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1. Abstract 
Accurate disease risk stratification can lead to more precise and personalized prevention 

and treatment of diseases. As an important component to disease risk, genetic risk factors 

can be utilized as an early and stable predictor for disease onset. Recently, the polygenic 

risk score (PRS) method has combined the effects from hundreds to millions of single 

nucleotide polymorphisms (SNPs) into a score that can be used for genetic risk 

stratification. However, current PRS approaches only utilize the additive associations 

between SNPs and disease risk in a one-dimensional score. Here, we show that 

leveraging multiple types of genetic effects in multi-dimensional risk vectors, or a 

polygenic risk vector (PRV), can improve the stratification of cardio-metabolic diseases 

risks. Using data from UK Biobank (UKBB) and Electronic Medical Records and 

Genomics (eMERGE) Network biobank linked electronic health records (EHR) as 

development and evaluation data, we found that the combined effects between the 

additive PRS and the dominant PRS outperformed either one in terms of disease risk 

stratification, especially for the individuals in the high-risk group. Our results demonstrate 

that disease risks are likely to be influenced by multiple types of genetic effects, and PRV 

could utilize these effects for better risk stratification while retaining the simplicity of the 

PRS method.  

 

2. Introduction 
Accurate genetic risk prediction and stratification can play important roles in advanced 

disease prevention and treatment strategies for hereditary diseases. For most complex 

diseases, multiple genetic loci encoding numerous genes have been shown to be 

associated with disease risks1,2. However, most individual genetic loci identified in 
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population cohort studies, such as genome-wide association studies (GWAS), have 

displayed only modest ability to infer a person’s disease risk3,4. Recently, the polygenic 

risk score (PRS) method has improved disease risk stratification performance by 

aggregating genotype and association information from many to all genetic loci across 

the genome5,6. As a result, numerous methods have been developed and applied to 

improve the performance of PRS7–11. 

 

While empirical evidence has demonstrated the PRS’s improved prediction performance 

compared to individual genetic loci, few have investigated whether the PRS is the optimal 

representation of genetic information. In short, a PRS is a linear weighted average of 

effects from many genetic loci into one variable, which can then be used for disease risk 

stratification12,13. The simplicity of the PRS allows it to be easily constructed and 

interpreted; however, it omits the potential complexity of the underlying biology. Thus, 

there is a need for tools that can maintain the simplicity and interpretability of the PRS, at 

the same time, better incorporate different types of genetic associations.  

 

A common practice for the current PRS is that genetic variations relate to phenotype 

outcomes through the additive model. This assumption is due to that most existing GWAS 

assume the additive model as it has higher power to detect statistical associations than 

other genetic models 14–16. Thus, the association coefficients and the SNPs’ allele dosage 

used to construct PRS are both generated under the additive model. However, as the 

primary utility of a PRS is towards risk stratification rather than signal detection, the 

additive PRS alone may not be the most optimal representation of the genetic information. 

First, the additive model has been commonly used when the true model has not been 

formally established. Notably, associations identified with an additive model can be better 

represented by other types of genetic effects17. Second, prediction models can include all 

relevant information to increase the prediction performance as they are not influenced by 

factors such as multiple testing adjustments18. As a result, we propose polygenic risk 

vector (PRV) that aims to improve disease risk stratification by incorporating information 

from multiple types of genetic associations while maintaining the simplicity and 

interpretability of the existing PRS.   
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To demonstrate the utility of PRV, we utilized multiple biobank linked EHRs to develop 

and evaluate this new method19. We employed cross-validations in the UK BioBank to 

develop and optimize PRV for two cardio-metabolic diseases: type 2 diabetes and 

hypertension. The resulting PRVs were applied to the Electronic Medical Records and 

Genomics (eMERGE) Network EHR data to assess their ability to stratify subjects into 

different risk groups. In the eMERGE data, the PRVs showed significantly better 

performance in disease risk stratification than the additive PRS, particularly for the 

patients in the high-risk group. Our results demonstrated that utilizing multiple types of 

genetic signals can improve the stratification of cardio-metabolic disease risks.  

Furthermore, the PRV approach can be straightforwardly adapted to other polygenic 

diseases. 

 

3. Methods 
3.1. UK Biobank data 

The UK Biobank (http://www.ukbiobank.ac.uk/) publicly released ~500,000 individuals’ 

genetic-linked phenotype data (application # 32133). The full characteristics of the 

dataset have been described previously20. Individuals were genotyped on two types of 

genotype arrays (UK BiLEVE Axiom Array or UK Biobank Axiom Array) across 106 

batches and imputed using the merged UK10K and 1000 Genomes phase 3 reference 

panel. Two levels of quality control were performed on the data. At the SNP level, 

genotype data were filtered so that only SNPs that have less than 5% missing rate, Hardy-

Weinberg equilibrium (HWE) p-value > 1e-10, imputation INFO score > 0.8, minor allele 

frequency > 1%, and a maximum number of alleles of 2 (i.e. bi-allelic SNPs) were kept 

for further analysis. At the sample level, several steps of filtering were performed. First, 

samples that failed UKBiLEVE genotype quality control were removed. Second, 

individuals with kinship coefficient > 0.088388 with others were deemed to be related. 

One person within each pair of related individuals was randomly removed. Third, 

individuals who had mismatched genetic-inferred and self-reported sex were removed. 

Finally, to ensure maximum sample size of discovery and validation data, only individuals 

of self-reported White British ethnicity were retained.  
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3.2. eMERGE EHR data 
Patients’ clinical and genetic data were obtained from the eMERGE Phase III data21. The 

eMERGE data consists of patients from 11 EHR sites in the US. SNPs were imputed 

using the Haplotype Reference Consortium 1.1 reference under genome build 37. SNPs 

were filtered to have MAF > 5%, missing rate < 5%, HWE p-value > 1e-10. Common 

SNPs between eMERGE and UKBB that passed the filtering step were extracted to 

perform validation.  Patients’ genetic ancestry was determined by jointly estimating their 

top 20 principal components with the 1000 Genomes data. Then, k-means clustering was 

used to label eMERGE patients’ genetic ancestry based on the population cluster of the 

1000 Genomes cohort that the patient coincides. Samples of European ancestry were 

extracted to ensure consistency with UKBB data. In total, 70,808 adult individuals of 

European ancestry from eMERGE phase III were used for the validation analysis. 

3.3. Phenotype extraction 

In UKBB, patients’ T2D case status was determined using patients’ responses with a 

trained nurse or a count of ICD-10 code of E11.X. Patients with co-occurring type 1 

diabetes were excluded from the analysis. Hypertension case was defined as having at 

least one occurrence of ICD-10 code I10. In the eMERGE data, to be counted as T2D 

cases requires two or more diagnoses of ICD-9 250.00. Similarly, hypertension requires 

two or more counts of ICD-9 401.9. Patients with one count of either ICD-9 codes were 

deemed neither a case nor control and excluded from the analysis.  

3.4. Development of the polygenic risk vector method 

The polygenic risk vector (PRV) is an extension of the polygenic risk score. A PRS is 

calculated as the sum of SNPs’ association coefficient weighted by the genotype dosage. 

For N selected SNPs, a PRS is calculated as: 

PRS =%β! ∗ SNP	!

#

!$%
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where β! is the effect size of an individual SNPi on a certain phenotype and SNP! is the 

allelic dosage counts. Commonly, both β! and SNP! in a PRS are assumed to be under 

the additive model, which implicates a linear relationship between the minor allele counts 

and the disease risk. However, there are other types of genetic models (Table 1) that can 

characterize non-additive relationships between a SNP and a phenotype22,23. 

 

Table 1. SNP coding under different genetic models 

SNP alleles (minor 

allele = a) 

Additive model Dominant model Recessive model 

AA 0 0 0 

Aa 1 1 0 

aa 2 1 1 

 

As a result, a PRS can be constructed for every type of genetic model. 

 

PRS&''!(!)* = ∑β&''!(!)* ∗ SNP&''!(!)*	 (1) 

PRS'+,!-&-( = ∑β'+,!-&-( ∗ SNP'+,!-&-( (2) 

PRS.*/*00!)* = ∑β.*/*00!)* ∗ SNP.*/*00!)*	 (3) 

 

Importantly, PRS constructed under different types of genetic models could provide 

orthogonal or independent predictions of the underlying genetic risks. Thus, the proposed 

PRV aims to utilize multiple types of PRS to improve the stratification of disease risks.  

 

We first used the UKBB data to construct and tune the PRV. First, the data was split into 

70% training and 30% testing sets. Second, plink 2.0 was used in the training data to 

generate the genetic association for each SNP under the additive, dominant, and 

recessive models in each data split. Specifically, SNPs’ associations with the phenotype 

were determined under the additive, dominant, or recessive model while adjusting for 

gender and top ten genetic principal components, respectively. Then, the pruning and 

thresholding method (plink --clump-r2 0.25) with three different p-value thresholds, 0.05, 

0.5, and 1, were used to select the SNPs included in the PRS calculation24. Thus, a total 
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of 3 (p-value thresholds) x 3 (genetic models) x 2 (diseases) = 18 sets of SNPs with their 

association coefficients were obtained from the training data. Third, PRS was constructed 

using SNPs’ coefficients generated from the training data in the testing data. Finally, the 

entire procedure was repeated for five times, each time using a different data split.   

 

3.5.  Strategies for tuning PRV 
The goal of PRV is to utilize multiple types of PRS to better stratifying patients compared 

to individual PRS. Thus, increasing the enrichment of diseases cases in the PRV-

identified high risk group would be the basis for the tuning of PRV. As the contributions 

from individual PRSs in a PRV are likely to be non-linear and disease dependent, we 

propose a data-driven approach to identify differential risk groups in the discovery data 

and apply the resulting risk groups in the evaluation data. 

 

Steps for tuning PRV 

Input: PRS&''!(!)*, PRS'+,!-&-(, PRS.*/*00!)*, and disease outcomes (y) 

Output: PRV-identified differential risk groups  

1. Pair all combinations of PRS with disease outcome, 𝑓(𝑃𝑅𝑆, 𝑦) 

2. For each 𝑓(𝑃𝑅𝑆, 𝑦): 

1) Convert PRS into percentiles 

2) Construct risk surface using PRS percentiles and calculate 

𝑃(𝑦|𝑃𝑅𝑆	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒)  

3) Perform grid search to identify high-risk and low-risk group 

4) Obtain logistic regression odds ratio for the enrichment of the high-risk 

group 

3. Repeat for all cross-validation, p-value thresholds, and disease outcomes 

4. Return best 𝑓(𝑃𝑅𝑆, 𝑦) in terms of logistic odds ratio from all evaluations 

 
 

The UKBB testing data was used for the tuning of PRV. For each disease, the best 

performing PRV in risk stratification was independently evaluated in the eMERGE data. 
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The capacity of PRV to stratify disease risk was first examined through visualization. For 

each disease and p-value combination, one-dimensional PRS was first converted into 

percentiles, and then, at each risk score percentile, the disease prevalence was 

calculated and averaged across cross-validations. The relationship between the risk 

score percentile and disease prevalence was visualized. For PRV that consists of two risk 

scores, both risk scores were first converted into percentiles, and the disease prevalence 

for the joint distributions were averaged across CVs. For the PRV that included three risk 

scores, zero counts or low patients count were found in most joint percentile combinations. 

Thus, PRV containing all three scores was not pursued further (see Discussion).  

 

As a comparison, the same procedure was repeated in the eMERGE data. First, PRV 

was constructed using association coefficients generated in the UKBB training data. Then, 

the two-dimensional PRV was visualized in the eMERGE data using its disease 

prevalence. 

 

To select the best performing PRV, 𝑓(. ) was tuned through a grid search in the UKBB 

testing data. For one-dimensional risk scores, the percentile of the risk score was treated 

as grids, which were then ranked by the disease prevalence. The risk stratification 

performance was determined as the odds ratio of case enrichment between the top 10% 

grids vs. the bottom 10% grids. The risk surface was evenly divided into 16 x 16 grids for 

two-dimensional risk vectors, which were then ranked. The performance was similarly 

determined as the enrichment of the top 10% vs. the bottom 10% grids. Grids that 

contained less than 50 individuals were dropped to avoid overfitting. Out of all 

optimization combinations, the PRV with the highest odds ratio enrichment was further 

evaluated in the eMERGE data.  

3.6.  Evaluating PRV using eMERGE 

For each disease, the best one-dimensional PRS and two-dimensional PRV obtained 

from UKBB were evaluated in the eMERGE data. Each PRS and PRV transferred from 

UKBB to eMERGE data consists of the association coefficients generated under the 

additive, dominant, and recessive model, and the optimized  𝑓(. ) ,i.e., the relative ranking 
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of the disease risk grids. eMERGE PRV was then calculated using these summary 

statistics. The performance of PRV was evaluated as the odds ratio of disease enrichment 

between the top X% grids vs bottom 10% grids, with X varying from 1 to 50. 

4. Result 
4.1. Overview of the analysis 

PRV aims to improve the performance of disease risk stratification by utilizing multiple 

types of genetic effects. In order to demonstrate the effectiveness of the PRV, UKBB data 

was used for developing and tuning the PRV. The UKBB data were divided into training 

and testing splits. PRV for T2D and hypertension were generated in the training data, 

which were then tuned using the testing data split. The best PRVs from the UKBB were 

evaluated in the eMERGE data (Figure 1). 

 
Figure 1. Developing and evaluation scheme for PRV 
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4.2. Individual and joint effects between the additive PRS and dominant PRS  
Two cardio-metabolic diseases: T2D and hypertension were extracted from UKBB and 

eMERGE (Table 2). In the UKBB data, genetic associations for the phenotypes were 

obtained from the training data, and PRS was constructed in the testing data using the 

association coefficients.  

 

Table 2. Case and control counts for the cardio-metabolic diseases.  

 

For one-dimensional PRS scores, the additive and dominant PRS displayed similar ability 

for risk stratification in the UKBB testing data. However, the recessive PRS was not 

correlated with disease risks (Figure 2). Results for other p-value thresholds can be found 

in the supplemental figures.  

 

a. Hypertension                    b. Type 2 diabetes     

 Gender UK BioBank eMERGE Phase III 
  Cases Controls Cases Controls 

Type 2 diabetes Male 13,274 170,543 6,978 24,951 

Female 8,174 206,106 5,537 30,132 

Hypertension Male 48,236 135,946 15,987 14,718 

Female 40,771 173,618 15,280 19,141 

0.15

0.20

0.25

0.30

0.00 0.25 0.50 0.75 1.00
Risk score percentile

H
yp

er
te

ns
io

n 
pr

ev
al

en
ce

PRS additive

PRS dominant

PRS recessive

0.04

0.06

0.08

0.00 0.25 0.50 0.75 1.00
Risk score percentile

T2
D

 p
re

va
le

nc
e

PRS additive

PRS dominant

PRS recessive

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.02.22271425doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271425
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Relationship between PRS risk percentile and disease prevalence. The genetic 

associations obtained from the UKBB training data were used to calculate the additive, 

dominant, and recessive PRS in the UKBB testing data. Each disease prevalence was 

calculated as the number of cases divided by the total individual count at each risk score 

percentile. SNP p-value threshold = 0.5. 

 

Among the three types of two-dimensional PRVs, the additive PRS and dominant PRS 

have shown a non-linear modification of disease risk across all SNP selection thresholds. 

In general, individuals that exhibit high risk in both the additive PRS and dominant PRS 

have the highest disease prevalence. Conversely, individuals of low risk for both scores 

have the lowest disease risk. In addition, the recessive PRS did not display noticeable 

joint effects with other PRS in stratifying the disease risks (Figure 3 and 4). Results for 

other p-value thresholds can be found in the supplemental figures.  
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b. Additive and recessive PRS 

  

 

c. Dominant and recessive PRS 

 

Figure 3. Multi-dimensional PRV and hypertension risk. In each subfigure, two types of 

PRS risk percentiles were plotted on the x-axis and y-axis, respectively. The disease 

prevalence at each joint risk percentile was averaged over all cross-validations and 

displayed as color intensity. Smoothing was applied to discretize disease prevalence for 
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better color separation. Results were based on the SNP p-value threshold of 0.5. Left 

panel: UKBB. Right panel: eMERGE. 
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c. Dominant and recessive PRS 

 

Figure 4. Multi-dimensional PRV and T2D risk. In each subfigure, two types of PRS risk 

percentiles were plotted on the x-axis and y-axis, respectively. The disease prevalence 

at each joint risk percentile was averaged over all cross-validations and displayed as color 

intensity. Smoothing was applied to discretize disease prevalence for better color 

separation. Results were based on the SNP p-value threshold of 0.5. Left panel: UKBB. 

Right panel: eMERGE 

 

Grid search was employed to tune PRV in the UKBB testing data. Across all data splits 

and SNP p-value thresholds, the best performing one-dimensional PRS and two-

dimensional PRV were determined for each disease. Because the recessive PRS was 

not informative in stratifying the disease risk, PRVs that contain recessive PRS were not 

pursued further.  

 

4.3. Risk stratification of T2D and hypertension in eMERGE  
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dominant PRS alone. The improvement is more pronounced for the highest risk 

individuals, as the differences were statistically significant (Figure 5).  
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Figure 5. Comparisons of risk stratification between PRV and PRS in eMERGE. The x-

axis displays the top X% of individuals, with X varying from 1 to 50, selected by the PRV 

in terms of disease risk. The specificity decreases from left to right as more lower-risk 

individuals are included. The y-axis displays the odds ratio enrichment of cases, along 

with the 95% confidence interval, of the high-risk group. For additive and dominant PRS, 

the high-risk and the low-risk groups were selected only based on the one-dimensional 

risk score. Statistical significance was determined using the one-sided Wilcoxon test and 

denoted by the *. a. Hypertension b. Type 2 diabetes 

 

5. Discussion 
Genetic risk is a stable and early risk predictor for heritable diseases25. As cardio-

metabolic diseases are highly heritable, accurate and early risk stratification could lead 

to better prevention and treatment of the diseases26. Thus far, PRS has been widely used 

as a tool for genetic risk prediction. Numerous methods have been developed to improve 

the performance of PRS; however, they all fall under the existing PRS framework, which 

combines SNPs’ additive genetic effects into a one-dimensional score7–11. Here, we 

introduce an orthogonal approach, PRV, to improve genetic risk stratification by utilizing 

multiple types of genetic effects as multi-dimensional risk vectors. 

 

First, we evaluated the one-dimensional PRS generated under the dominant and 

recessive models in addition to the additive model. In the UKBB testing data, dominant 

PRS showed similar performance as the standard additive PRS. However, recessive PRS 

could not predict the disease risk (Figure 2). The high correlation between the two models 

could explain the similarity in performance between the additive and dominant PRS 

(Table 1). On the other hand, recessive effects are known to be associated with many 

Mendelian diseases27. Thus, the recessive PRS could be important for other diseases 

and thus should be further explored.  

 

For PRVs that utilized two-dimensional genetic effects, the recessive PRS again did not 

show additional modifying effects on individuals’ genetic risk. This is shown by the vertical 

or horizontal contours of disease prevalence in Figures 3 and 4. Thus, we did not pursue 
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higher dimensional PRVs involving recessive PRS. In contrast, the additive and dominant 

PRS jointly influenced the individuals’ genetic risk. The disease prevalence contours were 

not parallel to the vertical or horizontal axis, which indicates individuals under the same 

additive genetic risks can be further stratified using the dominant genetic risks, and vice 

versa. Thus, despite being correlated, the two types of genetic effects have independent 

predictability on individuals’ cardio-metabolic disease risks.  

 

Through optimization, we selected the best performing PRVs from the UKBB and applied 

them to the eMERGE data. The result showed that the multi-dimensional PRV 

outperformed the one-dimensional PRS. Importantly, for the highest risk group, PRV is 

statistically better at risk stratification than either additive or dominant PRS (Figure 5). 

The enrichment of the high-risk group has great clinical significance because the 

specificity of the prediction in a large part determines the feasibility of implementing 

genetic risk prediction in clinic. As the high-risk groups are more likely to benefit from 

improved prevention and treatment strategies, improving the identification of this group is 

crucial. Because PRV incorporates individual PRSs, risk stratification using PRV will 

consistently perform equal or better than PRS, which indicates that PRV is better suited 

to identify high-risk individuals than PRS.  

  

Compared to PRS, PRV offers a more generalized framework to utilize genetic 

information. The additive PRS can be considered a special case of PRV, i.e. one-

dimensional additive PRV. However, the common choice of the additive model is due to 

considerations of power in detecting significant genetic associations. For prediction tasks, 

power is not of primary concern; thus, all relevant genetic effects should be included. 

Although an improvement, similar to PRS, PRV is currently limited to provide the relative 

disease risk of individuals. Further work is needed to integrate PRV with other risk factors 

to provide the absolute risk of an individual28–30. In addition, we have utilized the pruning 

and thresholding method to select SNPs into the PRV. Under the additive framework, 

other methods have been developed to better account for linkage-disequilibrium between 

SNPs. Further work is needed to incorporate this and other features into multi-
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dimensional risk vectors in PRV. Finally, the PRV can be straightforwardly applied to other 

polygenic diseases and traits to evaluate the role of recessive genetic effects. 

 

6. Acknowledgement  
We would like to thank UKBB and eMERGE for providing the data for this study. We 

would like to acknowledge the grant support from NIH LM010098. 

 

7. Author contributions 
R.L., J.H.M. devised the project. R.L. performed the analysis and wrote the paper. X.Z., 

and B.L. assisted the analysis. Y.C. and M.D.R. contributed to the interpretation of results. 

All authors provided guidance to the project. 

 

8. Competing interests 
The authors declare no competing interests. 

 

9. Reference  
1. Gibson, G. Rare and Common Variants: Twenty arguments. Nature reviews. Genetics 13, 

135 (2011). 
2. Golan, D., Lander, E. S. & Rosset, S. Measuring missing heritability: Inferring the 

contribution of common variants. Proceedings of the National Academy of Sciences of the 
United States of America 111, E5272–E5281 (2014). 

3. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. 
The American Journal of Human Genetics 101, 5–22 (2017). 

4. Park, J.-H. et al. Distribution of allele frequencies and effect sizes and their 
interrelationships for common genetic susceptibility variants. Proceedings of the National 
Academy of Sciences 108, 18026–18031 (2011). 

5. Khera, A. v et al. Genome-wide polygenic scores for common diseases identify 
individuals with risk equivalent to monogenic mutations. Nature genetics 50, 1219–1224 
(2018). 

6. Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and 
bipolar disorder. Nature 460, 748 (2009). 

7. Vilhjálmsson, B. J. et al. Modeling Linkage Disequilibrium Increases Accuracy of 
Polygenic Risk Scores. The American Journal of Human Genetics 97, 576–592 (2015). 

8. Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: Polygenic Risk Score software. 
Bioinformatics 31, 1466–1468 (2015). 

9. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. C. A. & Smoller, J. W. Polygenic prediction via 
Bayesian regression and continuous shrinkage priors. Nature Communications (2019) 
doi:10.1038/s41467-019-09718-5. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.02.22271425doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271425
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 
datasets. GigaScience 4, 7 (2015). 

11. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression 
on summary statistics. Nature Communications (2019) doi:10.1038/s41467-019-12653-0. 

12. Chatterjee, N., Shi, J. & García-Closas, M. Developing and evaluating polygenic risk 
prediction models for stratified disease prevention. Nature Reviews Genetics 17, 392–406 
(2016). 

13. Choi, S. W., Mak, T. S. H. & O’Reilly, P. F. Tutorial: a guide to performing polygenic 
risk score analyses. Nature Protocols 2020 15:9 15, 2759–2772 (2020). 

14. McCarthy, M. I. et al. Genome-wide association studies for complex traits: consensus, 
uncertainty and challenges. Nature Reviews Genetics 2008 9:5 9, 356–369 (2008). 

15. Lettre, G., Lange, C. & Hirschhorn, J. N. Genetic model testing and statistical power in 
population-based association studies of quantitative traits. Genetic epidemiology 31, 358–
362 (2007). 

16. Visscher, P. M., Yengo, L., Cox, N. J. & Wray, N. R. Discovery and implications of 
polygenicity of common diseases. Science 373, 1468–1473 (2021). 

17. Tsepilov, Y. A. et al. Nonadditive effects of genes in human metabolomics. Genetics 200, 
707–718 (2015). 

18. Lo, A., Chernoff, H., Zheng, T. & Lo, S. H. Why significant variables aren’t automatically 
good predictors. Proceedings of the National Academy of Sciences of the United States of 
America 112, 13892–13897 (2015). 

19. Li, R., Chen, Y., Ritchie, M. D. & Moore, J. H. Electronic health records and polygenic 
risk scores for predicting disease risk. Nature Reviews Genetics vol. 21 493–502 (2020). 

20. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 
Nature 562, 203–209 (2018). 

21. McCarty, C. A. et al. The eMERGE Network: a consortium of biorepositories linked to 
electronic medical records data for conducting genomic studies. BMC medical genomics 
4, 13 (2011). 

22. Fisher, R. A. Two Further Notes on the Origin of Dominance. The American Naturalist 
62, 571–574 (1928). 

23. Fisher, R. A. The Possible Modification of the Response of the Wild Type to Recurrent 
Mutations. The American Naturalist 62, 115–126 (1928). 

24. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 
datasets. GigaScience 4, (2015). 

25. Schrodi, S. J. et al. Genetic-based prediction of disease traits: prediction is very difficult, 
especially about the future†. Frontiers in Genetics 5, (2014). 

26. Whitfield, J. B. Genetic Insights into Cardiometabolic Risk Factors. 35, 15–36 (2014). 
27. Gene Inheritance and Transmission | Learn Science at Scitable. 

https://www.nature.com/scitable/topic/gene-inheritance-and-transmission-23/. 
28. Lewis, C. M. & Vassos, E. Polygenic risk scores: From research tools to clinical 

instruments. Genome Medicine 12, 1–11 (2020). 
29. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of 

polygenic risk scores. Nature Reviews Genetics 19, 581–590 (2018). 
30. Sugrue, L. P. & Desikan, R. S. What Are Polygenic Scores and Why Are They Important? 

JAMA 321, 1820–1821 (2019). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.02.22271425doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271425
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 11, 2022. ; https://doi.org/10.1101/2022.03.02.22271425doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.02.22271425
http://creativecommons.org/licenses/by-nc-nd/4.0/

