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Abstract

The global extent and temporally asynchronous pattern of COVID-19 spread have
repeatedly highlighted the role of international borders in the fight against the pandemic.
Additionally, the deluge of high resolution, spatially referenced epidemiological data
generated by the pandemic provides new opportunities to study disease transmission at
heretofore inaccessible scales. Existing studies of cross-border infection fluxes, for both
COVID-19 and other diseases, have largely focused on characterizing overall border effects.
Here, we couple fine-scale incidence data with localized regression models to quantify
spatial variation in the inhibitory effect of an international border. We take as a case study
the border region between the German state of Saxony and the neighboring regions in
northwestern Czechia, where municipality-level COVID-19 incidence data are available on
both sides of the border. Consistent with past studies, we find an overall inhibitory effect of
the border, but with a clear asymmetry, where the inhibitory effect is stronger from Saxony to
Czechia than vice versa. Furthermore, we identify marked spatial variation along the border
in the degree to which disease spread was inhibited. In particular, the area around Löbau in
Saxony appears to have been a hotspot for cross-border disease transmission. The ability to
identify infection flux hotspots along international borders may help to tailor monitoring
programs and response measures to more effectively limit disease spread.

Introduction

The COVID-19 pandemic is an event of unprecedented magnitude in modern world history
and has consequently set off a flurry of research activity across the health-related sciences.
These efforts have generated an equally unprecedented deluge of spatially referenced
epidemiological data. High resolution epidemiological data have the potential to reveal
disease transmission processes on heretofore inaccessible spatial scales, but significant
challenges in data harmonization and modeling remain. The global extent and temporally
asynchronous nature of the COVID-19 spread have repeatedly put the spotlight on
international borders and the policies governing them. Research focusing on cross-border
infection fluxes can thus deepen our understanding of COVID-19 spread dynamics while
also serving to inform border-related policy decisions.

Several papers have studied COVID-19 border dynamics for different regions with a range of
methodologies. For example, Grimmé et al. (2021) used the Endemic-Epidemic framework
(Bekker-Nielsen Dunbar and Held, 2020) to model the effect of policies on Swiss-Italian
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borders. Eckardt, Kappner, and Wolf (2020) applied a Bayesian spatio-temporal Poisson
model to study the role of border controls in the Schengen Area, and Hossain et al. (2020)
used a metapopulation model for estimating the effect of travel restrictions on the COVID-19
outbreak. Additionally, Laroze et al. (2021) constructed a multi-source spatial model on top
of the pre-crisis commute to work to study the effects of borders between regions within the
same country, and Han et al. (2021) explored the balance between domestic and imported
cases in Chinese cities. While all of these studies suggested a significant effect of border
presence and border control regime on the spread of COVID-19, all focused on determining
the overall effect of the focal borders.

Most of the border-focused studies mentioned in the previous paragraph are based on the
spatial level of whole countries, regions, or spatially separated metropolitan areas. More
generally, most spatio-temporal COVID-19 models are applied either on the level of whole
countries or on medium-sized provinces and regions due to data limitations. In contrast, we
developed a model of COVID-19 spread on the very detailed level of individual
municipalities. While several studies consider this level of granularity for data analysis and
modeling (e.g., Arauzo-Carod, 2021; Cole et al., 2020; Neyens et al., 2020; Schuler et al.,
2021), research combining datasets on this scale from more than one country is still
exceedingly rare even it may provide an unique value for studying the spatiotemporal trends
in detail. Furthermore, while governing policy may be uniform across an entire border,
variation in geomorphology, population distribution, transportation infrastructure,
socio-economical aspects, history and other factors along a border may generate spatial
variation in the inhibitory effect of the border on disease spread. To our knowledge, this type
of fine-scale variation has not been studied in the context of COVID-19 spread. We therefore
aim to quantify cross-border infection fluxes at the scale of individual municipalities in the
Saxon-Czech border region.

Our approach is based on the simple assumption that the virus travels mainly with humans.
Therefore, COVID-19 may be transmitted more easily between two localities with a higher
intensity of mobility connecting them than between localities with lower mobility. Several
approaches are widely used in epidemiology to estimate mobility. Probably the most
common is the gravity model, which has many possible adaptations and extensions (Yan
and Zhou, 2019) and has been a mainstay of spatial COVID-19 modeling (e.g., Chen et al.,
2021; Ezzat et al., 2021; Werner, 2021; Zhu et al., 2021).

The basic gravity model estimates the mobility between two places primarily from two
variables - their separation distance and the population size of both places. The gravity
model can be further extended to include border effects. This idea was applied in the context
of various topics, e.g., international to domestic trade (McCallum, 1995), the cross-border
flows of immigration (Lewer and Van den Berg, 2008), air traffic (Becker et al., 2018), or
mergers and acquisitions (Wong, 2008). Even more relevant to this study is the paper of
Kramer et al. (2016), in which the authors extended the gravity model with a border effect to
study the international transmission of Ebola virus.

Here, we propose a set of local multiple regressions–inspired by the principles of the gravity
model–that allow us to quantify fine-scale spatial variation in the effect of the border.
Consistent with other studies, we find that the Saxon-Czech border has an overall inhibitory
effect on COVID-19 spread. However, we also identify both between-country asymmetry and
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substantial fine-scale variation in the strength of the border effect. In particular, the border in
the region around Löbau in Saxony appears to have had a weaker inhibitory effect than
other areas along the Saxon-Czech border. We conclude by discussing how high resolution
border studies can potentially pinpoint hotspots for disease spread where additional border
monitoring and controls may be warranted.

Data

For Saxony, we used the dataset "Gemeindegrenzen 2018 mit Einwohnerzahl"
(GeoBasis-DE et al., 2020) for the geometries and population sizes on the municipality
(“Gemeinde”) level. Czech population numbers on the municipality level ("obec") were taken
from the Czech Statistical Agency (Czech Statistical Office, 2021), while the geometries
were obtained from RÚIAN (Czech Office for Surveying, Mapping and Cadastre, 2021). We
further joined the population size numbers with their associated geometries and merged the
datasets from both countries. To keep the same geometry detail on both sides of the
borders, we applied the Douglas-Peucker (Douglas and Peucker, 1973) simplification
algorithm implemented in the Python library topojson (mattijn, 2021).

The number of infections in single municipalities in Saxony is published by the
coronavirus.sachsen.de (Sächsische Staatsregierung, 2021). Unfortunately, the website
does not provide any historical data in a tabular format, just a table with data from the last
seven days. We therefore set up a CRON job to visit the website every day and scrape the
contents in the form of a .csv table. On the Czech side, we worked with the daily updated
dataset from the Czech Ministry of Health (Komenda et al., 2021). We also reclassified both
datasets to weekly granularity to avoid problems with weekly cyclicity (i.e.,  pronounced
decreases in cases reported on weekends, national holidays etc.). For this study, we used
only data for the three regions in Czechia that share a border with Saxony - Liberec, Ústí
nad Labem, and Karlovy Vary. The entire region defined for the case study is shown in
Figure 1.

After data cleaning and harmonization, we obtained a dataset of 1116 municipalities (almost
6 million inhabitants), with 415 located in Saxony (4,077,937 inhabitants), and 701 in
Czechia (1,810,283 inhabitants). The municipalities in Czechia are smaller on average,
which reflects a slightly different administrative organization. The timeframe of the case
study ranges from the 31st of January to the 13th of June 2021. This timeframe was
selected due to the availability of the data on both sides of the border, but also to capture the
wave of high case numbers in late winter and spring 2021.

Most of the above-cited spatial epidemiology papers use the Euclidian distance between
location centroids as the measure of distance. However, this method is problematic on the
granular spatial scale of our study. Instead, the connectivity between municipalities is mostly
defined by the infrastructure that is determined by social (e.g., culture, work/school
commuting, local subsidies) and physical (e.g., mountainous areas, rivers) factors. To
account for variation in these structural factors, we estimate “temporal distances” between
pairs of municipalities via the typical car-based driving time between them.

To calculate the temporal distances between municipalities, we firstly needed to extract the
point representing the real central place of each municipality. This was done by the search
engine Nominativ (osm-search, 2021), which offers a free API service to geocode places by
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their names. For every request, it returns the point coordinates that represent the
geographical unit. For municipalities, the API returns mostly the point of the central square or
the centroid of the built-up areas. This point was then used as a starting point for the
calculation of isochrones. For this step, we used the Openroute API (GIScience Research
Group and HeiGIT, 2021) that returned the areas accessible by car within a specific time
limit. We set the upper value to 1 hour and worked with 10 six minute intervals. Then, the
temporal distance was calculated by iterating through all pairs of municipalities and checking
into which isochrone interval of the first municipality the centroid of the second municipality
falls. This measure of distance between two municipalities accounts for the transportation
networks connecting them and is thus more informative for our purposes than the simple
Euclidean distance.

We performed several exploratory analyses before implementing our regression models (see
Figures S1, S2, S3, and S4). Here, we quantified the overall patterns in the temporal trends,
the spatial co-occurrence of the case number increases, and the effect of the spatial and
temporal autocorrelation. We conclude that the pandemic situation in each country
developed somewhat independently, with indications of a significant but heterogeneous
spatial effect of the national border. Case numbers in municipalities within a short driving
distance (12 minutes and less) are much more strongly correlated than those separated by
longer distances. Additionally, municipalities' case numbers are, in general, more correlated
at shorter time lags, with the lowest variance in correlations occurring at time lags of 1 to 2
weeks.
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Figure 1. Overview map shows the location of the case study area and the extent of two
selected bordering regions - the federal state Saxony in Germany, and the regions of
Liberec, Ústí nad Labem and Karlovy Vary in Czechia.

Model

To quantify the local effect of the national border on the spread of COVID-19, we constructed
a set of beta regression models, with one for each municipality. Inspired by the gravity
model, each local model quantifies the contributions of neighboring municipalities to an index
of “virus import potential” for the focal municipality as a function of population sizes,
inter-municipality temporal distances, and presence/absence of the border between each
pair of municipalities. We calculated virus import potential by comparing the increases of
cases in each focal municipality with the pandemic situation in other municipalities in its
neighborhood.

The computation of the model starts by iterating through the list of all municipalities, and for
each focal municipality a, we define a neighborhood of municipalities {b, c, ..., f}, which are
reachable from a in less than forty minutes of driving time in a car. This value is supported by
additional travel data for this geographical region (Bundesagentur für Arbeit, 2020; Centrum
dopravního výzkumu, v. v. i., 2019; infas Institut für angewandte and Sozialwissenschaft
GmbH, 2017). These sources show that the largest distance people usually travel to work,
school, or shopping is not more than 20 kilometers / 30 minutes. But there are types of travel
that often occur over longer distances and times, such as tourism, family visits, and
business-related journeys that may take even more than one hour / 100 kilometers. We
therefore chose forty minutes as a conservative value that would comfortably accommodate
most normal travel.

For each municipality a, we constructed a local beta regression model that was based on the
characteristics of the relations of a to the municipalities in the neighborhood {b, c, ..., f}. As a
dependent value for the model, we calculated the possibility of importing the virus from {b, c,
..., f} to a. First, we identified all the weeks when the number of cases in a was rising. We
focused on the weeks when the number of cases in the municipality was increasing because
he spatial covariances may differ in various periods of the pandemic (Schuler et al., 2021) in
this model. For each of the increasing weeks t, we looked at the situation in the
neighborhood to identify the places, where the increase may have been spread from. We
looked at the number of cases within the municipalities in the neighborhood of {b, c, ..., f} at
t-1 that is one week before the increase in a. Then, we relativized the numbers for {b, c, ..., f}
to the sum of all cases in the neighborhood, so we ended with virus import potential values
scaled to [0, 1]. We repeated this process for every week t in the dataset. Finally, we
calculated mean values for all combinations of municipalities in the dataset, and then
transformed the values from [0, 1] to (0, 1) so that they could be used as the dependent
variable in a beta (multiple) regression model. This calculation does not directly measure the
real import of the virus. Instead, it is a reasonable approximation of the possibility to explain
an increase in municipality a with the number of cases in municipality b, one week before
this increase. We chose the lag of one week based on the common understanding of the
virus spread and the time-lagged correlation analysis (Figure S4).

We added three predictor variables to the model. The first of them was closeness, which
was calculated as the inverse value of the relative temporal distance. The higher the
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closeness value, the faster it was possible to reach the focal municipality from the second
municipality by car. Second, we used each municipality’s population size as a proxy for its
attractivity. The third predictor variable was the presence of the border. Here, the value 1
was assigned to the municipalities in the neighborhood that were not located in the same
country. For example, when a was in Saxony, we assigned 0 to all the Saxonian
municipalities and 1 to all Czech municipalities, and vice versa when a was in Czechia.

The linear predictor of the mean of our beta regression model, which is linked to the (0, 1)
index of virus import via the logit link function, can thus be written as

Iab = A + wC * C ab + wP * Pab + wB * Bab ,

where Iab stands for the virus import potential from municipality b to municipality a, and A is
an intercept. C, P, and B are the closeness of municipality a and b, the relative size of
municipality b compared to the maximal municipality population size within the neighborhood
of municipality a, and the existence of borders between municipality a and b, respectively.
wC, wP, and wB represent the regression coefficients of these parameters. The spatial
pattern of wB is of particular interest to us. Specifically, spatial variation in this coefficient
allows us to quantify and visualize spatial variation in the border effect. We then modeled the
precision parameter of the beta regression as a linear function (identity link) of border
presence, wBΦ * Bab, which improved both model fit and convergence relative to a constant
precision model.

For each municipality a, we calculated a model consisting of the dependent variable and all
three predictor variables for each municipality in the neighborhood {b, c, ..., f} for the mean of
the response, and a separate model consisting of just the border term for the precision of the
response. We first standardized predictors of relative municipality size and closeness
variables via z-scores, and then estimated the beta models via maximum likelihood. These
analyses were implemented in R (R Core Team, 2000) and the betareg package (Zeileis et
al., 2016). For a visual guide of the whole procedure, please refer to Figure 2.

To validate the results of the model, we did two post-hoc analyses. The first check is based
on a comparison of the average of all weeks when cases in the focal municipality increased
weighted by the magnitudes of the increases (referred to as central increase week further in
the study). This number represents the differential timing of the waves in the two countries
as an alternative way to look at the degree of cross-border coupling. The second
post-analysis to validate the results of the model is based on the idea of the Granger
causality metric (Granger, 1969; Romero García et al., 2021), which tests the causation of
one time series by another time series considering a time lag. For each municipality m, we
constructed two microregions. The first one consisted of the municipalities falling into a
driving distance limit of 20 minutes (half of the threshold used for the model) from m and the
same country as m, the second consisted of the municipalities in the driving distance of 40
minutes from m but located on the other side of the border. We summed weekly case
numbers within both microregions and calculated the symmetrized changes, which tend to
be more robust compared to classical percentage change (Berry and Ayers, 2006). These
values were further used to perform the Granger causality test and the correlation to the
weighted average of the border effect value (weighted by the population sizes of the
municipality).
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Figure 2. Visual overview of the model construction framework.

Results

The model coefficients ( , , and ) are estimated based on the three predictor𝑤𝐷 𝑤𝐵 𝑤𝑃
variables for each municipality, from which the wB, the effect of the border, was the focal
point of our study. The spatial distribution of this value is displayed on map in Figure 3. This
map shows that within most of the municipalities in our study area, the border strongly
inhibits virus spread (pink to magenta colors), but with pronounced the spatial variation in the
strength of this inhibitory effect. In particular, the national border appears to have a less
inhibitory effect (greener colors) in the area around the town of Löbau in eastern Saxony.

In total, 365 local models were constructed, one for each municipality that fulfilled the
condition to have at least 5 municipalities in the neighborhood that lay on the other side of
the border. Only one of those models did not converge, and was therefore removed from the
analysis. Across all the remaining 364 local models, the median r2 value is ~0.37, and the
median p-value is ~0.05. Our methodology was not capable of identifying statistically
significant results (p < 0.05) mostly for the municipalities located on the outskirts of the study
area, which may have been influenced by regions not considered in this study. Results also
highlight marked asymmetry on opposite sides of the national border, with a higher potential
of virus import from Czechia to Saxony than vice versa (visible also on Figure S1 and Figure
S2). This may be explained by the overall spatio-temporal trend of the spread over the
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timeframe of our study, in which the Northern Czech Republic (and specifically the province
of Cheb) was reported as a European hotspot at the very beginning of the year 2021,
followed by high incidence values in Saxony in the following months (March, April).

The border region near the towns of Löbau and Bautzen in eastern Saxony stands out as a
hotspot where increases in focal municipalities are more strongly linked to case number
increases on the Czech side of the border. There are also single municipalities in the other
parts of both Saxony and Czechia that show weaker inhibition (e.g., Marienberg,
Johanngeorgenstadt, Neuhausen, and Dubí located in the central part of the study area).
Outside of these exceptions, the overall effect of the border on disease transmission is
mixed or strongly inhibitory.

The spatial distribution of central increase week is shown on the left map of Figure 4. In this
picture, we can identify the spatial discontinuity created by the national border. This effect is
least pronounced at two places - around the town of Šluknov (including the German
neighborhoods of Löbau and Sebnitz) where the COVID-19 wave came later (during
mid-March) compared to other Czech regions, and the westernmost part of Saxony, where
the case numbers peaked relatively early compared to the rest of Saxony. The right map
then shows the neighborhood variance (within 40 minutes of driving distance) of this value.
Because the central increase week values form, in general, two spatial clusters - one for
each country, the places with high values of the variance are then concentrated around the
national border. One exception of this trend is located around the towns of Löbau (Germany)
and Šluknov (Czechia), which again indicates a less inhibitory effect of the national border
on the virus spread in this area. This result is consistent with the outcome of the beta
regression analysis, which shows the highest potential for cross-border virus import exactly
in this area.

Figure S5 shows the comparison of Granger causality p-values for the time lags of one, two,
and three weeks vs. the weighted average border effect value (weighted by the population
sizes within the microregion) that estimated via the beta regression models. It shows that the
weaker coefficient of the border effect, the more significant the Granger causality tended to
be. The correlation coefficients are -0.4 in the case of the maximal time lag of 1 week, -0.46
for the maximal lag of two weeks, and -0.54 for the maximal lag of three weeks.
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Figure 3. Map of municipalities in the neighborhood of the Saxon-Czech border. The circle
size represents the population, and the color depicts the estimated wB, which represents the
potential of the border to inhibit the spread of COVID-19. The green color stands for a less
inhibitory effect of the border, while magenta tones represent municipalities where the border
strongly inhibited disease spread. The width of the circle stroke represents the p-value of the
border parameter of the municipality.

Figure 4. Weighted central increase week (left) and the neighborhood variance in central
increase week (right).
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Discussion

In this paper, we proposed a regression-based methodology to estimate spatial variation in
the effect of a national border on disease spread. Our approach leverages fine-scale,
spatially-referenced case count data to estimate a location-specific index of virus import
potential. We then demonstrated the power of our techniques on a municipality-level case
study of COVID-19 spread in the Saxon-Czech border region. Consistent with other studies
of border effects, we found an overall inhibitory effect of the national border on disease
spread between the two regions, but with stronger inhibition in the direction of Saxony to
Czechia than vice versa. Importantly, our approach also highlighted pronounced spatial
variation in the inhibitory effect of the border, particularly in the region around Löbau in
Saxony. Specifically, the border provided much weaker inhibition of disease spread in this
region from Czechia to Saxony compared to most other areas along the border. This hotspot
was clearly identified by our local regression models, and this central result was also verified
by post-hoc analysis focusing on differences in the timing of the outbreaks on either side of
the border.

In the hotspot around Löbau, the timing of the localized case count peak was much closer to
that of the neighboring region in Czechia (neighborhood of town Šluknov) than it was to
other accessible municipalities in Saxony. This finding suggests a pronounced, cross-border
coupling of epidemic dynamics in this region, which our regression models clearly identified.
In contrast, the central region of the border displayed a stronger inhibitory effect, with the
disease dynamics between neighboring regions of Saxony and Czechia more clearly
decoupled. With respect to the strength of the border effect, the western-most areas near
towns of Plaunen and Cheb were intermediate relative to the eastern and central border
regions.

We suspect that these localized differences in border effect, particularly those between the
eastern (Löbau) and central border regions, are driven by differential cross-border traffic
patterns. Even though the borders were “closed” for most of the time span covered by our
case study, there were several exceptions valid for crossing in one or both directions. First of
all, commuters traveling for work from the Czech Republic to Saxony, on a daily or weekly
basis, are essential to several sectors of the Saxonian economy, including healthcare,
tourism, transport, and manufacturing (Sujata et al., 2020). Some of these workers had
exceptions even during the hardest lockdown, some were pushed to minimize border
crossings (Sachsen.de, 2021a; Sachsen.de, 2021b). The state authorities announced
mandatory testing in January 2021 for all cross-border workers (Sachsen.de, 2021c), which
increased the case numbers on the German side. On the other hand, people from Saxony
used to go shopping in Czechia regularly due to the lower prices of some commodities (e.g.,
gas, groceries, and some services), and the closure of the border would sharply reduce such
traffic. Physical conditions also modulate cross-border mobility. For example, the Ore
Mountains (Erzgebirge / Krušné Hory) along the central part of the Saxon-Czech border form
a natural barrier for many cross-border activities. The distribution of cities and areas of
higher population density between sides of the borders can also have an effect. Specifically,
the central region of the border features larger cities on the Czech side than on the German
side. When coupled with the mountainous terrain along the border and sparser road
networks, this difference in population density may reduce border crossings both for Czechs
(less need to commute for work) and for Germans (less convenient to commute for

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.22271644doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271644
http://creativecommons.org/licenses/by/4.0/


commodities, leisure). In contrast, the opposite factors would likely contribute to increased
border traffic in the region around Löbau. While our results are consistent with this
hypothesis, explicit data on cross-border movements, which were unavailable to us, would
be required to confirm this interpretation fully.

A limitation of our study is the lack of direct consideration of some of the surrounding
regions, which may have influenced COVID-19 dynamics near the Saxon-Czech border,
notably Poland to the far east and the German states of Bavaria and Thuringia to the west.
The unavailability of municipality-scale data from these regions precluded their consideration
in our analysis. This issue manifests itself in the lower pseudo R2 values for the models and
higher p-values on the border term that tend to occur on the outer edges of our study area.
This is specifically relevant for the regions of Görlitz in the east and Cheb / Plauen in the
west. Outside of these outlying regions, we are confident that our analysis accurately
quantifies disease import potential from surrounding regions and provides reliable results.
This robustness is further evidenced by the agreement between our core model-based
analysis and the confirmatory analyses based on timing differences and on Granger
causality.

Our index of virus import is based on a comparison of the case increase in a focal
municipality with the relative number of cases in the neighboring municipalities one week
earlier. Calculation of this index therefore requires determining appropriate values for
neighborhood size, time lag, and relative weightings of contributions with the neighborhood.
While our selection of these parameters was guided by literature review and knowledge
gained via exploratory analysis, we tested the robustness of our results by various driving
distance thresholds, temporal lags, and weighting techniques. Similarly, we considered a
range of options for dealing with exact 0’s and 1’s in our index of virus import. Collectively,
these alternative modeling assumptions do slightly affect our numerical results; however,
these variations changed neither our qualitative results nor the inferences we drew from our
analysis. Finally, we urge caution in interpreting patterns in our index of virus import. While
this metric identifies areas of the higher potential for cross-border disease transfer, it does
not directly measure such transfer. In other words, the high estimated potential for
cross-border transmission does not guarantee that such transmission actually happened.

We have developed a method for quantifying fine-scale variation in the effect of a border on
between-country (or between-region) disease transmission potential. A key advantage of our
approach is that it does not require data on cross-border movements of individuals, which
are generally difficult to obtain and come with substantial privacy concerns. Furthermore, our
approach is able to detect potential hotspots for cross-border disease transmission, which
might then be flagged for additional monitoring efforts or stricter border measures in the
future. While this type of analysis is retrospective, it could potentially be automated such
that, as new data become available, it provides near real-time results on patterns of
cross-border disease transmission. Such an automated system could help authorities
decrease the time needed to adjust border policies to changing epidemic conditions. A
related issue concerns determining the extent to which such cross-border transmission hot
spots are consistent over time. The multiple waves of COVID-19 that have occurred
worldwide should provide ample opportunities to address this and related questions in future
studies.
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Supplementary Material

Figure S1. Temporal patterns of the weekly cases in every region (14 "okres" in CZ and 12
"Kreise" in DE) show a substantial difference between the trends of the German and Czech
regions. While the numbers in the Czech regions tend to rise at the beginning of the
timeframe (February), German regions have a wave of high numbers in the middle of the
timeframe (late March, April). Even though the trends within each country are similar,
considerable differences also exist among neighboring regions. Although the Czech regions
are considerably smaller in population, the number of cases is similar, implying a higher
incidence on the Czech side.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.22271644doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271644
http://creativecommons.org/licenses/by/4.0/


Figure S2. Weekly increases in the number of cases on the level of municipalities. This
figure shows the municipalities with increased cases each week of the time series. Here we
can follow the general spatio-temporal trends of the spread. At the very beginning of the
timeframe, the situation was considerably worse in the western part of Czechia, particularly
around the towns of Karlovy Vary and Cheb. During February, the wave of high numbers
came to all Czech regions, while from March, the places with increases in case numbers are
more dispersed and mostly located within the regions around Děčín, Ústí nad Labem, and
Chomutov. On the German side, the first more significant and spatially concentrated wave of
increased cases appeared in the middle of March in the region of western Saxony, around
Plauen and Zwickau. The following week, we can see an increase also in north-western
Saxony (Leipzig region), followed by the central (Dresden, Chemnitz) and then eastern
(Görlitz, Bautzen, Zittau)regions of Saxony.
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Figure S3. Spatial autocorrelation graph. The dependence of the municipality-municipality
correlations in the case numbers on the temporal distance. The chart highlights the similarity
between two municipalities (quantified by the correlation number) on their temporal distance.
We notice a strong similarity of case numbers across municipalities within the same country.
Such correlations tend to be significant when the municipalities are within 20 minutes of
each other, implying strong spatial autocorrelation. A similar relationship of autocorrelation in
case numbers at short temporal distances is not present for pairs of municipalities separated
by the national border. This finding suggests a strong effect of the national border on the
spread of the virus.
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Figure S4. Correlation values of the municipality-municipality temporal trends considering
the neighborhood defined by one hour of driving distance. The dark blue color stands for all
combinations of municipalities in one country, the light blue color for all
municipality-municipality combinations. While the median correlation values change little
across various time lags, we note a difference in the distribution of values within the higher
part of the scale(75th percentile). This refers to the situations when not all municipalities
have similar trends in case numbers, but the correlation is present much more often when
the temporal lag is lower. The values are also notably higher when considering only the
combination of municipalities within one country and the lag of zero or one week. Maximum
values of the correlation for each municipality show a significant decrease in the time lag of
one week, while all the other time lags retain similar distributions. More interesting is the
comparison of the variance in the neighborhood municipality-municipality correlations. In this
case, the time lags of one and two weeks have the lowest numbers; slightly higher numbers
are reached when we consider the municipalities on the other side of the border. This
analysis may indicate overall spatio-temporal trends of the virus spread. While the median
values do not change significantly over time, the distributions of the medians and the values
of the maximum correlations reveal that the similarity within the neighborhood is higher when
there is no time lag. In contrast, the variance analysis revealed the highest consistency in
correlation values when the time lag is one or two weeks. Additionally, correlations are
generally higher when we consider only municipalities from one country, which again
highlights the effect of the border.
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Figure S5. The comparison of the weighted border factor calculated by the beta regression
model and the granger causality test p-value considering the temporal lag of 1, 2, and 3
weeks. The granger causality values were calculated by comparing the case values in the
neighboring municipalities in the same country to the case values in neighboring
municipalities on the other side of the border.
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