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Abstract 
 

Introduction: A major challenge to enabling precision health at a global scale is the bias 

between those who enroll in state sponsored genomic research and those suffering from chronic 

disease. More than 30 million people have been genotyped by direct-to-consumer (DTC) 

companies such as 23andMe, Ancestry DNA, and MyHeritage, providing a potential mechanism 

for democratizing access to medical interventions and thus catalyzing improvements in patient 

outcomes as the cost of data acquisition drops. However, much of these data are sequestered in 

the initial provider network, without the ability for the scientific community to either access or 

validate. Here, we present a novel geno-pheno platform that integrates heterogeneous data 

sources and applies learnings to common chronic disease conditions including Type 2 diabetes 

(T2D)  and hypertension.  

Methods: We collected genotyped data from a novel DTC platform where participants upload 

their genotype data files, and were invited to answer general health questionnaires regarding 

cardiometabolic traits over a period of 6 months. Quality control, imputation and genome-wide 

association studies were performed on this dataset, and polygenic risk scores were built in a case-

control setting using the BASIL algorithm. 

Results: We collected data on N=4,550 (389 cases / 4,161 controls) who reported being affected 

or previously affected for T2D; and N=4,528 (1,027 cases / 3,501 controls) for hypertension. We 

identified 164 out of 272 variants showing identical effect direction to previously reported 

genome-significant findings in Europeans. Performance metric of the PRS models was 

AUC=0.68, which is comparable to previously published PRS models obtained with larger 

datasets including clinical biomarkers. 

Discussion: DTC platforms have the potential of inverting research models of genome 

sequencing and phenotypic data acquisition. Quality control (QC) mechanisms proved to 

successfully enable traditional GWAS and PRS analyses. The direct participation of individuals 

has shown the potential to generate rich datasets enabling the creation of PRS cardiometabolic 

models. More importantly, federated learning of PRS from reuse of DTC data provides a 
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mechanism for scaling precision health care delivery beyond the small number of countries who 

can afford to finance these efforts directly.  

Conclusions: The genetics of T2D and hypertension  have been studied extensively in controlled 

datasets, and various polygenic risk scores (PRS) have been developed. We developed predictive 

tools for both phenotypes trained with heterogeneous genotypic and phenotypic data generated 

outside of the clinical environment and show that our methods can recapitulate prior findings 

with fidelity. From these observations, we conclude that it is possible to leverage DTC genetic 

repositories to identify individuals at risk of debilitating diseases based on their unique genetic 

landscape so that informed, timely clinical interventions can be incorporated. 

 

Keywords: Polygenic Risk Score; Genome-Wide Association Study; Type 2 Diabetes Mellitus; 

Hypertension; Ancestry 
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1. Background 

Early diagnosis and prevention of chronic modern diseases, including type 2 diabetes (T2D) and 

hypertension, have the potential to make a significant impact in patient outcomes. However, the 

Centers for Disease Control (CDC) estimated that over 20% of T2D cases are undiagnosed [1] 

and that only 11% of the over 80 million U.S. residents that suffer from prediabetes have been 

diagnosed (CDC National Diabetes Statistics Report 2017). Early diagnosis could allow for 

better allocation of intervention strategies known to be effective at reducing the risk of disease 

progression. According to medical practitioners, insufficient screening is lacking mainly due to 

the fact that chronic diseases tend to progress slowly until they manifest clinically later in life. 

One of the main barriers to effectively identifying individuals at risk is the lack of predictive 

tools trained on heterogeneous datasets that are able to predict susceptibility using historical data 

available outside of clinical and research settings. 

The World Health Organization (WHO) reports a sustained increase in diabetes mellitus, with 

projections increasing to 3% of the world population by 2030, becoming the seventh leading 

cause of death globally [1]. A sedentary lifestyle and a diet pattern with high intake of foods rich 

in hydrogenated fat, refined grains, and red meat have contributed to the increase in overweight 

and obesity and led to the increased incidence of  T2D [2]. An important challenge to this health 

crisis  is to decrease  mortality, especially at younger ages, and in low and low-middle countries 

[3], with more than 400 million people affected globally [4]. 

The overlap between T2D and hypertension is common among the population [5]. Hypertension 

alone affects more than 1.28 billion people worldwide [6]. T2D can lead to complications which 

can be exacerbated when the patient also presents hypertension, for example in the progression 

of diabetic nephropathy [7]. Both T2D and hypertension are risk factors associated with stroke 

and other serious and life-threatening events [8]. In fact, during the recent COVID-19 pandemic, 

outcomes of patients seem to be negatively affected by the presence of T2D, hypertension and 

obesity [9]. 

Genetics of T2D has been extensively studied [10-16], with over 400 genetic variants found to be 

associated with the diseases [17]. In addition to individual studies focusing on defined ethnic 

groups like  Hispanics [18, 19], there have been consortium efforts to investigate the genetic 
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architecture of complex traits in diverse populations. Some of these consortia include a) the 

Population Architecture using Genomics and Epidemiology (PAGE) consortium [20]; b) the rich 

data offered by the UK Biobank allowing associations between complex traits, genetics, and 

lifestyle [21]; c) the Trans-Omics for Precision Medicine (TOPMed) Consortium [22] which 

improves imputation quality and detection of rare variant associations; and more recently d) the 

Meta Analysis Biobank Initiative [23], a collaborative network of biobanks across the world 

representing millions of consented individuals. 

Direct to consumer platforms are novel sources of information that have expanded quickly 

during the past decade. The earliest example in 2010 was the use of web-based self-reported 

questionnaires with complementary genetic testing, leading to the creation of a research database 

[24] which has allowed for novel polygenic risk scores in complex traits [25] and subsequent 

FDA submissions of novel diagnostics [26]. The clinicogenomic database developed by a 

consortium led by a large pharmaceutical company, alongside an electronic health record 

company focused on oncological practices, and a direct to consumer (DTC) genetic testing 

company, putting together a comprehensive database [27], allowing sophisticated analysis of 

including the selection of novel biomarkers [28], drug effectiveness studies [29], or automatic 

eligibility criteria selection [30].  

The rapid development  of polygenic risk scores (PRS) in recent years stresses the importance of 

accurately assessing the ancestry makeup of participants in biomedical studies to avoid potential 

selection biases [31]. PRS represents a measure of an individual's overall genetic liability to a 

trait or disease [32]. The European Bioinformatics Institute (EBI) has launched a PRS catalog 

database, allowing for reproducibility and standardization of reporting of PRS models [33]. As of 

Feb 16, 2022, the catalog includes 35 models related to the T2D from 15 peer reviewed 

publications [34-46], and six models related to hypertension across 3 publications [39, 44, 46].  

However, these models mostly include single ancestry participants (typically European) which 

may not generalize across other ancestral groups. 

Even though the need for ancestry-focused research has been highlighted by many [47, 48], the 

lack of diversity resulted in systemic biases that threaten to widen existing health disparities 

among minority and majority populations in most developed countries. The overrepresentation of 

European individuals in genetic studies represents a major issue, hampering the translation of 
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PRS across populations. In this study, we hypothesize  that PRS models can be improved by 

defining the genetic ancestry of participants. Embedding genetic ancestry as a covariate, or 

scaling PRS scores as part of post-processing step, would result in more accurate models than 

traditional filtering to only European-based PRS models.  

Furthermore, the validation of a DTC framework for validating and extending PRS provides a 

cost-effective means of enrolling understudied populations in complex disease genetics as 

23andMe has done with their “Roots into the Future” effort. We aim to build on such successes 

by powering a public-private partnership that is collecting DTC data to be included in the 

Biobank Meta-analysis Network. The notion that DTC provided a “straight to mobile instead of 

landlines” opportunity is important to validate as most low and middle income countries are 

considering how to harness advances in genomics for the study of their own populations while 

building state-sponsored capacity is a fundamental challenge to many efforts.  

2. Methods 

In this case-control retrospective observational study, adult participants from an international 

genetic platform were invited to self-report their health status and metabolic traits. Their genetic 

information was also previously uploaded in the same platform, which allowed us to explore 

their genetic susceptibility and to build polygenic risk scores (PRS) regarding these traits. 

Finally, we calculated ancestry estimation using Neural ADMIXTURE for all individuals. We 

were interested in evaluating ancestry-aware polygenic scores for type 2 diabetes and 

hypertension.  

2.1 Cohort and Eligibility Criteria 
 

We used the research database where participants were drawn from Genomelink (genomelink.io) 

users, which offers a DTC genetic traits platform with more than 500,000 users globally. After 

uploading their genetic information, generated in other DTC platforms, users can be informed on 

their susceptibility to an extensive set of genetic traits. All participants created an account, and 

agreed to a Consent on the use of their data and Legal Agreement. Upon signing up, participants 

were invited to undertake a health online survey. Participants were redirected to the survey once 
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they gave online consent to be a part of the research. The online consent is in compliance with 

the institutional review board (IRB) at WCG IRB (https://www.wcgirb.com/) under IRB tracking 

ID 20201332.  

The online survey included questions about general conditions like diabetes, blood pressure, lipid 

profile, and medication intake. It also included COVID-19, influenza and common cold-related 

questions along with age, sex, weight, height, and pandemic behavior. Data were collected over a 

period of six months, from May 01, 2021 to October 06, 2021. Supplementary Material A shows 

the online questionnaire. 

Only the initial answers of each participant were included in the study, if genotype information 

was available, and if they answered the age and sex questions. Case-control groups were created 

following participants' answers to the general condition question: T2D and hypertension. 

Additionally, for T2D, participants were included if they reported to have high levels of sugar in 

their blood work or if they were taking antidiabetic  medication. Participants were defined as 

controls if they did not report managing health conditions listed in the questionnaire survey, or if 

they were not managing any health condition. Also, for the T2D cohort specifically, participants 

who reported having normal sugar levels were included as controls. Participants with missing 

values were excluded. 

2.2 Genotype data: quality control, imputation and GWAS 

This study includes seven independent genotyping arrays, comprising a total of 12,424 unrelated 

individuals. Genotype-level data for each array were processed by applying identical quality 

control and imputation procedures. Briefly, variants with a call rate of <95% and palindromic 

markers (A/T, G/C, MAF > 0.4) were excluded. We performed an exact test for Hardy–

Weinberg equilibrium for individuals of the largest ancestral group (p�<�1�×�10−12, 

globally). Individual quality control (QC) includes genotype call rates >97%, matching between 

gender identification and chromosomal sex, and no excess ancestry-adjusted heterozygosity. 

Samples genetically related to other individuals in the cohort and duplicates were detected and 

removed, by applying the King algorithm (--make-king, king estimate > 0.177; PLINK 2). 

Principal component analysis was performed to identify global ancestry per individual using 
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1000 genomes as reference population with PLINK 2 [49]. Further information about the number 

of markers per genotyping array pre- and post-QC is available on Supplementary Material B. 

Imputation was carried out using 1000 genomes as a reference panel with Beagle [50]. Next, we 

generated a merged data set combining imputed genotypes  (MAF >0.01; imputation quality 

R2
�>�0.30) from available data sets. Imputed makers with call rate >0.95 in the merged data 

were selected for downstream analysis.   

The GWAS was performed for T2D and hypertension phenotypes (N = 4,550; N = 4,528; 

respectively) using an additive genetic model with PLINK 2 (--glm). We include the top ten 

principal components (PC)s, age, sex, and the genotyping array as covariables in the model. 

Results were depicted using the qqman package in R. 

2.3 PRS analysis 

The Batch Screening Iterative LASSO (BASIL) algorithm [51] is a meta-algorithm (algorithms 

that learn from the output of other algorithms), which employs a Lasso algorithm [52] and 

enhances this output with another layer for faster variable selection in ultra high dimensional 

problems. Similar to the Lasso algorithm, the purpose of BASIL is to find a parameter vector � 

whose components are the coefficients for the independent variable of the linear regression that 

approximates the solution of the problem.  

BASIL solves the Lasso solution path in an iterative fashion, starting with a sequence of 

candidate parameters. From these candidate solutions, each iteration discards the ones that do not 

meet the requirements to be a suitable solution. The set of variables who make it into the final set 

for a viable solution are those who were also screened satisfying a desired threshold requirement, 

while the others are discarded (i. e. those solutions in which the coefficients in their positions 

inside the �  parameter are meant to be 0). This process is repeated until the optimum parameter 

�0 is found, which is the one that minimizes �(�0). The BASIL algorithm guarantees to find 

the exact solution and not only an approximation, via the Karush-Kuhn-Tucker condition (the 

first derivative necessary conditions for a solution to be optimal) [53] which is verified along 

each iteration. This condition is necessary and sufficient to prove it. 
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2.4  Genetic ancestry. 

To address the confounding factor of population stratification in PRS estimations, various 

approaches have been taken [54, 55]. Here, we follow the convention of using the first 10 

principal components of the PCA to the adjustment of the GWA study.  For the correction of 

PRS models, we make use of estimates of global ancestry. For this purpose, we use Neural 

ADMIXTURE [56], a faster adaptation of the ADMIXTURE algorithm [57] with similar (or 

better) clustering results. Utilizing the Python implementation of  Neural ADMIXTURE, we use 

data from the 1000 Genomes Project Consortium [58] for training a model in the supervised 

mode of Neural ADMIXTURE with the default parameters. We utilized the results of global 

ancestry inference as a covariate in the training of our PRS models.  

2.5 Statistical analysis 

We first used descriptive statistics to provide baseline characteristics of the study participants. 

We built two PRS models using a mixed model regression. In each PRS the predictor variable 

was taken from the online questionnaire, as mentioned in the inclusion criteria. A binary 

prediction for each phenotype was calculated, while accounting for sex, age and the first ten 

genetic principal components (PCs). These PCs account for residual population micro-

stratification as fixed effects. Genetic relatedness matrix was built using PLINK 2 (kinship 

estimation), to account for the relatedness among individuals as a random effect. 

The predictive ability of these PRS models was evaluated using the area under the curve (AUC) 

receiver operating characteristic (ROC) curves using the pROC package in R [59].  To make 

comparisons between AUC curves from each model, we used the nonparametric method 

developed by DeLong et al. [60], which is a commonly used method. 

3. Results 

3.1. Genome-wide association results for Diabetes type 2 and 
Hypertension 

 
We combined genome-wide association data for: 1) 389 T2D cases and 4,161 controls (N = 
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4,550); and 2) 1,027 hypertension cases and 3,501 controls of European ancestry (N = 4,528). 

We tested ~8 million variants for T2D and hypertension passing quality control and imputation 

filters (MAF>0.01, R2>0.3). Both  results showed low inflation of test statistics 

(λGC��=��1.01; λGC��=��1.01 ) (Figure 1). 

Nineteen T2D variants displayed significant evidence of replication (p < 0.05) in this dataset. 

Among them, we identified variants  closely associated with genes which have been previously 

linked to type 2 diabetes susceptibility (e.g. CDKAL1, KCNQ1), as well as variants in the FTO 

locus linked previously with both BMI and T2D. Overall, we identified 164 out of 272 variants 

showing identical effect direction to previously reported genome-significant findings in 

Europeans (Supplementary Material C) [36]. For the hypertension dataset, we replicated ten 

hypertension genetic markers, and identified 230 out of 365 variants having identical effect 

direction [61] (Supplementary Material C; Figure 1).  

We validated our GWAS using independent GWAS meta-analysis datasets from Mahajan et al. 

2018 (74,124 T2D cases, 824,006 controls) [36] and Evangelou et al. 2018 (757,201 individuals) 

[61]. We compared the p-values and the effect sizes for the variants assessed in both our studies 

that had identical chromosomal coordinates and alleles with the independent GWAS. The 

direction of the effect sizes (estimated as OR) were set to match the effect alleles in each study. 

We observed that the effect sizes of the genome-wide significant variants in the independent 

GWAS [36, 61] were concordant in directionality in both our T2D and hypertension GWAS 

(effect sizes had the same direction across both studies, Supplementary Material C ). 

Our observations highlight how carefully curated DTC repositories with ever increasing sample 

sizes and variant diversity can replicate previous findings and hold the potential of delivering 

enhanced discovery and single-variant resolution of causal T2D and hypertension risk and 

protection alleles. Additionally, our findings confirm the potential impact of DTC resources on 

mechanistic insights and clinical translation efforts. 
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Figure 1. Genome-wide association results. A) type 2 diabetes, and B) hypertension. Top boxes show Q-Q plots, 
while bottom figures show Manhattan plots with two levels of significance of p < 5 x 10-8 (red line), and p < 1 x 10-

6  (blue line) 
 
 

3.2 Estimation of cardiometabolic PRS models using SNPnet. 
 
PRS models were built for each phenotype using the BASIL algorithm [51]. The predictor

variable was binary (presence or absence of diabetes or hypertension) as reported by participants.

After 10-fold cross validation, the models reported a predictive performance (measured using

AUC) of 0.68 for both diabetes and hypertension. Similarly, the models built when filtering only

for participants of European ancestry reported a predictive performance of 0.69 and 0.66

respectively. We compared the performance of these models using DeLong’s method [60] with

no statistical significance (See Supplementary Material D  for additional metrics). The imbalance

ratio of both cohorts was an important factor that impacted the accuracy of these models.

Additionally, the majority proportion of participants of mostly European ancestry also explains

the small differences in performance between both types of models. Figure 2 shows the

comparison between AUC curves in both phenotypes. 

11 
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Figure 2. Area under the curve (AUC). Comparison of receiver operating characteristic (ROC) between two models 
Full model and European only model. Results for A) type 2 diabetes (T2D) were 0.68 and 0.69 respectively; while 
for B) hypertension were 0.68 and 0.66 respectively. After applying the DeLong [60] method of ROC comparison 

the models were not significantly different. 
 
The European Bioinformatics Institute (EBI) developed the PGS Catalog [32], which is an open

resource of published polygenic scores (including variants, alleles and weights). We investigated

those published PRS for T2D and hypertension. For those with reported AUC, we also obtained

the number of variants, number of individuals whose data was used to train the model under

various ancestry groups. See Supplementary Material E for more information on the PGS

Catalog reported scores. 

Our models are comparable to previously published PRS models. Figure 3 shows the comparison

in reported AUC for those models in the EBI PGS catalog including our own models. The

average AUC between these models was 0.70.  The small number of variables used by our

models (125 for T2D and 666 for hypertension), makes them comparable to those reported by

Tanigawa et al. [44] who also used the BASIL algorithm. Likewise, the number of individuals

whose data was used to train the models is modest in comparison to large academic and clinical

databases. Nevertheless, the predictive performance does not seem to be overtly affected by the

number of individuals in the study or the number of included variants highlighting that genetic

array data from DTC repositories carry immense promise for the development of PRS tools

aimed at improving early detection and prevention of T2D and hypertension. 
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Figure 3. Comparison of PRS published in the EBI PGS Catalog for T2D and Hypertension. The color of the bubble
represents the population ancestry that was included to build the PRS model. The size of the bubble represents the 

number of variables (variants) that ended up in the model after training. The x-axis shows the number of individuals 
used to train the model. The y-axis shows the AUC results as reported in the EBI PGS Catalog. The horizontal line 

shows the average AUC across all models. 
 

4. Discussion 

In this study we generated PRS for T2D and hypertension from a heterogeneous dataset housing

a combination of genetic data and self-reported information from a DTC genetics company.

Despite a relatively modest predictive ability our PRS models are able to identify subsets of

users at substantially increased risk of presenting T2D or hypertension. This finding is

remarkable because it suggests that the ever increasing availability of genetic data from DTC

providers, most of it not annotated for traits of clinical relevance, can be leveraged to generate

predictive tools able to improve diagnosis and prevention of diseases with genetic determinants. 

Our study tested the possibility of inverting the model regarding genetic and phenotypic data

acquisition in a research study. Individuals participating in our study shared their genetic array

information from other DTC providers, and were invited to take an online survey regarding their

general health condition. We found no difference in predictive performance between our trained
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models that included respondents from all inferred ancestries and those models with respondents 

from European heritage, due to the fact that 86% of our database was of European origin. The 

genetics of our PRS models for T2D and hypertension are supported by our ability to replicate 

known variants from publicly available independent GWAS studies. 

Multiple array types were available in our database, and imputation across platforms (up-

imputing) was necessary to harmonize these diverse datasets. The fact that individuals can self-

report their genomic information could potentially corrupt the file being uploaded into our 

platform. However, applying appropriate quality control (QC) principles proved to successfully 

enable traditional GWAS and PRS analyses. 

DTC platforms can offer a wide range of information about personal wellness, ancestry, physical 

characteristics, and traits. Advances in genomic research have led the DTC genomics industry to 

flourish and make accurate yet easy to interpret genomic results. Strict privacy policies of many 

companies disallow them to share customers’ data without their consent. These platforms can 

serve as informative repositories giving actionable insights that aid traditional clinical 

approaches. The approach of subject recruitment for various complex phenotypes via online 

surveys is opening up multiple avenues to complement conventional research and clinical 

strategies. DTC platforms also provide convenience along with a wider reach to recruit 

participants from various locations. They surpass barriers of single-point data collection centers 

to language restrictions thus  allowing  the aggregation of data from places with different 

ancestries and demographics. Democratizing the access to these genetic platforms and prediction 

tools  will likely boost progress in precision medicine. In the future, we plan to investigate how 

federated learning approaches can further improve the possibility to increase the power of studies 

in DTC genomic analysis, but also how meta-analysis can be done in combination with academic 

and clinical datasets (including those from large consortiums). 

We have shown that our DTC platform and research strategy has the potential to replicate 

previously reported results with a very fast turnaround time. The participation of individual 

customers in our platform allowed the generation of a rich dataset that enabled the creation of 

PRS cardiometabolic models. The comparable predictive performance of our models also is a 

great indication of how we can quickly contribute more PRS models to the larger scientific 

community. 
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T2D and hypertension are multifactorial diseases that are impacted by genetic and environmental 

determinants, including lifestyle factors like nutrition and exercise habits. Therefore, providing 

personalized information about T2D and hypertension predisposition is poised to improve early 

diagnosis and prevention bringing precision medicine at scale for all. 
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