponding impact such that it will be in a “practically close neighbourhood” of the optimal

impact.

Consider the equivalence tests for the ratio of two means with prespecified equivalence bounds (Schuirmann

(1987) and Phillips (1990)). N and ns be the sample sizes under which we estimate optimal impact and im-

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.02.22271732doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271732
http://creativecommons.org/licenses/by/4.0/


pact respectively. Let δs and δopt be the underlying random variables for the impact and optimal impact

respectively. We are interested in the distribution of the log transformed ratios of δs and δopt, i.e. log { δs

δopt
}.

Consider the hypothesis of non-equivalence as below,

H0 ∶ µ(log{
δs

δopt
}) < lR or µ(log{ δs

δopt
}) > lU

H1 ∶ lR ≤ µ(log{
δs

δopt
}) ≤ lU

(10)

where, lR and lU are the lower and upper equivalence bounds with lR < 0 and lU > 0. The null hypothesis

will be rejected to favour the alternative if a two-sided 100(1 − 2α)% CI is completely included within lR

and lU . We will assume lR = log(0.8) and lU = log(1.25) following typical practice (Phillips (2009)) but

less stricter values can be chosen for practical purposes. We approximate µ ( δs

δopt
) and σ ( δs

δopt
) by using

Taylor series expansions (detailed in Section S.2 of supplementary material). The mean and variance after

logarithmic transformation are found using direct application of delta theorem on δs

δopt
. Finally, we declare

alternative hypothesis if the 2α level CI on µ (log { δs

δopt
}) is within the equivalence limits, i.e.,

lR ≤ log (µ̂{
δs

δopt
}) −

t1−α,M−1√
M

σ̂ ( δs

δopt
)

µ̂ ( δs

δopt
)

and log (µ̂{ δs

δopt
}) +

t1−α,M−1√
M

σ̂ ( δs

δopt
)

µ̂ ( δs

δopt
)
≤ lU

where, t1−α,M−1 is the 100(1 − α)%th quantile in a standard t-distribution. As long as the hypothesis of

non-equivalence in (10) is rejected in favour of the alternative, ns can be regarded as a “sufficient sample

size” at equivalence bounds of [log( 8
10
), log( 10

8
)] with a corresponding impact of µ̂(δs).

3 Simulated examples

Consider a normally distributed outcome and one single exposure with five baseline covariates based on

sample size of 300. Further assume, the R2 for the baseline covariate only model is 20%, and the true and

unknown impact due to the exposure is 5.8%. Therefore, the R2 for the larger model with a single exposure

and five covariates is 20.8% (the mean correlation between the covariates is set at 0.3 and the error variance

is assumed to be 5). See Section S.7 of the supplementary material for the data generating process.

Assume a researcher collected this data and intends to find the association between the outcome and the
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exposure after controlling for the five baseline covariates. As a first step, the optimal impact is estimated

by bootstrapping a size N = 5000 based on the original sample of n = 300. We obtain an estimate of

optimal impact : 6.1% (which is very close to the true impact of 5.8%). Similarly, impacts are estimated at

bootstrapped samples of sizes N = 200,300,400,500,600 and 2500 to illustrate the gradual convergence of

optimal impact as the bootstrap size increases (Fig. 2-A).

Further note that, as precision increases with sample size, the absolute value of the regression coefficient

remain stable (Fig. 2-B) while the p-values keep getting smaller (Fig. 2-D). For the original sample size

of n = 300, the corresponding p-value of the regression estimate of the exposure, is not significant. The

researcher therefore might want to collect more data and increase the original sample size based on statistical

power calculation and sample size determination - which estimates that a total sample size of around 1000

is required assuming 80% power and type 1 error fixed at 5%.

Sample size estimation using optimal impact, strikes a balance between precision and utility of ex-

planatory power. We estimated µ (log { δs

δopt
}) based on 2000 iterations and used the hypothesis of non-

equivalence in (10) to compare the impacts in N = 200,300,400,500,600 and 2500 with respect to the

estimated optimal impact at N = 5000 (Fig. 2-C). At N = 600, the µ (log { δs

δopt
}) and its 95% CI lies

within the bounds of lR = log(8/10) and lU = log(10/8), whereas at N = 500,400 and 300, it breaches the

upper bound of lU = log(10/8) but stays within the bounds of lR = log(7/10) and lU = log(10/7). Accord-

ingly, the researcher can choose a sufficient sample size of N = 600 or N = 300 at equivalence bounds of

[log(8/10), log(10/8)] or [log(7/10), log(10/7)] respectively with corresponding impacts 7% and 7.9%.

These impacts are within a close neighbourhood of the estimated optimal impact of 6%. The optimal R2 of

the larger exposure mixture models at sample sizes 600 and 300, will be 20.9% and 21.1% - making them

equivalent in most practical purposes.

3.1 optimal impact and p-value

Assume a population of size 5000. A researcher is interested to find the association between an exposure and

health-outcome after controlling for some baseline covariates. They plan to conduct a preliminary study with

a sample size of 300 and then eventually increase the sample to 1000. For the true population, the optimal

impact is a set at 2.9% with β(p-value): 0.06(1.41 × 10−5). In Figure S.1 of supplementary material, we
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show that as sample size increases, the p-value corresponding to the regression coefficient of the exposure

decreases and eventually crosses the canonical cutoff 0.05; whereas the mean of optimal impacts converge

to the true value. Even at original sample size 300, the mean of optimal impacts remain very close to the

true value. Thus, irrespective of the size of p-values, scale-independent optimal impacts remain practically

unaltered with the change of sample size.

4 Application in exposure-mixture association of Per-and poly-fluoroalkyl

substances (PFAS) and metals with serum lipids among US adults

Endocrine-disrupting chemicals (EDCs) are a diverse class of environmental pollutants with “emerging con-

cern” that interfere with multiple metabolic and hormonal systems in human (Futran Fuhrman et al. (2015)).

EDCs include pesticides, pharmaceutical agents, toxic metals, plasticizers which are used in many commer-

cial products (Buhari et al. (2020)). PFAS are exclusively man-made EDCs and environmentally persistent

chemicals which are used to manufacture a wide variety of consumer and industrial products, non-stick,

stain and water resistant coatings, fire suppression foams, and cleaning products (Liu et al. (2018) and Jain

and Ducatman (2018)). Both PFAS and metals have been associated with increase in cardiovascular disease

(CVD) or death using many cross-sectional and longitudinal observational studies and experimental animal

models (Meneguzzi et al. (2021)). Hypercholesterolemia is one of the significant risk factors for CVD and it

is characterized by the presence of high levels of cholesterol in the blood. High serum low-density lipopro-

tein (LDL), total serum cholesterol levels, and low levels of high-density lipoprotein (HDL) in the blood are

one of the incriminating factors for the pathogenesis of this disorder (Buhari et al. (2020)).

Using the theory discussed in the sections above, we aim to quantify and contrast the optimal impacts

by PFAS and metal mixture on serum lipoprotein-cholesterols after adjusting for baseline covariates. The

goal therefore is to estimate optimal impacts and corresponding sufficient sample sizes for both the PFAS

and metal mixture.
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4.0.1 Study Population

We have used a cross-sectional data from the 2017–2018 US NHANES (CDC and NCHS (2018)). The

present study has data on 683 adults. Data on baseline covariates (age (in years), gender, ethnicity, body mass

index (bmi) (in kg/m2), smoking status, ratio to family income to poverty) were downloaded and matched

by IDs of the NHANES participants. See Table 2 for details on characteristics of the study population. To

adjust for oversampling of non-Hispanic black, non-Hispanic Asian, and Hispanic in NHANES 2017-2018,

a weight variable was added in the regression models. List of individual PFAS, metals and their lower limit

of detection can be found in Section S.8 in the supplementary material.

4.0.2 Methods for exposure-mixture analysis

We will use WQS regression as our explanatory model but other exposure-mixture models such as Bayesian

weighted quantile sum regression and Bayesian kernel machine regression can also be utilized, so long as the

likelihood ratio test statistic can be estimated. All the PFAS and metals were converted to deciles. Further

intentionally, no validation set was used to keep the problem of estimating optimal impact and finding best

partitioning the dataset, separate from one another. As an additional analysis, both the serum cholesterols

were also dichotomized using their 90th percentile, to demonstrate the utility of optimal impact on binary

outcomes. The optimal impacts were estimated using bootstrapped samples of 5000 from the original sample

of size 683 and Monte Carlo simulations were repeated 100 times.

4.1 Results

4.1.1 PFAS and Metal mixture have higher optimal impacts on LDL-C than HDL-C

For metals and PFAS, the optimal impacts of continuous HDL-C were 9.6%[95% CI: (9.1%,10.0%)] and

10.7%[95% CI: (10.2%,11.1%)] respectively, whereas for continuous LDL-C, those were 14.7%[95% CI:

(14.2%,15.2%)] and 16.2%[95% CI: (15.6%,16.7%)] respectively. Both the EDC mixture have rela-

tively higher impact on LDL-C than HDL-C. Further, for both the cholesterols, metal-mixture has slightly

higher impact than the PFAS-mixture (Fig.3 - A and B). After dichotomizing both the cholesterols at

their 90th percentile, the optimal impacts for metal-mixture remained similar to the continuous choles-
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terol outcome (HDL-C: 9.8%[95% CI: (9.4%,10.2%)] and LDL-C: 17.2%[95% CI: (16.6%,17.8%)]), but

slightly decreased for PFAS-mixture (HDL-C: 6.9%[95% CI: (6.5%,7.2%)] and LDL-C: 11.5%[95% CI:

(11.0%,12.0%)]). The decrease might have been due to some loss of information while dichotomizing the

outcome (Fig.3 - C and D).

As a post-hoc analysis and simple demonstration, we also calculated the sufficient sample sizes for this

data-set at the equivalence bounds of [log( 75
100
), log( 100

75
)]. For both metal and PFAS-mixture, the mean

of log ratio estimates and their corresponding 95% CI for the original sample size at 683, lie well within

the equivalence bounds. Further even at a decreased sample size of 483, means of log ratio estimates and

their 95% CIs , still remain with the equivalence bounds. Therefore, N = 483, is a sufficient sample size at

equivalence bounds [log( 75
100
), log( 100

75
)] for both metal and PFAS-mixture (Fig. 4). But further decrease

in the sample size, would not be sufficient, at this pre-fixed equivalence bounds.

5 Discussion

In this paper, we presented the idea of optimal impact of exposure mixture in association to health out-

comes within a type 1 and type 2 error balanced hypothesis testing framework to evaluate the strength of

explanatory associations. The utility of an explanatory model is evaluated through its strength of association

(Shmueli (2010)) and therefore this framework provide a systematic way for theory building in environmen-

tal epidemiology. optimal impact does not get perturbed by study sample sizes as long as the studies are well

representative of the target population. For an exposure mixture to have large optimal impact but statistically

non-significant regression coefficient might be a result of smaller sample size but not a genuine absence of

association. Further, this idea was naturally extended to estimate sample size in designing studies by striking

a balance between explanatory precision and utility of association estimates.

This framework has its limitation, the bootstrapped estimation of optimal impact assumes the original

sample is well representative of the true target population. Any estimation of optimal impact, therefore

carries this implicit assumption. But such an assumption is at the core of many statistical analyses and a

well designed study can ideally alleviate such issues or could be corrected to be well representative. In

addition, this current theory is based on likelihood ratio test of nested models but future work can extend this
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framework to strictly non-nested or overlapping models. Progress can be made to estimate optimal impact on

high dimensional setting where the number of parameters is strictly lesser than the sample size but p→∞.

optimal impact might be of practical importance when one finds null associations at the time of data

analysis with prefixed sample sizes. Further sample size determination based on preliminary data might

utilize optimal impact in designing more cost-efficient human studies. Because of its connect to Cohen’s

f2, optimal impact remains a standardized effect size, which is unitless and allows for direct comparisons

between several outcomes measured on different scales or separate studies or in meta-analysis. Thereafter,

optimal impact can be potentially used to compare and choose between multiple outcomes with varying

units and scales. Additionally, by connecting the error balanced testing of hypothesis framework to Cohen’s

f2, we circumvented the issues of NHST. In the end, quantifying the impact of exposure-mixture on several

health-outcomes might have direct implication for policy decisions and when used together with regression

estimates, might prove to be very informative.

6 Software

The codes used in the article is available on GitHub (vishalmidya/Quantification-of-variation-in-environmental-

mixtures)

7 Supplementary Material

Supplementary material is provided in a separate file.
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Figure 1: Null and alternative neighborhoods induced through neutral effect size and corresponding type 2
error function for sample sizes n = 250 and n = 1000
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Figure 2: Results from simulated example in linear regression. (A) Illustration of impacts for different
bootstrapped sample sizes and its convergence to optimal impact , (B) Absolute values of the β estimates of
the exposure, (C) Sufficient sample sizes with respect to choices of equivalence bounds (D) P-values in log
(base = e) scale as bootstrapped sample size increases
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Figure 3: optimal impacts of EDC exposure-mixture to quantify the variability in serum lipoprotein-
cholesterols
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Figure 4: Sufficient sample sizes to estimate the optimal impacts in serum lipoprotein-cholesterols explained
solely by EDC exposure-mixture at equivalence bounds of [ 75

100
, 100

75
]
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Table 1: Rates of error calibrated cutoff T, log (type 1) or log (type 2) with respect to sample size n, based
on Theorem 1 and equation (6)

Numerical approximation using Using Theorem
Equation (6) (1)

p1 f2 n d
dn

T d
dn

log (α) d
dn

T d
dn

log (α)

1 2.5% 250 0.0042895 -0.0031 0.0042893 -0.0021
1 10% 250 0.0171573 -0.0100 0.0171573 -0.0086
5 2.5% 250 0.0043764 -0.0025 0.0042893 -0.0021
5 10% 250 0.0172491 -0.0090 0.0171573 -0.0086
1 2.5% 500 0.0042896 -0.0028 0.0042893 -0.0021
1 10% 500 0.0171573 -0.0094 0.0171573 -0.0086
5 2.5% 500 0.0043764 -0.0024 0.0042893 -0.0021
5 10% 500 0.0172491 -0.0087 0.0171573 -0.0086
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Table 2: Study characteristics of the population under investigation - data from National Health and Nutrition
Examination Survey 2017–2018

Total Male Female % observations ≥ LLOD
Sample size (n) 683 339 344

Baseline Covariates
Age (years) 49.51 (18.77) 50.38 (18.81) 48.65 (18.73)
Ethnicity
Mexican American 88 43 (49%) 45 (51%)
Other Hispanic 58 23 (40%) 35 (60%)
Non-Hispanic White 260 135 (52%) 125 (48%)
Non-Hispanic Black 155 79 (51%) 76 (49%)
Other Race - Including Multi-Racial 122 59 (48%) 63 (52%)
Body mass index (kg/m2) 29.59 (7.90) 28.67 (6.36) 30.49 (9.09)
Smoking Status
Never 402 170 (42%) 232 (58%)
Smoked at least 100 cigarettes in life
but don’t smoke now 163 100 (61%) 63 (39%)
Smoked at least 100 cigarettes in life
and smoke now 118 69 (58%) 49 (42%)
Ratio of family income to poverty 2.56 (1.61) 2.64 (1.63) 2.48 (1.59)

Outcomes
HDL-C (mg/dL) 53.91 (15.53) 49.19 (13.10) 58.56 (16.33)
LDL-C (mg/dL) 109.35 (37.11) 108.99 (35.35) 109.71 (38.83)

PFAS exposures (Unadjusted geometric means with 95% confidence intervals)
PFDeA (ng/mL) 0.20 (0.19, 0.21) 0.21 (0.19, 0.22) 0.20 (0.18, 0.22) 68.73 %
PFHxS (ng/mL) 1.10 (1.03, 1.17) 1.49 (1.38, 1.61) 0.81 (0.74, 0.89) 99.12%
Me-PFOSA-AcOH (ng/mL) 0.13 (0.12, 0.14) 0.14 (0.13, 0.15) 0.12 (0.11, 0.13) 38.64%
PFNA (ng/mL) 0.42 (0.39, 0.44) 0.46 (0.42, 0.5) 0.38 (0.34, 0.42) 91.74%
PFUA (ng/mL) 0.14 (0.13, 0.15) 0.14 (0.13, 0.15) 0.14 (0.13, 0.15) 41.59%
n-PFOA (ng/mL) 1.28 (1.22, 1.35) 1.52 (1.42, 1.64) 1.08 (1, 1.17) 99.41%
n-PFOS (ng/mL) 3.26 (3.04, 3.5) 4.11 (3.74, 4.51) 2.59 (2.35, 2.86) 99.41%
Sm-PFOS (ng/mL) 1.28 (1.19, 1.37) 1.73 (1.58, 1.89) 0.95 (0.86, 1.04) 98.82 %

Lead, Cadmium, Total Mercury, Selenium, & Manganese exposures
(Unadjusted geometric means with 95% confidence intervals)

Cd (µg/L) 0.32 (0.3, 0.34) 0.29 (0.27, 0.32) 0.35 (0.32, 0.38) 91.36%
Pb (µg/dL) 0.91 (0.86, 0.96) 1.09 (1, 1.18) 0.76 (0.7, 0.82) 100%
Mn (µg/L) 9.45 (9.21, 9.7) 8.91 (8.62, 9.22) 10.01 (9.64, 10.41) 100%
THg (µg/L) 0.78 (0.72, 0.84) 0.81 (0.73, 0.9) 0.75 (0.67, 0.83) 84.77%
Se (µg/L) 188.62 (186.75, 190.52) 189.28 (186.57, 192.04) 187.97 (185.38, 190.6) 100%

Data presented as mean(SD) or n(%); LLOD: lower limit of detection (in ng/mL); LDL-C: low-density lipoprotein-
cholesterol (mg/dL) ; HDL-C: high-density lipoprotein-cholesterol (mg/dL); PFDeA: Perfluorodecanoic acid; PFHxS:
Perfluorohexane sulfonic acid; Me-PFOSA-AcOH: 2-(N-methylperfluoroctanesulfonamido)acetic acid; PFNA: Perflu-
orononanoic acid; PFUA: Perfluoroundecanoic acid; PFDoA: Perfluorododecanoic acid; n-PFOA: n-perfluorooctanoic
acid; Sb-PFOA: Branch perfluorooctanoic acid isomers; n-PFOS: n-perfluorooctane sulfonic acid; Sm-PFOS: Perfluo-
romethylheptane sulfonic acid isomers; Pb: Lead; Cd: Cadmium; THg: Total Mercury; Se: Selenium; Mn: Manganese
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