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Abstract 19 

BACKGROUND: Machine learning promises to support the diagnosis of dementia and 20 

Alzheimer’s Disease, but may not perform well in new settings. We present a framework to 21 

assess the transportability of models predicting cognitive impairment in external settings with 22 

different demographics.  23 

METHODS: We mapped and quantified relationships between variables associated with 24 

cognitive impairment using causal graphs, structural equation models, and data from the ADNI 25 

study. These estimates generated datasets for training and validating prediction models. We 26 

measured transportability to external settings with interventions on age, APOE ε4, and sex, 27 

using calibration metric differences. 28 

RESULTS: Models predicting with causes of the outcome were 1.3-12.8 times more 29 

transportable than those predicting with consequences. Logistic and lasso models had better 30 

calibration in internal validation settings than random forest and boosted models. 31 
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DISCUSSION: Applying a framework considering causal relationships is crucial to assess 32 

transportability. Future research could investigate more interventions and methods to quantify 33 

causal relationships in risk prediction. 34 

Keywords: Alzheimer’s Disease, clinical risk prediction, DAG, causality, transportability 35 

Research in context 36 

1. Systematic Review: Machine learning models supporting the diagnosis of cognitive 37 

impairment may not perform well in external validation settings. Theoretical research 38 

established that models can be more transportable to external settings when predictors 39 

are causes of the outcome. Causal frameworks and practical examples to assess 40 

transportability are needed. 41 

2. Interpretation: We developed and applied a causal framework to assess the 42 

transportability of models predicting cognitive impairment to settings with different 43 

demographics using a causal graph and interventions on semi-synthetic data. Our 44 

results add a practical example showing that models are more transportable when 45 

predicting with causes of the outcome rather than with its consequences. This supports 46 

using causal frameworks in prediction models to improve transportability. 47 

3. Future directions: Our framework can be extended to include more complex semi-48 

synthetic data generation methods to quantify causal relationships. Further 49 

applications to risk prediction models could assess transportability under different 50 

interventions that simulate complex differences between populations. 51 

Introduction 52 

Alzheimer’s disease (AD) and other forms of dementia are the second leading cause of death 53 

globally [1] and more than 55 million people currently suffer from dementia. Detecting 54 

dementia at an early stage of cognitive impairment is important to give affected individuals 55 

adequate care and eventually administer disease-modifying treatments [2]. In recent years, 56 
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several machine learning (ML) models have been proposed to support clinical decision making 57 

by predicting the diagnosis of AD and cognitive impairment [3–8]. One obstacle for deploying 58 

such prediction models in clinical practice is that they are often developed in a particular setting 59 

(e.g., one hospital or region), but might not generalize well when being transported (i.e., being 60 

applied) to other settings (e.g., in another hospital or regions with different patient 61 

demographics). One reason for reduced transportability may be that ML models learn non-62 

causal associations between input and output variables, which might be different in external 63 

settings [9,10]. This scenario can occur especially when models predict a diagnosis based on 64 

clinical consequences of the disease (e.g., when prediction is in the anti-causal direction) [11–65 

13].  66 

Two approaches have the potential to improve transportability for prediction models. First, 67 

causal relationships can be incorporated in prediction models a priori for learning relationships 68 

that are more stable across settings and can therefore avoid systematic failures in external 69 

settings [10,14–17]. To this aim, directed acyclic graphs (DAGs) are a useful tool to map 70 

assumed causal relationships between variables, represent differences and commonalities 71 

between settings [18,19], and select variables for transportable health prediction tasks [20–72 

22]. Second, the causal validity of learned relationships can be assessed through guided 73 

interventions on data distributions, to simulate differences between internal and external 74 

validation settings [17,23,24].  75 

Few previous studies have employed causal thinking and DAGs to develop transportable 76 

clinical prediction models [25–29]. Piccininni et al. described the use of DAGs for selecting 77 

predictors in a hypothetical clinical risk prediction model for AD [25]. They discussed that 78 

prediction models for AD are more likely to transport well to different settings when the 79 

selected predictor variables are causes of AD and not consequences. However, their study 80 

included only three variables and a theoretical simulation.  81 

While theories on transportability exist, statistical frameworks are needed to assess the 82 

transportability of trained prediction models in new settings in practice. In this work, we apply 83 
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a causal framework to assess the transportability of clinical prediction models for cognitive 84 

impairment in external validation settings with different demographics.  85 

Methods 86 

Overview 87 

As first step in our framework, we mapped assumptions about causes and consequence of 88 

cognitive impairment in a DAG (Figure 1) and estimated the associations using a structural 89 

equation model (SEM) applied to data from the Alzheimer’s Disease Neuroimaging Initiative 90 

(ADNI). With the estimates, we generated datasets to train and validate four ML algorithms 91 

(logistic regression, lasso regression, random forest and generalised boosted regression). We 92 

assessed the transportability of ML models between internal and external validation datasets, 93 

using the difference in calibration. The external settings contained interventions on the 94 

distributions of age, APOE ε4 prevalence and sex. All prediction algorithms and data-95 

simulations were implemented using R version 4.0.3. 96 

Data source and data preprocessing 97 

We used the TADPOLE grand challenge dataset (https://tadpole.grand-challenge.org/Data/), 98 

which was derived from ADNI [30,31]. The ADNI study acquired multiple, longitudinal, 99 

measurements from elderly subjects across more than 50 clinics in USA and Canada. We 100 

selected individuals who had measurements at baseline (n=1,737) and selected baseline 101 

variables that have a reported association with AD and had less than 30% of missing entries. 102 

A complete list of the variables is provided in Supplementary Table S1. Detailed information 103 

on data preprocessing is provided in Supplementary Text 1. Missing data was imputed using 104 

the R package ‘mice’ with default settings, and one imputed dataset was generated. All 105 

numeric variables were normalized by z-transformation.  106 
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DAG creation 107 

In DAGs, nodes represent variables and directed edges represent causal relationships 108 

pointing from the cause to the effect [18,32,33]. We reviewed scientific literature to identify 109 

causal relationships between variables in our dataset that are involved in cognitive impairment 110 

and AD processes (Supplementary Table S2) and mapped them in a first DAG 111 

(Supplementary Figure 1). Then, we tested if the generated DAG was a good fit to the ADNI 112 

dataset, using conditional independence testing with the R package ‘dagitty’ [34]. We reviewed 113 

test results with low p-values and large point estimates, which indicated causal relationships 114 

that violated conditional independence. We added 13 causal connections (Supplementary 115 

Text 2) according to the test results and our domain expertise to create the final DAG (Figure 116 

2).  117 

Semi-synthetic data generation using structural equation models 118 

We fitted a structural equation model (SEM) using the ADNI dataset to quantify the causal 119 

relationships specified in our DAG. The SEM was implemented using the ‘sem’ function in the 120 

R package ‘lavaan’ with default parameters [35]. For numeric endogenous (dependent) 121 

variables, the function computes weighted least squares estimates. For categorical 122 

endogenous variables, the function automatically uses a diagonally weighted least squares 123 

estimator and assumes that a conditionally normally distributed latent variable underlies the 124 

categorical variable (and estimates the thresholds).  125 

 126 

We then used the SEM parameter estimates to generate five semi-synthetic datasets with 127 

each 10,000 individuals: One for training, one for internal validation and three for external 128 

validation of ML models (Figure 1). We bootstrapped exogenous (independent) variables (age, 129 

APOE ε4 and sex) together 10,000 times without replacement from the original data and used 130 

those to generate the endogenous variables for training and internal validation sets, using the 131 

linear equations from the SEM. We then generated three external validation sets implemented 132 

by interventions on the exogenous variables to reflect three different populations with 1) a 133 
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younger mean age, compared to the original data (73 years ⇒ 35 years) 2) lower prevalence 134 

of the APOE ε4 gene compared to the original data (46.9% ⇒ 10.0%), and 3) increased 135 

percentage of females compared to the original data (52.6% ⇒ 90.0%). For the external age-136 

intervention data, we sampled the age variable from a normal distribution with a mean age of 137 

35 and standard deviation of 10 and bootstrapped together APOE ε4 and sex. For the APOE 138 

ε4 intervention, we sampled from a Bernoulli distribution with 10% probability. For the sex 139 

intervention, we sampled from a Bernoulli distribution with 90% probability.  140 

The generated exogenous variables age, APOE ε4 and sex were then used as input to 141 

generate endogenous variables, using the SEM estimates.  142 

Prediction algorithms 143 

We applied logistic regression, lasso regression, random forest and generalized boosted 144 

regression (GBM) to predict the cognitive state of an individual as either cognitive normal or 145 

cognitive impairment. Logistic regression was performed using the glm function in the ‘stats’ 146 

R package. Lasso regression was implemented using the ‘glmnet’ R package [36]. The lasso 147 

model was initialized with an optimized penalization hyperparameter obtained from a grid-148 

search with 10-fold cross validation that selected the minimum value of lambda for minimum 149 

deviance. The random forest is an ensemble of regression trees which aims at improving the 150 

generalizability compared to a single regression tree [37]. Previous works demonstrated the 151 

strengths of random forests for diagnostic prediction modelling of AD [3–5]. The random forest 152 

algorithm was applied from the ‘randomForest’ R package, using 500 trees (as per default). 153 

GBM implements boosting by adding regression trees sequentially with respect to the error of 154 

the current tree ensemble. This boosting approach increases robustness and generalizability 155 

compared to a single regression tree [38–40]. The GBM algorithm was applied using the ‘gbm’ 156 

R package with 100 trees (as per default).  157 

 158 

Based on the causal assumptions in our DAG, we defined three predictor sets that included 159 

either all variables or only those which are direct causes of the outcome (parent nodes), or 160 
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only direct consequences of the outcome (children nodes) (Table 1). Each ML model was 161 

trained and validated with each predictor set. We performed 30,000 repetitions, in which the 162 

five datasets (one for training, one for internal validation and three for external validation) were 163 

generated and used for training and validating all prediction models.  164 

Calibration metric 165 

We assessed the transportability of all prediction models using calibration metrics. We 166 

measured the calibration of all trained prediction models in the internal validation setting and 167 

in each external validation setting. Calibration was measured using the Integrated Calibration 168 

Index (ICI) [41] and the calibration component of a three-way decomposed Brier score. Low 169 

ICI and Brier scores indicate better calibration. The Brier calibration component was obtained 170 

from the bias-corrected ‘BrierDecomp’ function of the ‘SpecsVerification’ R package using 171 

quantile bins of predicted probabilities in 10% steps. ICI and Brier scores are given with 95% 172 

confidence intervals (95%CI).  173 

We calculated the calibration difference (ICI or Brier score) between the internal setting and 174 

each external validation setting to assess transportability. Differences of zero indicate equal 175 

calibration in both internal validation and external settings and therefore good transportability. 176 

Negative values indicate decreased calibration from internal validation to the intervention 177 

setting and therefore decreased transportability. We calculated the median and 95%CI for 178 

calibration metrics across all 30,000 repetitions. 179 

Results 180 

Description of the participants' characteristics 181 

The ADNI study, represented in TADPOLE, recorded a total of 1737 participants at baseline 182 

together with their diagnosis, demographic information (age, sex, and education), behavioural 183 

information (smoking and alcohol abuse history), clinical measurements (BMI, FDG-PET, 184 

brain volumetric measurements with MR imaging, Aβ and tau concentrations in cerebrospinal 185 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271617doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271617
http://creativecommons.org/licenses/by-nd/4.0/


fluid (CSF), Minimental State Cognitive Exam (MMSE) and medical history (history of 186 

hypertension and cardiovascular events) (Table 2). Among all participants, 1214 (69.9%) had 187 

cognitive impairment.  188 

Semi-synthetic data generation 189 

The SEM was able to estimate all parameters quantifying the causal relationships in our DAG. 190 

We reviewed the estimated parameters and found that many were in agreement with existing 191 

neurology domain knowledge. For example, age had a positive coefficient and therefore 192 

increased CSF-tau (0.37), the likelihood of hypertension (0.11) and the likelihood of 193 

cardiovascular events history (0.13) (Supplementary Table S1). Some estimated relationships 194 

however, were controversial to domain knowledge. For example, increasing age decreased 195 

CSF-Aβ (-0.14) and the likelihood of cognitive impairment (-0.13). The SEM additionally 196 

indicated a small correlation between sex and age (Pearson correlation = 0.06) and between 197 

age and APOE ε4 (Pearson correlation = -0.05).  198 

 199 

We compared endogenous variable distributions between the original ADNI data and 200 

generated validation datasets and found that the percentage of cognitive impairment was 201 

underestimated in the internal validation set (40.7%, 95%CI [39.8, 41.7]) in comparison to the 202 

original ADNI data (69.9%) (Supplementary Table S3). We further compared endogenous 203 

variable distributions between internal and external datasets. Lowering the mean age from the 204 

internal validation setting to the external setting under age intervention, decreased the 205 

prevalence of cognitive impairment from 40.7% to 26.0%, increased the smoking prevalence 206 

from 23.8% to 34.7% and alcohol abuse history from 0.6% to 35.0%, decreased the 207 

prevalence of hypertension from 23.0% to 7.3% and previous cardiovascular events from 208 

60.5% to 37.3%. Intervening on age increased the mean of Aβ from 1658.1 to 2092.9 pg/ml, 209 

shrank the mean of tau from 265.4 to 20.1 pg/ml and increased the MMSE from 28.0 to 30.0, 210 

in comparison to the internal validation data.  211 
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In the APOE ε4 intervention, lowering the prevalence of the APOE ε4 gene from the internal 212 

setting to the external setting decreased the prevalence of cognitive impairment from 40.7% 213 

to 33.8%, increased the mean of CSF-Aβ from 1658.1 to 1843.1 pg/ml and decreased the 214 

mean CSF-tau from 265.4 to 237.1 pg/ml. 215 

In the sex intervention, increasing the percentage of females from the internal setting to the 216 

external setting decreased the frequency of cognitive impairment from 40.7% to 32.4%, while 217 

other variable distributions were similar to the internal validation setting. 218 

Transportability 219 

Transportability of logistic regression, lasso regression, random forest and gradient boosting 220 

was measured by ICI and Brier calibration differences (Supplementary Table S4) between 221 

internal validation and intervention settings. 222 

 223 

First, we compared the transportability of models based on parent variables with the 224 

transportability of models based on children variables. In all intervention settings, we found 225 

that models predicting with parent nodes were more transportable than those predicting with 226 

children nodes (ICI: Figure 3, Brier: Figure 4). Models predicting with parents had good 227 

transportability in intervention settings, indicated by a similar calibration between the internal 228 

validation and intervention setting. For example, the difference in ICI between the internal 229 

validation and age intervention for logistic regression was very small (median ICI -0.007, 230 

95%CI [-0.038, 0.007]). Models predicting with children had low transportability in intervention 231 

settings, as indicated by negative calibration differences. For example, logistic regression 232 

predicting with children had a median ICI difference between the internal and age intervention 233 

setting of -0.094, 95%CI [-0.108, -0.078], which was 12.8-fold lower compared to predicting 234 

with parents. Only the GBM model showed better transportability in the age intervention setting 235 

when predicting with children (median ICI -0.004, 95%CI [-0.020, -0.010]) than with parents 236 

(median ICI -0.028, 95%CI [-0.050, -0.009]). We compared the transportability difference 237 

between logistic and lasso models predicting with parents and children across intervention 238 
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settings. While logistic and lasso models had very similar calibrations, we found that the 239 

median ICI difference between parents and children was largest in the age intervention (0.087) 240 

and sex intervention (0.052) and more subtle in the APOE ε4 setting (0.013).  241 

 242 

Second, we compared the transportability between all predictors and parent predictors. 243 

Logistic regression and lasso regression models predicting with all and parent variables were 244 

similarly transportable in all intervention settings. For example, the logistic model had close to 245 

zero median ICI differences between internal and intervention settings (age intervention: all 246 

predictors -0.009, 95%CI [-0.045, 0.006], parent predictors: -0.007, 95%CI [-0.038, 0.007]; 247 

APOE ε4 intervention: all predictors 0.000, 95%CI [-0.008, 0.008], parent predictors 0.000, 248 

95%CI [-0.009, 0.009]; sex intervention: all predictors 0.000, 95%CI [-0.009, 0.009], parent 249 

predictors 0.000, 95%CI [-0.010, 0.009]). The random forest model had similar transportability 250 

(ICI difference) in APOE ε4 intervention and sex intervention settings when predicting with all 251 

and with parent predictors (APOE ε4 intervention: all variables 0.001, 95%CI [-0.009, 0.011]; 252 

parent variables: -0.001 [-0.014, 0.011]). In the age intervention setting, the random forest 253 

model predicting with parents (median ICI difference: 0.009, 95%CI [-0.033, 0.031]) was 254 

similarly transportable than predicting with all variables (-0.029, 95%CI [-0.058, -0.008]), with 255 

different medians but overlapping confidence intervals. GBM models predicting with all and 256 

parent variables had similarly small median ICI differences in APOE ε4 (all: 0.001, 95%CI [-257 

0.009, 0.011], parents: 0.001, 95%CI [-0.011, 0.012]) and sex intervention settings (all: -0.001, 258 

95%CI [-0.012, 0.010], parents: -0.001, 95%CI; [-0.014, 0.011]). In the age-intervention 259 

setting, however, GBM models was similarly transportable (larger negative median ICI 260 

differences) when predicting with parents (-0.028, 95%CI [-0.050, -0.009]) compared to all (-261 

0.019, 95%CI [-0.037, -0.002]) and children predictors (-0.004, 95%CI [-0.020, 0.010]). One 262 

explanation for these inconsistencies could be that in the internal validation setting, random 263 

forest and GBM models with parent predictors had three to four times poorer median ICI 264 

calibration than lasso and logistic regression with parents (logistic and lasso: 0.009, 95%CI 265 
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[0.004, 0.017]; random forest: 0.037, 95%CI [0.026, 0.048]; GBM: 0.028, 95%CI [0.018, 266 

0.039], Supplementary Table S5).  267 

 268 

We observed that transportability measured by Brier score differences (Figure 4, Table S4) 269 

between internal validation and external settings supported the same trends as the ICI 270 

differences. The scale of the Brier scores were exactly zero or closer to zero in the internal 271 

validation setting, compared to the ICI scores (Supplementary Table S5). 272 

Discussion 273 

In this study, we have presented a general framework for assessing the transportability of ML 274 

models and applied the framework to evaluate the transportability of prediction models for 275 

cognitive impairment in external settings with different distributions of age, APOE ε4 allele 276 

frequency and sex.  277 

 278 

Our application shows that causal thinking is important when selecting predictors for clinical 279 

prediction models. We demonstrated that, under a specific set of interventions, transportability 280 

remained stable when ML models predicted with all variables or only causes (parent nodes), 281 

but was reduced when predicting with consequences (children nodes) of the diagnostic 282 

outcome ‘cognitive impairment’. We demonstrated this in all prediction models (logistic 283 

regression, lasso regression, random forest, and GBM) with one exception, when validating 284 

GBM models in the age intervention setting. A closer investigation of the models showed 285 

miscalibration of random forest and GBM models in the internal validation setting. Calibration 286 

of GBM models predicting with children nodes was low in the internal validation setting and 287 

remained low in all intervention settings, which serves as an explanation of the inconsistent 288 

results of GBM models in the age intervention setting. This miscalibration might have 289 

happened because we generated data assuming linear relationships in the SEM, whereas 290 

random forest and GBM are designed to capture non-linear relationships [42].  291 

 292 
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Our findings can guide the process of selecting predictor variables. Predictors are often 293 

selected based on how much they increase model performance in the development setting. 294 

Previously developed prediction models for dementia and AD have used brain volumetric 295 

measures or cognitive assessment scores as predictors because they reduced prediction 296 

errors [5,43,44]. We assumed that cognitive status increases the likelihood of seeing MR 297 

images with volumetric changes in brain morphology and we mapped brain volumetric 298 

measurements and cognitive assessment scores as consequences. Another work similarly 299 

assumed that the brain morphological state (measured by regional brain volumes) influences 300 

the performance in cognitive tests [45]. We showed, in agreement with theoretical work 301 

[20,25], that the transportability of models predicting with information on the consequences of 302 

the outcome of interest (i.e., the anti-causal direction) is more likely to be reduced in settings 303 

with different underlying demographic or genetic distributions. Another work suggested that 304 

predictors derived from medical images may often predict in the anti-causal direction as they 305 

depict the consequences of a disease, which may raise a caveat towards transportability [15].  306 

 307 

Limitations 308 

Our framework and its application has limitations in each step. First, our application focused 309 

on the prediction of cognitive impairment within the AD continuum, while there are also other 310 

types of impairments, e.g. from brain injury, which were not considered. It cannot be 311 

empirically verified if DAGs map causal relationships correctly and if all relevant factors were 312 

included. We only included observed variables (other than latent variables for factors) and it 313 

is likely that there are unobserved variables within the causal processes of cognitive 314 

impairment. Strong domain expertise is crucial to increase the correctness of DAGs [32]. We 315 

included neurological and epidemiological domain expertise for creating our DAG, but our 316 

knowledge may not be complete from other perspectives. Conditional independence tests can 317 

test if there is evidence against a given DAG in a dataset [12]. We applied conditional 318 

independence tests to add directed connections between variables, but unexplainable 319 

violations were present. One study suggested that causal relationships should generally be 320 
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assumed to exist between any two variables and they should only be omitted when evidence 321 

is available [22]. We ensured that our assumptions in the DAG correctly represent the data by 322 

using semi-synthetic data so that any possible misspecification of the DAG did not affect the 323 

evaluation of the model transportability. 324 

 325 

Second, we applied a SEM to the ADNI data to quantify the causal relationships in our DAG. 326 

While SEMs are widely applied for this purpose [16], their methodology comes with limitations, 327 

for example, when using categorical variables [46–48]. In our application, we had seven 328 

categorical variables and found a small correlation between sex and age and between age 329 

and APOE ε4. We assume their correlation might stem from biased selection in the ADNI study 330 

or an unknown common cause, which we did not consider in our DAG. Additionally, we found 331 

that some parameter estimates in the SEM were controversial to domain knowledge. For 332 

example, the relationship between age and cognitive impairment was estimated to be -0.13, 333 

whereas the prevalence of cognitive impairment increases with age. We hypothesize that 334 

these incorrect estimates explain why the SEM underestimated the percentage of cognitive 335 

impairment, and suggest that the model misspecified some relationships in the underlying 336 

ADNI data generation process.  337 

 338 

Third, we simulated external validation data by intervening on one exogenous variable (age, 339 

sex, and APOE ε4) at a time. These interventions may simplify differences between 340 

populations in real-world applications. For example, it is possible that multiple variables 341 

including endogenous variables such as BMI vary jointly from one validation setting to another. 342 

Moreover, it is also possible that causal relationships themselves change from one setting to 343 

the other. 344 

 345 

Lastly, we applied our framework to assess transportability using structured data. Applications 346 

using high-dimensional unstructured data (such as images) require novel methods due to the 347 

difficulty of mapping causal relationships for unstructured data.  348 
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 349 

Outlook 350 

Our framework to assess the transportability of models predicting cognitive impairment can be 351 

extended to overcome the described limitations. Future work could adapt the framework to the 352 

work of Pölsterl et al. and include unobserved variables in the DAG [45]. To ensure that the 353 

estimated parameters of causal relationships follow biological laws, future refinements could 354 

include the SEM with prior distributions as implemented in the blavaan R package [49]. Future 355 

research could adapt our framework to assess the transportability of prediction models when 356 

intervening on endogenous variables and causal relationships, because real-world 357 

populations likely do not only differ by exogenous variables. Recent ML models predicted AD 358 

from medical images [7,50], which requires new approaches to identify the causal structure in 359 

complex data [51]. 360 

 361 
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Tables 545 
Table 1: Predictor sets with corresponding lists of variable names.  546 

Predictor set Variable names 

All nodes age, APOE ε4, sex, education, BMI*, history of hypertension, history of 

alcohol abuse, history of smoking behaviour, history of cardiovascular 

event, CSF†-tau, CSF†-Aβ‡, hippocampus, ventricles, intracranial 

volume, FDG-PET§, MMSE¶ 

Parent nodes age, APOE ε4, sex, education, BMI*, history of cardiovascular event, 

CSF†-tau, CSF†-Aβ‡ 

Children nodes hippocampus, ventricles, intracranial volume, FDG-PET§, MMSE¶ 

*BMI: Body Mass Index; †CSF: Cerebrospinal fluid; ‡Aβ: Amyloid β; §FDG-PET: fluorodeoxy-547 

glucose-positron emission tomography; ¶MMSE: Mini Mental State Exam score 548 

 549 

  550 
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Table 2: Participant characteristics of ADNI dataset at baseline stratified by cognitive state.  551 

Variables Cognitive normal  
n=523 

Cognitive 
impairment n=1214  

Total  
n=1737 

age#  73.7 (70.5, 78.0) 74.0 (68.3, 79.3) 73.9 (69.2, 78.9) 

APOE ε4 149 (28.6%) 
Nmiss: 2 

660 (54.8%) 
Nmiss: 10 

809 (46.9%) 
Nmiss:12 

sex (male) 253 (48.4%) 704 (58.0%) 957 (55.1%) 

education# (years) 16 (14, 18) 16 (14, 18) 16 (14, 18) 

CSF†-Aβ‡# (pg/ml) 1271 (820.8, 1734.0) 
Nmiss: 156 

741.5 (559.1, 
1130.3) 
Nmiss: 366 

854.2 (596.2, 1395.5) 
Nmiss: 522 

CSF†-tau# (pg/ml) 214.3 (175.2, 287.8) 
Nmiss: 156 

281.6 (210.4, 379.2) 
Nmiss: 366 

257.8 (193.4, 349.7) 
Nmiss: 522 

history of alcohol 
abuse 

16 (3.1%) 
Nmiss: 6 

27 (2.3%) 
Nmiss: 27 

43 (2.5%) 
Nmiss: 33 

history of smoking  115 (26.8%) 
Nmiss: 94 

223 (23.2%) 
Nmiss: 254 

338 (24.3%) 
Nmiss: 348 

BMI*#  28.6 (25.8, 32.5) 
Nmiss: 4 

28.17 (25.5, 31.2) 
Nmiss: 5 

28.31 (25.5, 31.6) 
Nmiss: 9 

history of 
hypertension 

130 (24.9%) 460 (38.0%) 
Nmiss: 5 

590 (34.1%) 
Nmiss: 5 

history of 
cardiovascular events 

343 (65.6%) 835 (68.8%) 1178 (67.8%) 

MMSE¶#  29 (29.0, 30.0) 27 (25.0, 29.0) 28 (25.0, 29.0) 

*BMI: Body Mass Index; †CSF: Cerebrospinal fluid; ‡Aβ: Amyloid β; ¶MMSE: Mini Mental State 552 

Exam score 553 

NOTE. Numeric variables are indicated with # and are given with median and 25-75% 554 

interquartile range (IQR). All other variables are categorical variables with two categories and 555 

the absolute number and the column wise percentage of the reference category is given. 556 

Absolute numbers of missing values (Nmiss) are given. 557 

 558 
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Figures 560 
Figure 1: Framework to assess the transportability of machine learning models predicting 561 
cognitive impairment.  562 
 563 

 564 

NOTE. Orange boxes mark the four general steps of this framework.  We first mapped 565 

knowledge about cognitive impairment into a Directed Acyclic Graph (DAG) and quantified 566 

those using Structural equation modelling (SEM) and data from the Alzheimer’s Disease 567 

Neuroimaging Initiative (ADNI). The estimates were used in linear equations to generate 568 

datasets for training, internal validation and three external validation datasets with 569 

interventions on age, APOE ε4 and sex. We trained four machine learning algorithms (logistic 570 

regression, lasso regression, random forest and generalized boosted regression) to predict 571 
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cognitive impairment. We measured transportability between internal and external settings 572 

using calibration differences, measured by Integrated Calibration Index (ICI) and Brier score. 573 

Steps 3 and 4 (data synthesis and model training and validation) were repeated 30,000 times. 574 

 575 

 576 

Figure 2: Directed acyclic graph of variables influencing cognitive status.  577 

 578 

NOTE. Predictor variables are marked in blue and the outcome variable (cognitive status) in 579 

green. Directed arrows indicate assumed causal relationships between variables. The 580 

included variables are: APOE ε4 (apoe4), age, sex, education (educ), CSF-Aβ (aβ), history 581 

of alcohol abuse (alc), history of smoking behaviour (smok), Body Mass Index (bmi), history 582 

of hypertension (hypert), CSF-tau (tau), history of cardiovascular events (cardio), cognitive 583 

status (cogn), hippocampus (hippo), ventricles (ventr), intracranial volume (icv), FDG-PET 584 

(fdg), Mini-Mental State Exam score (mmse).  585 
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Figure 3: Transportability between internal validation and intervention test sets, measured by 586 

the difference of integrated calibration index (ICI).  587 

 588 

NOTE. Three intervention test sets were created with 1) reducing the population mean age 589 

from 73 to 35 years, 2) reducing the APOE ε4 allele frequency from 46.6% to 10.0%, and 3) 590 

increasing the number of female individuals from 45.9% to 90.0%. Cognitive impairment was 591 

predicted using logistic regression, lasso regression random forest (rf) and generalized 592 

boosted regression (gbm) prediction models. Models were trained either with all predictor 593 

variables, only parent nodes (direct causes) of the diagnostic outcome, or only children nodes 594 

(consequences) of the diagnostic outcome.  595 
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Figure 4: Transportability between training and intervention test sets, measured by the 596 

difference of the Brier calibration component.  597 

 598 

NOTE. Three intervention test sets were created with 1) reducing the population mean age 599 

from 73 to 35 years, 2) reducing the APOE ε4 allele frequency from 46.6% to 10.0%, and 3) 600 

increasing the number of female individuals from 45.9% to 90.0%. Cognitive impairment was 601 

predicted using logistic regression, lasso regression random forest (rf) and generalized 602 

boosted regression (gbm) prediction models. Models were trained either with all predictor 603 

variables, only parent nodes (direct causes) of the diagnostic outcome, or only children nodes 604 

(consequences) of the diagnostic outcome.  605 
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