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Abstract 

Graph theoretical analysis of the structural connectome has been employed successfully to characterise 

brain network alterations in patients with traumatic brain injury (TBI). However, heterogeneity in 

neuropathology is a well-known issue in the TBI population, such that group comparisons of patients 

against controls are confounded by within-group variability. Recently, novel single-subject profiling 

approaches have been developed to capture inter-patient heterogeneity. We present a personalised 

connectomics approach that examines structural brain alterations in six chronic patients with moderate-to-

severe TBI who underwent anatomical and diffusion magnetic resonance imaging (MRI). We generated 

individualised profiles of lesion characteristics and network measures (including personalised graph 

metric ‘GraphMe’ plots, and nodal and edge-based brain network alterations) and compared them against 

healthy reference cases (N=12) to assess brain damage qualitatively and quantitatively at the individual 

level. Our findings revealed clinically significant alterations of brain networks with high variability 

between patients. Our profiling can be used by clinicians to formulate a neuroscience-guided integrative 

rehabilitation program for TBI patients, and for designing personalised rehabilitation protocols based on 

their unique lesion load and connectome. 

 

Keywords: traumatic brain injury; structural connectomics; graph theory; personalised medicine; 

personalised connectomics; lesion filling.   
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Moderate-to-severe traumatic brain injury (TBI) can result in diverse focal lesions and white matter 

pathology. The locations of these lesions greatly contribute to functional outcomes following TBI, 

whereby cognitive functions that rely on broadly distributed circuits in the brain are affected due to 

disruptions to axonal pathways and cortical structures1,2,3. In TBI patients, diffusion weighted MRI 

(dMRI) studies have shown altered topological properties of structural brain networks, as indexed by 

graph metrics at the group level4-7. In our recent meta-analysis8, we found that only two of 14 graph 

metrics (characteristic path length and normalised clustering coefficient) showed significant differences 

in TBI patients compared with controls, reflecting the heterogeneous nature of TBI patients. This 

heterogeneity, including complex structural profiles, variation in lesion location, severity, response to 

treatment, as well as varied secondary injury trajectories, poses a challenge for the prediction of 

functional and cognitive symptoms of TBI patients. As a result, there is growing impetus for subject-

tailored approaches that enable injury characterization and treatment planning9-11.  

Recent studies have addressed heterogeneity in clinical cohorts by performing individualised 

analyses of dMRI-derived fractional anisotropy (FA), T1-derived cortical thickness, and streamline 

counts11-13 at the level of white matter (WM) tracts or grey matter (GM) regions, respectively. For 

example, Lv and colleagues13 found no group consensus in anatomic locations of lower FA and reduced 

cortical thickness in schizophrenia patients, and as such group-level FA and cortical thickness maps were 

not representative of individuals. To date, however, few studies have analysed brain networks at the level 

of individual patients, an approach known as personalised connectomics10. 

Pioneered by Irimia and colleagues10, personalised connectomics enables the use of an 

individual’s brain network as a ‘fingerprint’ of brain network topology14,15. Personalised connectomics 

allows the visualization of individual white matter atrophy profiles (as indexed by dMRI-inferred 

streamline counts) using circular plots and considering patients scores relative to a healthy cohort. These 

individualized graphs can be used by clinicians to develop personalised rehabilitation programs, by 

detailing network level abnormalities9 that may indicate specific cognitive deficits following injury. No 

study to date has examined TBI patients’ network alterations using graph metrics, whereby a literature-

driven selection of graph metrics that summarise segregation, integration, and centrality are represented 

for individual patients16. Since graph metrics were recently shown to have prognostic potential7,17, this 

type of approach could provide valuable information to clinicians, leading to neuroimaging-guided 

strategies to improve functional outcomes of TBI patients.  However, personalised connectomics in 
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moderate to severe TBI cohorts with diverse brain injuries pose a serious technical challenge, as the 

available tools for MRI processing to generate connectomes fail in such18. 

The present study introduces personalized measurement and analysis of individual connectomic 

profiles in five chronic moderate-to-severe TBI patients with varying lesion loads, mechanisms of injury, 

age at injury, and burden of neural/cognitive symptoms. Our implementation extends current methods by 

addressing the long-standing and prominent challenge of analysing TBI structural profiles when 

automatic sub/cortical segmentation or parcellation of MRIs fail in the presence of lesions18. 

Significantly, this problem is addressed here by synergizing connectomic analysis with virtual brain 

repair, where the lesion is replaced by healthy looking tissue in the T1-weighted images (lesion 

inpainting). The capabilities of our implementation of personalised connectomics in TBI include: (i) 

lesion masking undertaken in a semi-automated manner from anatomical T1 MRI scans to identify the 

affected brain regions in individual patients; (ii) the use of the recently developed Virtual Brain Grafting 

(VBG) toolbox to overcome the challenges of segmentation and parcellation of focal lesions using lesion 

inpainting19; (iii) graphical representation of the structural connectome using innovative tools for graph 

metric profiling (GraphMe plots) to delineate subject-specific changes in brain network integration, 

segregation, and centrality; and iv) regional assessment of network hub regions and edge alterations in 

individual TBI cases. Together, these innovative solutions overcome major, longstanding methodological 

impediments in the field of macroscale TBI profiling. Our implementation is the first to allow the 

comprehensive generation of lesion-aware connectomic profiles that may be used to inform clinical 

decision making, thus moving closer to the crucial aim of translating research findings into clinical 

practice.  

 

Materials and Methods 

Participants 

Patients with chronic moderate-to-severe TBI were recruited from St Vincent’s Hospital in Melbourne 

(SVHM). The definition of moderate-to-severe TBI was based on (i) a Glasgow Coma Scale score at the 

time of hospital admission between 3-1220; (ii) loss of consciousness of at least 30 minutes; (iii) post-

traumatic amnesia of at least 24 hours21: and (iv) positive findings of gross injury on MRIs as per 

evaluation by a neuroradiologist (PB). Patients who met the following inclusion criteria were contacted to 

take part in the study: (a) between 18 and 65 years of age; (b) no history of head injury prior to the TBI 
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for which they were included in this study; (c) fluency in English, (d) no history of psychiatric illness 

prior to the TBI, and (e) no contra-indications for MRI. Ten moderate to severe TBI patients who had 

sustained closed head injuries due to sports or motor-vehicle accidents more than 6 months prior to the 

study were recruited. Informed written consent was obtained from each subject in accordance with the 

Declaration of Helsinki. Due to time constraints during scanning, dMRI were not acquired from four TBI 

patients, who were subsequently removed from further analysis (see Table 1). One further participant was 

removed from personalised connectome construction due to excess movement in the scanner during 

dMRI, which caused a severe motion artifact (see Supplementary Material 2). For the reference group, 12 

healthy controls were recruited from the general population using flyers and the snowball method (see 

Table 1). Ethical approval was granted by the SVHM ethics committee for human research (project 

#250/17). 

 

Table 1. Participant Demographics and Injury Characteristics  

ID Age1 Sex TSI2 Mechanism Pathology (at time of study)3 DAI4 

HC 35.7 
± 
11.4  

M = 4 
F = 8 

- - No incidental or age-related findings, other than 
small deep white matter T2 hyperintensities (within 
normal limits for age). 

- 

TBI1 40’s M 21y Vehicle 
accident  

Modest encephalomalacia in the (R) precentral 
gyrus  

0 

TBI2 40’s M 15y Vehicle 
accident 

Severe encephalomalacia involving both ant. F and 
inf. F lobes, (R) T lobe and (R) parietotemporal 
region extending to the (R) post. F lobe. Focal T1 
hypointensities in the anteromedial portion of the 
(L) thalamus. Encephalomalacia and T1 
hypointensity on the ant. body and genu of the 
corpus callosum. 

2 

TBI3 40’s F 3y Fall Bilateral ant. and inf. F encephalomalacia, (R) 
greater than (L), and (R) ant. T encephalomalacia. 
Small deep white matter T2 hyperintensities med. 
(R) P lobe, likely associated with non-
haemorrhagic oedema. Small focal T1 
hypointensity in the ant. body of the corpus 
callosum. 

2 

TBI4 30’s F 15y Fall Bilateral inf. F and (L) ant. T encephalomalacia. 
Modest encephalomalacia in the (L) sup. F gyrus. 
(R) F ventriculostomy with underlying ventricular 
drain tract. 

0/1 

TBI5 50’s M 18y Vehicle 
accident 

Two small (<2mm3) deep white matter T2 
hyperintensities in the (R) P lobe (within normal 
limits for age). 

0 

TBI6 30’s F 5y Fall Small T1 hypointensity in the splenium of corpus 
callosum. Approx. 6 scattered punctate T2 
hyperintensities in both cerebral hemispheres.  

2 

1Age: Shown in 10-year age bracket to minimise identifiable information, HC age is in mean ± standard 
deviation. 2TSI: Time since injury; 3Abbreviations: (R) = right, (L) = left, ant. = anterior, post. = 
posterior, inf. = inferior, mid. = middle, med. = medial, sup. = superior, F = frontal, P = parietal, O = 
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occipital, T = temporal. 4Grading of diffuse axonal injury (DAI) occurred according to Adams and 
colleagues22; a grade of ‘0’ indicates no confirmed DAI present, ‘1’ indicates DAI present in white matter 
of cerebral hemispheres, corpus callosum, brainstem, cerebellum; ‘2’ indicates there is also a focal lesion 
in corpus callosum; and ‘3’ identifies an additional lesion in dorsolateral quadrants of brainstem. 

Data acquisition  

MRI scans were acquired at the Royal Children’s Hospital using a 3T Siemens PRISMA with a 64-

channel head coil. dMRI data were acquired using a single-shot echo planar imaging sequence (twice-

reinforced spin echo, multi-band acceleration factor of 2, 70 contiguous sagittal slices) and a high angular 

resolution diffusion imaging (HARDI) gradient scheme with 66 non-collinear gradient directions (total 

acquisition time (TA) = 6:17 mins, b = 3000 s/mm2, field of view (FOV) = 260 mm2, voxel size = 2.3 mm 

isotropic, repetition time (TR) = 3500 ms, echo time (TE) = 67 ms, seven volumes with b = 0, two reverse 

phase-encoded volumes with b = 0, b being the constant of diffusion weighting). T1-weighted MRIs were 

also acquired using a magnetisation-prepared rapid acquisition gradient-echo (TA = 5:48 mins, 208 

contiguous slices, FOV = 256 mm2, voxel size = 0.8 mm isotropic, TR = 2100 ms, TE = 2.22 ms, flip 

angle = 8º).  

Lesion masking 

Manual lesion delineation for computation of lesion load and for improvement of anatomical 

segmentation was performed by an assessor (ED), who was trained in lesion identification by 

neuroradiologist (PB). Lesions were drawn in the T1 native space using Fsleyes version 0.27.3 in FSL 

version 6.0.1 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). An in-house systematic search method and lesion 

identification protocol was implemented by JD, KC, ED, and PB. Abnormalities resulting in tissue loss, 

such as regions of encephalomalacia and damage from surgical drainage tracts were included in binarised 

lesion masks. Enlarged ventricles and hyperintensities often occurring in proximity to the skull (e.g., from 

surgical craniotomies) were not included in the lesion masks. Lesion load was computed (in cm3) as the 

total volume of the binary lesion masks in FSL. 

Personalised connectome construction  

Our connectome processing pipeline is showcased in Figure 1, Supplementary Material 1, and in our 

previous publication23.  Our personalised connectomics implementation performs state-of-the-art, single-

subject analyses of structural MRI scans. Briefly, raw dMRI data were processed using MRtrix3Tissue 

(v5.2.8; https://3tissue.github.io), a fork of MRtrix324. White matter fibre orientation distributions were 
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estimated using single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD)25,26. Whole-brain, 

anatomically-constrained tractography was performed27 and twenty-two million streamlines were 

generated per subject28. The SIFT2 algorithm was applied to match the fibre density of the reconstructed 

streamlines to that of the underlying white matter structures28-30. Thus, edges encode filtered streamlines 

count.  

T1 anatomical MRIs were parcellated into 84 regions of the Desikan-Killiney atlas31 using 

FreeSurfer’s recon-all function (v6.0; http://surfer.nmr.mgh.harvard.edu/)32. Two patients (TBI3 and 

TBI4) had significant segmentation failures due to gross pathology, and were therefore processed utilising 

VBG v0.3719. Rather than lesion masking and manual editing which are subjective and time-consuming, 

VBG automatically fills uni- and bilateral brain lesions using synthetic healthy donor tissue to permit or 

to improve segmentation. To illustrate the performance of VBG in TBI, we included a report on VBG 

outcome for patient TBI2, who was excluded from personalised connectomics due to movement during 

HARDI acquisition but otherwise had a quality control compliant T1-weighted volume (Supplementary 

Material 3). Given VBG artificially reconstructs lesioned nodes, part of our quality control also included 

ensuring streamlines were not aberrantly assigned to these nodes. Connectivity matrices were generated 

using edge weights from SIFT2 and nodes defined as brain regions from FreeSurfer and VBG. Global 

network properties were quantified in terms of strength, global efficiency, characteristic path length, 

navigation efficiency, average local efficiency, clustering coefficient, normalised clustering coefficient, 

and average betweenness centrality (Table 2) using the Brain Connectivity Toolbox16. These graph 

metrics were chosen from all available metrics as the most clinically informative/intuitive according to 

previous findings from our meta-analysis8. Grading of diffuse axonal injury (DAI) was performed by 

expert raters PB and ED (Table 1)22.  
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Fig. 1 Overview of the processing pipeline for connectome mapping. (A) In the raw diffusion images, 
noise33,34, Gibbs ringing artefacts35, as well as distortions induced by motion, eddy current artefacts and 
EPI/susceptibility distortions were detected and corrected36,37. (B) Concurrently, T1 volumes were 
registered to diffusion volumes. The advanced normalisation tools package (ANTS)38 was used to remove 
non-brain structures from the T1 weighted images for white matter extraction39. FSL FLIRT40,41 was used 
to perform the boundary-based registration between brain-extracted anatomical and diffusion images. 
Registered images are provided to (i) 5ttgen (brain extracted), to create priors for anatomically 
constrained tractography (ACT), and (ii) FreeSurfer (non-brain extracted), to parcellate the nodes for the 
connectome analysis. All subcortical grey-matter structures were segmented42; image intensity 
normalised43; pial surfaces and the grey-white matter boundaries estimated44; and the entire brain 
“inflated” to smooth the gyri and sulci45. (C) Lesion maps of subjects who failed the quality assessment 
after FreeSurfer parcellation were provided along with the T1 image to VBG. (D) Average response 
functions for white matter, grey matter, and cerebrospinal fluid were estimated from the dMRI data using 
an automated unsupervised approach46,47. Pre-processed data were upsampled to a voxel size of 1.3 mm3 
to assume higher spatial resolution for image registration before binary masks were created. Fibre 
orientation distributions (FODs) were estimated from the group average response functions on upsampled 
images, and corrected for intensity inhomogeneity and global intensity level differences48. (E) 
Anatomically constrained tractography (ACT) was performed using the FODs from (D) and the 5ttgen 
images from (B(i)). The FOD cut-off threshold, step size, and angle were determined to attain a 
reasonable trade-off between false negatives and false positives (seed points=dynamic; maximum 
length=250mm; minimum length=5 mm; step size=1.25; angle=45˚; FOD amplitude = 0.08). Spherically 
informed filtering of tractograms (SIFT2) is applied to make the weight of the streamlines proportional to 
the underlying fibre orientation distribution. (F) The connectome is created using the FreeSurfer 
parcellation and the sifted tractogram. 
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Table 2. Graph Metric Descriptions and Interpretations 

Graph Metric Description Higher values mean… Previous studies 

(Adult msTBI#) 
Integration 

Characteristic 
Path Length 

The shortest path is the fastest 
and most direct communication 
pathway between two network 
nodes. Characteristic path 
length is defined as the average 
shortest path length between all 
node pairs in a network49.  

A higher characteristic 
path length indicates that 
the fastest communication 
pathways between regions 
are, on average, longer and 
less efficient. 

Higher CPL4,5,50 

Global Efficiency The inverse average shortest 
path efficiency between all 
possible pairs of nodes in a 
network, where efficiency is 
computed as the inverse of 
shortest the path length51.  

A higher global efficiency 
indicates a greater 
capacity for efficient 
integration of information 
(in parallel) across the 
network. 

Lower global efficiency4 

Navigation 
Efficiency 

Navigation paths use a 
decentralised and geometrically 
greedy heuristic52. Navigation 
efficiency is defined as the 
average navigation path 
efficiency between all possible 
pairs of nodes in a network53.  

Higher navigation 
efficiency indicates 
greater capacity for 
efficient integration of 
information across the 
network. 

Not yet investigated, but 
lower navigation 
efficiency observed in 
stroke patients54  

Segregation 

Clustering 
Coefficient 

The number of existing 
connections between the 
neighbours of a node, divided 
by all the possible connections, 
calculated for each node 
individually and averaged 
across the entire network49. 

A higher average 
clustering coefficient 
implies that a greater 
proportion of connections 
are made between nodes 
neighbours, compared to 
the connections possible, 
and indicates more 
clustered connectivity 
around individual nodes.  

Lower clustering 
coefficient6,50  

Normalised 
Clustering 
Coefficient 

Clustering coefficient of the 
network normalised to a 
random network.  

Higher normalised 
clustering indicates higher 
local specialization, with a 
value of 1 being equivalent 
to a random network. If 
greater than 1, the network 
has greater than random 
clustering. There may be a 
point of diminishing 
returns, where greater local 
specialization comes at the 
cost of communication 
efficiency. 
  

Higher normalised 
clustering* 55,56 

Local Efficiency The local efficiency is the 
average of inverse shortest path 
length in a local area. Mean 
local efficiency is the efficiency 
of each node in the network 
averaged over the total number 
of nodes51.  

A higher local efficiency 
means greater capacity for 
integration between the 
immediate neighbours of a 
given node.  

Higher local 
efficiency57; AND/OR 
lower local efficiency58 

Centrality 
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Graph Metric Description Higher values mean… Previous studies 

(Adult msTBI#) 
Strength The strength of a node is the 

sum of the weights of its edges. 
Mean strength is the average of 
all the normalised strength 
values across each node of the 
network. 

A higher strength indicates 
a greater average edge 
weight for each node. 

Lower strength6  

Betweenness 
Centrality 

The proportion of shortest paths 
that pass-through node i 
between its neighboring nodes, 
calculated for each node and 
averaged across the network59. 

Higher betweenness 
centrality means that node 
lies on more shortest paths 
in the network pass 
through it, and this that 
node is more central and 
important to the network. 
A high network/average 
betweenness centrality 
indicates a high number of 
nodes that are central to 
shortest paths.  

Higher betweenness 
centrality55 * 

#msTBI: moderate-severe traumatic brain injury. * Note: this study is of young adults and children with TBI – no adult TBI 
study found significant alterations or examined this metric.  

 

Brain network profiles 

Graph metrics spiderplots (‘GraphMe’ plots) show results for each TBI patient in a concise and intuitive 

manner relative to mean scores from the healthy controls with 95% confidence intervals. Selected graph 

metrics (characteristic path length, normalised clustering coefficient, and betweenness centrality – Table 

2) were inverted (1/x) to facilitate interpretation (so that higher scores on any graph metric denote better 

brain network structure). Graph metrics of individual patients were categorised as follows: normal (if the 

scores/metrics fell within the 95% confidence interval); supra-normal (higher than the 95% confidence 

interval); or infra-normal (lower than the 95% confidence interval)13. 

Regional brain network analyses 

A key component of personalised connectomics is to localise network alterations in the brain relative to a 

healthy cohort. Nodal hubs and weakest edges were also examined for each individual patient based on 

comparison to the healthy controls. Betweenness centrality was used to identify brain regions essential for 

communication within the brain network16,59.  The top 10% (n=8) highest-scoring nodes were identified 

as hubs; for the healthy control group these are shown in Figure 2, and for the TBI patients these are 

shown in Figures 3(a) to (d). 
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Fig. 2 Healthy control hubs (top 10% of nodes with highest betweenness centrality), in teal. Larger nodes 
represent higher values. Hubs (bilaterally) were the superior frontal gyrus (BCleft=1493; BCright=1533), 
superior parietal gyrus (BCleft=610; BCright=665), precentral gyrus (BCleft=588; BCright=616), and thalamus 
(BCleft=336; BCright=346). The strongest edges (0.5th percentile) are coloured by strength (yellow=weaker; 
red=stronger). Visualisation in NeuroMArVL (https://immersive.erc.monash.edu/neuromarvl/).  

 

 

Z-score Matrix for Edge Analysis 

An edge analysis scrutinised the white matter connections that drive overall differences in the network 

properties in greater detail60. A z-score matrix 𝑍!,# was derived, which describes the distance from the 

healthy control mean, divided by the healthy control standard deviation, between each subject’s 

connectivity matrix 𝑇!,# 	and the controls 𝐻!,# according to equations from a previous edgewise analysis60: 

 

𝑍!,# =
𝑇!,# − 𝜇(𝐻!,#)
𝜎(𝐻!,#)

 

 

Positive scores represent stronger edges in the TBI patient compared to controls, while negative scores 

represent weaker edges. To visualise the z-score matrix, only edges with a score >4 (i.e., edges with 

weights that are 4 standard deviations away from the healthy control mean, corresponding to a highly 

conservative p<.0001) are displayed on a glass brain, while all other edges are discarded.  
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Results 

TBI1 

TBI1 (Figure 3) had a relatively small lesion load (0.75 cm3) spanning the posterior segment of the right 

superior frontal gyrus and right precentral gyrus, and a DAI grade of 0. Registration between structural 

and diffusion images was unaffected by this lesion. There were no failures in the FreeSurfer pipeline and 

there was no need for VBG. FODs were generated at the site of the lesion (see red arrow) but did not 

meet streamline criteria for ACT. The GraphMe plot indicated that TBI1 has slightly weaker integration 

than healthy controls, including infra-normal lower navigation efficiency, as well as lower strength and 

clustering coefficient. Regional brain network analyses revealed, interestingly, that the right superior 

frontal gyrus was not a hub node in TBI1. In addition, four other alterations in the hub arrangement for 

TBI1 were observed, whereby the nucleus accumbens (BCleft=1570; BCright=1546), palladium 

(BCleft=1382; BCright=978) and right putamen were bilateral hubs (BCright=1578), and the bilateral 

precentral gyri, thalami, and right superior frontal gyrus did not meet the hub threshold. Weaker edges (z 

< 4) (n=43 out of a total of 7056 edges) were observed projecting across frontal, parietal, temporal, and 

subcortical areas, in particular the edges between (A) the left posterior cingulate cortex and the right 

frontal pole (z=-8.32); (B) the left superior temporal gyrus and the left frontal pole (z=-6.66); (C) the left 

lateral orbitofrontal gyrus and the left temporal pole (z=-7.98); and (D) the left medial frontal and left 

temporal pole (z=-6.90). Some stronger (z > 4) edges (n=4) were also observed, including the connection 

between the right superior temporal gyrus and the right temporal pole (z=5.92). 
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Fig. 3 Personalised connectome profile for TBI1 including (A) lesion profile; (B) quality assessment; (C) 
radar plot showing the patient’s personalised connectome profile (red indicates patient’s scores, dark blue 
indicates healthy control average and the 95% Cis are represented by the blue shade); and (D) regional 
analysis (blue: edges lower than the healthy control average; red: edges stronger than the healthy control 
average; thicker edges: more standard deviations away from the healthy mean).  
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TBI3 

TBI3 (Figure 4) had a relatively large lesion load (15.46cm3) involving primarily frontal regions 

(predominantly on the left), white matter hyperintensities in the medial right parietal lobe and the corpus 

callosum, and a DAI grade of 2. Prior to VBG, 10 nodes failed the quality assessment: VBG repaired 9 

nodes for parcellation. Registration showed that streamlines were not assigned to lesioned nodes. The 

GraphMe plot demonstrated an infra-normal graph metric profile in all domains except centrality, which 

was normal. Two hub alterations were observed, whereby the bilateral putamen (BCleft=871; BCright=932) 

were hubs, and the bilateral precentral gyri were not. Weaker edges (n=62) projected across the whole 

brain, especially the frontal regions, including between the left frontal pole and the left middle temporal 

gyrus (z=8.45), right superior frontal gyrus (z=8.12), right lateral orbitofrontal gyrus (z=8.17), and right 

putamen (z=8.41); between left medial orbitofrontal gyrus and the left amygdala (z=8.67); right lateral 

orbitofrontal gyrus and right nucleus accumbens (z=8.03) and right caudate nucleus (z=8.33); and right 

pars orbitalis and right lingual gyrus (z=8.10). No stronger edges were observed. 
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Fig. 4 Personalised connectome profile for TBI3 including (A) lesion profile, (B) quality assessment, (C) 
radar plot showing the patient’s personalised connectome profile, and (D) regional analysis (blue: edges 
weaker than healthy control average; thicker edges: more standard deviations away from the healthy 
mean). 
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TBI4 

TBI4 (Figure 5) had a relatively large lesion load (17.59 cm3) involving bilateral frontal lesions and right 

temporal lesions, white matter hyperintensities in the medial right parietal lobe and the corpus callosum. 

However, the DAI grade was low (0/1). Prior to VBG, 9 nodes failed the quality assessment. All lesions 

overlapping with these nodes were repaired by VBG. Alignment between VBG-repaired nodes and 

streamlines indicated that any aberrant streamlines generated in areas with oedema/haemorrhage were not 

assigned to lesioned nodes. This patient exhibited supranormal graph metrics in all domains except the 

normalised clustering coefficient of the network (which was normal), and centrality (which was infra-

normal). Four alterations in the hub arrangement were observed, whereby the bilateral putamen 

(BCleft=2246; BCright=1550), left palladium (BCleft=1210) and left inferior parietal (BCright=902) were 

hubs, and the bilateral precentral gyri and thalamic regions were not hubs. Weaker edges (n=26) projected 

across the left hemisphere, including between the entorhinal and lingual gyrus (z=10.87), pericalcarine 

(z=9.55), superior parietal (z=9.46), and lateral occipital regions (z=9.33); the temporal pole and the 

insula (z=9.37); and the nucleus accumbens and the posterior cingulate cortex (z=6.71), insula (z=6.30), 

and rostral anterior cingulate cortex (z=5.98). Some stronger edges (n=4) were also observed in the right 

hemisphere, including between the pars triangularis and postcentral gyrus (z=5.92), the putamen and 

lateral orbitofrontal (z=4.86), the pallidum and the thalamus (z=4.24); and the left pallidum and the 

amygdala (z=4.55). 
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Fig. 5 Personalised connectome profile for TBI5 including (A) lesion profile, (B) quality assessment, (C) 
radar plot showing the patient’s personalised connectome profile, and (D) regional analysis (blue: edges 
weaker than healthy control average; red: edges stronger than healthy control average; thicker edges: 
more standard deviations away from the healthy mean).  
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TBI5 

TBI5 (Figure 6) had no MRI-discernible lesion load and a DAI grade of 0. Many weaker edges were 

observed relative to healthy controls that connected the parietal, temporal, and subcortical lobes. There 

were no failures in the FreeSurfer pipeline, and no manual edits were necessary. FODs were generated 

correctly and registration between segmentation and tractography was free of error. The GraphMe plot 

revealed infra-normal strength, navigation, and normalised clustering. Two alterations in hub arrangement 

were observed, whereby the bilateral putamina were hubs (BCleft=1182; BCright=1110), whereas the 

bilateral thalami were not. Weaker edges (n=33) projected inter-hemispherically across parietal, temporal, 

and subcortical areas. The weakest edges (compared to healthy controls) were in the left hemisphere, 

between the amygdala and the temporal pole (z=-7.19); the amygdala and the inferior temporal gyrus (z=-

7.80); the inferior temporal gyrus and the hippocampus (z=-6.11); and the inferior temporal gyrus and the 

thalamus (z=-6.40). Edges stronger than in healthy controls (n=3) were also observed, including the set of 

connections between the left postcentral gyrus and the left lateral occipital gyrus (z=5.87). 
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Fig. 6 Personalised connectome profile for TBI5 including (A) lesion profile, (B) quality assessment, (C) 
radar plot showing the patient’s personalised connectome profile, and (D) regional analysis (blue=edges 
lower than healthy control average; red = edges stronger than healthy control average; and thicker 
edges=larger number of standard deviations away from healthy mean). 
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TBI6 

TBI6 (Figure 7) had a small lesion in the splenium of the corpus callosum (0.5 cm3), and a DAI grade of 

2. There were no failures in the FreeSurfer pipeline, and no manual edits were necessary. FODs were 

generated at the site of the lesion but did not meet streamline criteria for ACT. The GraphMe plot showed 

that the global connectivity properties of TBI6 were normal. Three hub alterations were observed, 

whereby the right caudate nucleus (BCright=722), right hippocampus (BCright=606) and right inferior 

parietal gyrus (BCright=680) were hubs, and the bilateral precentral and right superior parietal regions 

were not hubs. No edges met the stringent threshold of being at least 4 standard deviations away from the 

healthy control mean.   
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Fig. 7 Personalised connectome profile for TBI6 including (A) lesion profile, (B) quality assessment, (C) 
radar plot showing the patient’s personalised connectome profile, and (D) regional analysis (blue=edges 
lower than healthy control average; red = edges stronger than healthy control average; and thicker 
edges=larger number of standard deviations away from healthy mean). 
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Discussion 

For the first time, we showcase an implementation of personalised connectomics in chronic moderate-to-

severe TBI patients. In the following sections we discuss the defining characteristics of our single-subject 

profiles and explore ways in which our approach can contribute to improving existing methods of 

personalised structural connectome analyses in TBI patients.  

Single-subject network profiling observations 

Our observations highlight a major caveat to approaches that attempt to identify a single graph metric that 

can be used as an adequate and parsimonious descriptor of structural network alterations in TBI patients8. 

In accordance with Lv and colleagues13, we observed that each TBI patient showed a unique pattern of 

graph metric alterations, regardless of lesion load. For example, while both TBI1 and TBI5 patients had 

small lesion loads, patient TBI1 had lower brain network integration and segregation measures, compared 

with non-significant deviation from the normal range for patient TBI5. By comparison, TBI3 and TBI4 

both had much larger lesions, but patient TBI3’s brain network profile showed infra-normal integration 

and segregation measures, while patient TBI4’s brain network was supra-normal. Our results highlight 

the benefit of using a multivariate profile of graph metrics that reveal individual differences in brain 

network topology otherwise obscured by group-level analyses. Importantly, with the incorporation of 

individual edge and hub comparisons, the location of the lesion can be compared to edge deterioration in 

single patients. 

Improving methods for personalised connectomics 

The present study introduces the structural connectivity aspect of a novel framework called 

STREAMLINES (Single-subjecT pRofiling of cognitivE impAirMents and structuraL braIN NEtwork 

metricS), which operates on state-of-the-art single-subject analyses of structural MRI scans that may 

provide clinicians with a novel user-friendly framework for leveraging graph metrics to benefit the 

individual patient. Advancing individual brain network profiling has the potential to inform 

neuroimaging-guided personalised rehabilitation programs by providing network-based summary 

statistics with prognostic capabilities61-63. More precisely, our approach can help to assess network 

alternations in TBI patients in the following three ways. First, regional connectome maps can be used as 

profiles of patients’ brain network topographies, thereby providing clinicians with time-efficient visual 

summaries of network disruption, asymmetry, hub alterations, and overall reductions in strength. Second, 
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by comparing an individual patient to a healthy control reference group, we can observe portions of brain 

networks that are topologically altered but correspond to brain regions beyond the site of initial injuries. 

Finally, the GraphMe plots can be used longitudinally to map how the brain undergoes progressive 

secondary damage, recovery, and/or functional reorganisation over time64,65.  

The current ‘best practice’ methods (lesion masking and manual editing66) are time-consuming 

and have low inter-rater reliability67. By contrast, use of the semi-automated lesion inpainting program 

VBG reduces the burden imposed by having to manually delineate lesions and avoids the exclusion of 

cases with large focal lesions that fail segmentation (e.g., from FreeSurfer)19. Furthermore, we observed 

that the SS3T-CSD model46,68 was suitable for constructing connectomes in the presence of lesions in all 

our TBI patients. SS3T-CSD removes the contributions from GM and cerebrospinal fluid (CSF) 

components to increase the specificity of FODs to the WM, while avoiding over-estimation into GM and 

CSF signal from the lesioned area26. Combined with anatomically constrained tractography27, streamlines 

are not generated in lesioned areas (e.g., see TBI1, Figure 3a panel C), and therefore anatomically 

disconnected regions do not have to be removed from connectivity matrices. This allowed us to calculate 

graph metrics from connectivity matrices of the same dimensions as those extracted from the healthy 

controls.  

Limitations 

The implementation of personalised connectomics requires extensive validation and assessment of test-

retest reliability. However, our study provides initial validation of this approach using six TBI patients 

and a small healthy control reference group (N=12)12. Normative analysis with a large (N>100), stratified 

sample of healthy individuals will allow stronger inferences to be made using techniques such as quartile 

regression13, 11.  Personalised connectomics should also include a patient group as an additional reference 

cohort (N>100), to help clinicians understand how a patient is evolving with reference not only to healthy 

controls but also to patients with the same condition. Furthermore, our study only utilised T1 images for 

lesion identification; in the future, other structural imaging modalities such as fluid attenuated inversion 

recovery (FLAIR) and susceptibility weighted imaging (SWI) should also be used in accordance with best 

practice guidelines for lesion identification69. Despite multiple expert raters and use of an established 

procedure22, DAI grading remains subjective and requires independent confirmation of reliability. Hubs 

were defined according to previous work citing the use of betweenness centrality – however, other work 

has shown that finding ‘consensus’ between multiple centrality metrics may be more stable for hub 
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definition70.Finally, cognitive outcomes associated with graph measures are still being evaluated – this 

progress will be essential for providing clinically informative personalised connectomes23 and is included 

as part of the STREAMLINES platform. 

Conclusions 

Our results emphasize the translational potential for single-subject network analyses in the study of brain 

injury. Profiling individual patients based on their unique presentation provides insights into brain 

network disruption that are otherwise obscured by group-level approaches. The GraphMe profiling can 

provide clinicians with a novel user-friendly framework for leveraging graph metrics to benefit the 

individual patient by characterising network-level brain alterations with potential prognostic relevance. 

This study therefore enables us to progress towards a personalised medicine approach which, alongside 

group-based comparisons of patients against controls, is essential for translating connectomics to 

evidence-based clinical practice.  
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