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Abstract 

Infections caused by SARS-CoV-2 may cause a severe disease, termed 

COVID-19, with significant mortality. Host responses to this infection, mainly in 

terms of systemic inflammation, have emerged as key pathogenetic 

mechanisms, and their modulation is the only therapeutic strategy that has 

shown a mortality benefit. Herein, we used peripheral blood transcriptomes of 

critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit 

(ICU), to identify two transcriptomic clusters characterized by expression of 

either interferon-related or immune checkpoint genes, respectively. These 

profiles have different ICU outcome, in spite of no major clinical differences at 

ICU admission. A transcriptomic signature was used to identify these clusters in 

an external validation cohort, yielding similar results. These findings reveal 

different underlying pathogenetic mechanisms and illustrate the potential of 

transcriptomics to identify patient endotypes in severe COVID-19, aimed to 

ultimately personalize their therapies. 
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Infections caused by SARS-CoV-2 have a wide range of severity, from 

asymptomatic to life-threatening cases. The most severe forms of Coronavirus-

induced disease (termed COVID-19) 1 lead to respiratory failure fulfilling the 

acute respiratory distress syndrome (ARDS) criteria 2. These critically ill patients 

often require mechanical ventilation and supportive therapy in an intensive care 

unit (ICU) and show mortality rates that range from 12 to 91% depending on 

patient and hospital factors 3. 

Local and systemic inflammation are key pathogenetic mechanisms in severe 

COVID-19 4. Viral infection triggers a host response that involves not only anti-

viral mechanisms, such as release of interferons, but may also activate a 

systemic, non-specific inflammatory response that has been related to multiple 

organ failure and death 5. The only treatments that have shown a survival 

benefit in critically-ill COVID-19 patients aim to modulate this inflammatory 

response 6. However, it has been suggested that these treatments do not 

benefit patients with less severe forms of the disease or with only a mild 

activation of inflammation 7,8.  

There is increasing evidence that ARDS patients show different clinical features 

or systemic responses to severe diseases (phenotypes and endotypes 

respectively) 9. Although the underlying causes responsible for this 

heterogeneity are not fully understood, clinical data showing different outcomes 

in response to a given treatment suggest that pathogenetic mechanisms may 

be different 10. Therefore, identification of patient pheno/endotypes may be 

relevant not only for risk stratification, but also to design specific, personalized 

therapies in the ICU.  
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Several studies have tried to identify severe COVID-19 phenotypes using 

clinical data, yielding sometimes conflicting results. Although translation of the 

previously identified ARDS phenotypes to COVID-19 showed two groups of 

patients with different responses to steroid therapy 11, other studies failed to 

identify clear groups of patients using clinical data at admission 12.  

Transcriptomic profiling after sequencing of whole blood RNA may be useful to 

identify groups of critically-ill patients with different underlying pathogenetic 

mechanisms 13–15. In addition, preliminary results suggest that micro-RNA 

(miRNA) expression could also play a role in this setting 16. We hypothesized 

that clustering of COVID-19 patients using transcriptomics at ICU admission 

could help to identify subgroups with different pathogenesis. To test this 

hypothesis, we prospectively sequenced peripheral blood RNA and serum 

miRNA at ICU admission in a cohort of COVID-19 patients, applied an unbiased 

clustering algorithm and compared gene expression clinical data and outcomes 

in the identified subgroups. Finally, we validated our findings in an external 

cohort. 

 

Methods 

Study design 

This prospective observational study was reviewed and approved by the 

regional ethics committee (Comité de Ética de la Investigación Clínica del 

Principado de Asturias, ref 2020.188). Informed consent was obtained from 

each patient’s next of kin. Fifty-six consecutive patients admitted to one of the 

participant ICUs at Hospital Universitario Central de Asturias (Oviedo, Spain) 

from April to December 2020 were included in the study. Inclusion criteria were 
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ICU admission and PCR-confirmed COVID-19. Exclusion criteria were age<18, 

any condition that could explain the respiratory failure other than COVID-19, do-

not-resuscitate orders or terminal status, refusal to participate or severe 

comorbidities that may alter the systemic response (immunosuppression, 

history of organ transplantation, disseminated neoplasms). All patients were 

managed following a standardized written clinical protocol. 

 

Sample acquisition and processing 

After inclusion, two samples of peripheral blood were drawn in the first 72 hours 

after ICU admission. One sample was collected in Tempus Blood RNA tubes 

(Thermo Fisher) to facilitate cell lysis, precipitate RNA and prevent its 

degradation. The other sample was immediately centrifuged to obtain serum 

and mixed with TRI reagent for serum RNA precipitation. These tubes were 

stored at -80°C until processing. Whole blood RNA was extracted by 

isopropanol precipitation and sequenced in an Ion S5 GeneStudio sequencer 

using AmpliSeq Transcriptome Human Gene Expression kits that amplify all the 

canonical human transcripts. Details on RNA extraction and sequencing have 

been provided elsewhere 8. FASTQ files containing RNA sequences were 

pseudoaligned using a reference transcriptome (http://refgenomes.databio.org) 

and salmon software 17 to obtain transcript counts. 

Total serum RNA was extracted using miRNEasy kit (Qiagen), following 

manufacturer’s instructions, and miRNAs isolated and sequenced at BGI 

Genomics (Wuhan, China). miRNA readouts were mapped using bowtie2 18, 

with an index built using the hg38 human reference genome. Quantification of 

sequenced miRNAs was performed using miRDeep2 19 with reference human 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

mature and hairpin miRNA sequences downloaded from miRBase (release 22, 

https://www.mirbase.org).   

 

Clustering 

Clustering of RNA samples was performed following a previously described 

protocol 20. Briefly, log2-transformed gene expression data (expressed as 

transcripts per million reads) were filtered to keep the 5% of features with the 

largest variance. Clusters were built based on Euclidean distances following the 

Ward clustering algorithm. Cluster p-values, indicating how strong the cluster is 

supported by the data, were calculated by multiscale bootstrap resampling 

using the pvclust package 21 for R. 

 

Analysis of differentially expressed genes 

Gene raw counts obtained after pseudoalignment were compared between 

clusters using DESeq2 22. Log2 fold change for each gene between variants and 

the corresponding adjusted p-value (corrected using a false discovery rate of 

0.05) were calculated. Genes with an absolute log2 fold change above 2 and an 

adjusted p-value lower than 0.01 were used for Gene Set Enrichment Analysis 

(GSEA) using the clusterProfiler R package 23.  

A correlation analysis was performed in genes annotated to a Gene Ontology 

category involved in interferon pathway. Correlation coefficients between each 

gene pair were transformed to z-scores and the p-values for each comparison 

calculated using the DGCA package for R 24. Genes with opposite correlations 

in each cluster were selected and the networks defined by their significant 

correlations traced. 
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Differentially expressed genes between clusters were also matched with the c-

miRNAs expressed for each group using the MicroRNA Target Filter tool from 

Ingenuity Pathway Analysis (Qiagen Digital Insights), to identify predicted 

interactions. Intersected mRNA and miRNA datasets were filtered to explicitly 

pair opposed and reciprocal expression changes. Only experimentally observed 

predictions were considered. Key mRNA-miRNA relationships identified were 

overlayed onto the networks of interest to explore the predicted functionality in 

our datasets. Pathways related to humoral, and T and B cellular immune 

responses were selected as relevant. miRNAs with <3 targeted mRNAs were 

filtered out from the network. 

 

Clinical data 

Demographics and comorbidities were collected at ICU admission (day 1). Data 

on gas exchange, respiratory support, hemodynamics, received treatments and 

results from routine laboratory analyses were prospectively collected at days 1 

and 7 after ICU admission. Patients were followed up to ICU discharge. During 

this period, duration of ventilatory support and vital status were collected for 

outcome analysis. 

 

Circulating cell populations 

Proportions of transcriptionally active circulating cells in each sample were 

estimated using Immunostates 25, a previously published deconvolution 

algorithm. From the original reference matrix, cell populations not commonly 

identified in peripheral blood (Mast cells and macrophages) were removed. 

Using this modified reference matrix containing expression of 318 genes for 16 
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different blood cell types, the percentage of each one of these types was 

estimated from the bulk RNAseq.   

 

Validation 

To validate our results in an external cohort, we used a publicly available 

dataset of 50 transcriptomes from critically-ill COVID-19 patients 26. Sample 

acquisition was performed at enrolment. Clinical data and gene counts were 

downloaded from Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/, accession number GSE157103). First, we 

identified differentially expressed genes that best discriminate between clusters 

in our data, as those with an Area Under the Receiver Operating Characteristic 

curve (AUROC) above 0.95. A transcriptomic score was calculated as the 

geometric mean of these genes, and the AUROC for this score determined and 

a threshold between clusters was defined. Finally, the same transcriptomic 

score was calculated in the validation cohort, and each sample assigned to one 

cluster using the previously established threshold. Clinical data (age, sex, 

APACHE-II score) and outcomes (ventilator-free days -VFDs- at ICU Day 28) 

were compared between clusters. 

 

Statistical analysis 

Data are expressed as median and interquartile range. Missing data were not 

imputed. Differences between clusters were assessed using two-tailed 

Wilcoxon or chi-square tests (for quantitative and qualitative data respectively). 

For survival analysis, patients were followed up to ICU discharge, with ICU 

discharge alive and spontaneously breathing being the main outcome 
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measurement. Differences in this outcome between clusters were assessed 

using a competing risk model as previously described 8, and hazard ratio for the 

main outcome, with the corresponding 95% confidence interval, was calculated. 

All the analyses were performed using R v4.1.1 27 and packages ggplot2 28, 

pROC 29 and survival 30, in addition to those previously cited. All the code and 

raw data can be found at https://github.com/Crit-Lab/COVID_clustering. 

 

Results 

Patient clustering 

Peripheral gene expression was sequenced in 56 consecutive critically-ill 

patients (20% female, age 68 [61 - 75] year) admitted to one of the participant 

ICUs. Amongst 16903 genes counted, 1727 were used for hierarchical 

clustering (Figure 1A). The two main branches of the obtained clustering tree 

showed the highest p values (Figure 1B and supplementary Figure 1). 

Therefore, the sample was divided in two mutually exclusive groups, termed 

COVID-19 transcriptomic profiles (CTP) 1 and 2. Bidimensional representation 

of the study population using a UMAP algorithm confirmed the separation of the 

two clusters (Figure 1C). Supplementary figure 2 shows a heatmap with the 

expression of the genes used for clustering.   

 

Differences between transcriptomic profiles 

Then we assessed the overall differences in gene expression. Using an 

adjusted p-value cut-off point of 0.01, there were 9700 differentially expressed 

genes (Supplementary file 1), with 3640 having an absolute log2 fold change 

above 2 (Figure 2A). Interestingly, most of these genes were downregulated in 
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CTP2. Then, GSEA was used to identify the molecular pathways involving 

these differentially expressed genes. One hundred and ten biological processes 

with significant differences between clusters were identified (Supplementary 

Figure 3). Among these, several categories related to the interferon-mediated 

response and lymphocyte activation were identified (Figure 2B), and 

participating genes were plotted (Figure 2C-E). Patients included in CTP1 

showed an enrichment of several interferon genes, linked to the activation of a 

number of immune populations related to innate and adaptative responses 

(Figure 2C), whereas CTP2 was enriched in genes involved in B-cell receptor 

signaling (Figure 2D) and regulatory T-cell differentiation (Figure 2E).  

In addition to these quantitative changes in expression of interferon-related 

genes, we explored the existence of qualitative differences between clusters. 

We calculated the linear correlation coefficients among the 145 genes included 

in the Gene ontology categories involving interferon signaling in each cluster. 

There was a significant difference between the two correlation matrices (Figure 

3, p<0.001 calculated using a Chi-square test), thus demonstrating differences 

in the orchestration/structure of IFN responses between groups. In addition, 

pairwise differences in correlation coefficients for each gene pair were 

assessed. Gene pairs with correlation coefficients with an adjusted p-value for 

their difference below 0.05 and opposite signs in each cluster were selected, 

and networks including these genes traced (Figure 3 and Supplementary Figure 

4). These results suggest that both clusters have a qualitatively different 

activation of the interferon pathway, with some genes such as HSP90AB1 and 

JAK1 acting as hubs with opposite correlations. Of note, CTP1 was hallmarked 
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by strong, positive correlations among effector IFN proteins, whereas this was 

not the case for CTP2. 

 

Differences in circulating cell populations 

The previous results suggest that the identified clusters may have a different 

circulating lymphocyte profile. To further explore this finding, cell populations 

were estimated by deconvolution of RNAseq data. This analysis revealed a 

higher granulocyte proportion in patients assigned to CTP1, a lower proportion 

of lymphocytes and no differences in monocytes or NK cells (Figure 4A-D). 

Although no differences in absolute lymphocyte counts were found (645 [483 — 

948] vs 730 [580 – 908] /mm3, p=0.71, Table 1), deconvolution and adjustment 

by total lymphocyte fraction revealed a higher proportion of CD4+ T cells 

(Figure 4E) and a lower proportion of CD8+ T cells (Figure 4F) and naïve B-

cells (Figure 4G), with no differences in memory B-cells (Figure 4H) in this 

group, in line with the GSEA results. Detailed data on other cell populations can 

be found in the online supplement (supplementary figure 5). 

 

Potential regulatory miRNAs 

To identify miRNAs potentially related to the observed changes in RNA 

expression, we analyzed miRNA content using the Mirna Target Filter included 

in Ingenuity Pathway Analysis. After filtering by experimentally confirmed 

miRNA-gene relationships, and only opposed changes in miRNA/gene 

expression levels, 83 miRNAs targeting 608 genes were identified in our 

dataset. Given the observed differences in lymphocyte populations, we focused 

on miRNAs involved in humoral and cellular immune regulation (29 miRNAs 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

and 151 genes). Paired miRNA-gene networks are depicted in Supplementary 

Figure 6 (104 downregulated genes/18 predicted upregulated miRNAs) and 

Figure 5 (47 upregulated genes/11 predicted downregulated miRNAs), with an 

overlay including differentially expressed genes between CTP1 and CTP2. 

miRNAs predicted to regulate expression of these genes were identified and 

compared (Figure 5B-H). Among these, only counts of miR-145a-5p and miR-

181-5p were significatively lower in CTP2 (Figure 5C and 5D respectively).  

 

Clinical differences and outcome 

Clinical differences between clusters at ICU admission were studied (Table 1). 

There were no significant differences in demographic and clinical variables 

other than a higher leukocyte count in cluster CTP1, with no differences in 

lymphocyte counts. Patients assigned to CTP2 cluster showed more ventilator-

free days during the first 28 days in ICU (Table 1). In the survival analysis, after 

adjusting for age, sex, and need for intubation during the ICU stay, assignation 

to CTP2 increased the probability of ICU discharge alive and spontaneously 

breathing (HR 2.00 [1.08 – 3.70], p=0.028, Figure 6).  

 

External validation 

To apply our findings to an external cohort, we first developed a characteristic 

gene signature that allows assignation to one cluster using gene expression 

data. We focused on genes upregulated in CTP2, as they constitute a relatively 

small group, given the massive gene downregulation in this group. Among 

these 117 upregulated genes, 15 (BCL2, CARD11, CD247. CD7, CD81, 

CLSTN1, E2F6, MCM5, PARP1, PNPO, RASGRP1, RCC2, RPTOR, RUNX3 
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and ZAP70) had an AUROC to identify CTP2 higher than 0.95. Expression of 

these genes was synthesized into a transcriptomic score. As expected, the 

score was higher in CTP2 (Supplementary figure 7A), with an AUROC of 0.99 

(95% CI 0.97 – 1) (Supplementary figure 7B). In a Cox-regression analysis 

including this transcriptomic score, age, sex and need for mechanical 

ventilation, the score was correlated to ICU discharge (HR 1.002 [1.000 – 

1.003], p=0.012). Based on these results, a cut-off point of 250 in this score, 

aimed to include all CTP2 cases, was chosen.  

Then, this transcriptomic score was calculated in an external cohort of 50 

severe COVID-19 patients with publicly available blood gene expression in 

samples obtained at enrolment. After computing transcriptomic scores, 13 

patients were classified as CTP1 and 37 as CTP2. Comparisons between these 

clusters are shown in Table 2. In spite of no significant differences in age, sex, 

APACHE-II or SOFA scores, patients assigned to CTP2 showed more 

ventilator-free days at day 28 of ICU stay, and the percentage of patients with 

zero ventilator-free days at day 28 was lower in CTP2. Deconvolution of 

peripheral blood transcriptomes in this validation cohort recapitulated some of 

the differences observed in the discovery cohort, including higher neutrophil 

counts and lower proportions of CD8+ T-cells in CTP1 (Supplementary Figure 

8).  

 

Discussion 

Our results show that unsupervised clustering of critically ill COVID-19 patients, 

using transcriptomic profiles from peripheral blood obtained at ICU admission, 

results in two groups with a differential immune response and outcome. In spite 
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of no clinical differences at admission other than the absolute leukocyte count, 

the cluster of patients with an enriched interferon response shows lower ICU 

survival rates. Application of a cluster-specific score to an independent cohort 

confirmed this result. These findings suggest that there are specific COVID 

endotypes with different underlying immunopathogenesis and outcomes. 

Clustering strategies have been proposed to identify different subgroups of 

critically ill patients with respiratory failure, that may help to personalize 

treatments. Two different phenotypes have been identified in several cohorts 

using clinical and laboratory data 9,31. A hyperinflammatory/reactive phenotype, 

characterized by higher concentrations of markers of acute inflammation, such 

as IL-6, IL-8, C-reactive protein, and tissue hypoxia has been linked to higher 

mortality rates and could specifically benefit from fluid restriction, higher PEEP 

levels or protective ventilation 32, in contraposition to the uninflamed phenotype. 

Of note, causes of ARDS were different between the two clusters, with a higher 

incidence of sepsis in the inflammatory/reactive group. Opposed to a syndromic 

approach, clustering within a specific disease such as COVID-19 using routine 

clinical data has yielded conflicting results. Whereas direct translation of the 

inflammatory/reactive framework to a single-center cohort has identified 

equivalent groups 11, other multicenter studies failed to identify COVID-19 

subgroups at ICU admission 12. 

In this setting, transcriptomic clustering may offer several advantages by 

including a large number of features for classification, reduced intervention 

times and absence of imputed or not available data. Bulk peripheral blood 

RNAseq has been used to identify relevant pathogenetic mechanisms in 

COVID-19, by comparing cases with different severity or against healthy 
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controls33–35. Our approach selectively includes only severe cases and differs 

from these studies, revealing that critically-ill COVID-19 patients show two 

different transcriptomic profiles that include quantitative and qualitative 

differences in the regulation of the immune response to SARS-CoV-2 infection. 

Of note, these biological disparities occur despite no differences in clinical 

variables, suggesting that the identified clusters reflect endotypes with specific 

pathogenetic mechanisms and may outperform clinical diagnostic instruments. 

Survival in severe COVID-19 has been closely related to the host inflammatory 

response to viral infection. Genetic variants may result in different immune 

profiles with prognostic value. Polymorphisms in several chemokine receptors 

such as CCR1, CCR3, CCR9 or XCR1, or the interferon receptor (IFNAR2) 

have been linked to COVID-19 severity 36,37. Similarly, IFIH1 variants may result 

in an attenuated inflammation and a differential response to steroids 8. 

However, no genomic variants have been clearly linked to development of 

severe COVID-19 or death, and multiple variants may modify the immune 

response with diverging effects. This net result may be characterized using 

peripheral blood transcriptomes. Our unsupervised analysis of transcriptomic 

data (GSEA and cell deconvolution) revealed that patients with an interferon-

driven response and a CD4+ T- lymphocyte profile show a worse ICU outcome 

compared to a cluster of patients with predominant B-cell and Treg activation. 

Previous studies focused in CD4+ T-cells and interferon signatures have 

yielded similar results in severe COVID-19 patients with marked 

proinflammatory responses 38,39. Although an enhanced interferon-mediated 

response may be detrimental, it must be noted that loss-of-function variants of 

genes from the interferon pathway (such as IRF7 or IFNAR1) or autoantibodies 
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against interferons have been related to defective responses against SARS-

CoV-2 and increased risk of severe COVID-19 40,41 but not survival after ICU 

admission 42. Whereas T-cell activation is linked to interferon-dependent 

pathways, B-cell and regulatory T-cell activation seem to depend on 

upregulation of immune checkpoints, including BCL2 and members of the 

immunoglobulin and TNF superfamilies (IGHA1, IGHG1, CD27, LAG3 and 

TNFRSF18). Dysregulation of other immune checkpoints has been linked to 

mortality in COVID-19 patients 43. Collectively, these results highlight the need 

for a precise regulation of the inflammatory response after infection, avoiding 

not only hyper- or hypoinflammatory states, but also dysfunctional responses. 

Our results have several limitations. First, the sample size is reduced, so we 

cannot discard the existence of additional clusters with other underlying 

pathogenetic mechanisms, or that different clustering parameters or strategies 

may yield different results. However, unbiased p-values associated to the 

identified clusters were high, and the results confirmed in a validation cohort, 

thus suggesting a robust classification. Second, cell populations were estimated 

by deconvolution of the bulk transcriptome and should be confirmed using 

single cell RNA seq or flow cytometry. Finally, it is unclear if applied treatments 

can modify the expression of the genes used for clustering, although we did not 

observe differences in the prescribed treatments between groups. Moreover, it 

is unclear if therapeutic immunomodulation may impact this transcriptomic 

profile or, ultimately, outcomes.  

In summary, our results show that transcriptomic clustering using peripheral 

blood RNA at ICU admission allows the identification of two groups of critically-

ill COVID-19 with different immune profile and outcome. These findings could 
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be useful for risk stratification of these patients and help to identify specific 

profiles that could benefit from personalized treatments aimed to modulate the 

inflammatory response or its consequences.  
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Figure legends 

Figure 1. Patient clustering. A: Clustering strategy based on peripheral blood 

RNAseq, using the 5% genes with the highest variance among samples. B: 

Hierarchical clustering tree, showing the p-values (corresponding to the 

alternative hypothesis that the cluster does not exist) of the two main clusters. 

C: Uniform manifold approximation and projection (UMAP) showing a 

bidimensional representation of all the samples and clusters. TPM: Transcripts 

per million reads.  

Figure 2. Differentially expressed genes between COVID transcriptomic 

clusters (CTP). A: Volcano plot showing fold-change for each gene and their 

significance level. Genes with an adjusted p-value lower than 0.01 and an 

absolute log2 fold change above 2 are colored in orange. Differentially 

expressed genes included in interferon-dependent pathway are labelled. B: 

Enrichment of Gene Ontology categories related to Interferon signaling in 

COVID Transcriptomic Profile 2 (CTP2, n=14 compared to CTP1, n=42). C-E: 

Gene functional networks with differential expression between clusters, 

involving Interferon-dependent lymphoid activation (C), B-cell receptor signaling 

(D) and regulatory T-cell differentiation (E). 

Figure 3. Correlation between genes included in Interferon-dependent 

pathways. Correlograms (bottom) and gene networks (top) showing 

correlations with opposite sign between genes in each COVID transcriptomic 

cluster (CTP, n=42 and 14 for CTP1 and 2 respectively). Only Pearson 

correlation coefficients with a P-value lower than 0.05 are shown.  

Figure 4. Estimated circulating cell populations. A-D: Proportions of blood 

cells were estimated from RNA-seq using a deconvolution algorithm. E-H: 
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Lymphocyte subpopulations expressed as percentage of the absolute number 

of lymphocytes. Points represent individual patient data. In boxplots, bold line 

represents the median, lower and upper hinges correspond to the first and third 

quartiles (the 25th and 75th percentiles) and upper and lower whiskers extend 

from the hinge to the largest or smallest value no further than 1.5 times the 

interquartile range. P-values were calculated using a two-tailed Wilcoxon test. 

Figure 5. Regulation of gene expression by micro-RNAs. A: Micro-RNAs 

potentially regulating genes with increased differential expression were 

identified and a network built. B-H: Counts of hub micro-RNAs (defined as those 

regulating 3 or more differentially expressed genes) in serum. Points represent 

individual patient data. In boxplots, bold line represents the median, lower and 

upper hinges correspond to the first and third quartiles (the 25th and 75th 

percentiles) and upper and lower whiskers extend from the hinge to the largest 

or smallest value no further than 1.5 times the interquartile range. P-values 

were calculated using a two-tailed Wilcoxon test. 

Figure 6. Intensive Care Unit (ICU) stay. Cumulative incidence of the main 

outcome (ICU discharge alive and spontaneously breathing), modelled using a 

competing risk model (with death as a competitive risk) and adjusted by age, 

sex and need for mechanical ventilation during the ICU stay.  
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Table 1. Clinical differences between COVID transcriptomic profiles (CTP). 

BMI: Body mass index. COPD: Chronic Obstructive Pulmonary Disease. 

APACHE-II: Acute Physiology and Chronic Health disease Classification 

System II. PBW: Predicted body weight (according to height). PEEP: Positive 

end-expiratory pressure. IL-6: Interleukin-6. Data are expressed as median 

(interquartile range) or count (percentage). P-values were calculated using a 

Wilcoxon test (quantitative data) or Chi-square test (proportions). 

 CTP1 (n=42) CTP2 (n=14) p_value 
Sex 
 Male 
 Female 

 
36 (86%) 
6 (14%) 

 
9 (64%) 
5 (36%) 

0.174 

Age (years) 69 (63 - 75) 63.5 (59 - 69) 0.147 
BMI (Kg/m2) 29 (25 - 33) 29 (27 - 31) 0.781 
Race 
 Caucasian 
 Black 
 Latino 

 
38 (90%) 
2 (5%) 
2 (5%) 

 
14 (100%) 
0 
0 

0.582 

Chronic kidney disease 4 (10%) 0 0.549 
COPD 5 (12%) 1 (7%) 1 
Liver cirrhosis 1 (2%) 0 1 
Arterial hypertension 26 (62%) 6 (43%) 0.35 
Diabetes 9 (21%) 3 (21%) 1 
Dyslipemia 18 (43%) 6 (43%) 1 
Day 1 
APACHE-II score 18 (14 - 21) 16 (13 - 17) 0.120 
FiO2 0.5 (0.4 - 0.6) 0.45 (0.3 - 0.5) 0.438 
PaO2/FiO2 197 (157 - 245) 188 (151 - 278) 0.863 
PaCO2 (mmHg) 43 (39 - 47) 41 (39 - 42) 0.091 
Respiratory rate (/min) 18 (16 - 21) 18 (17 - 22) 0.859 
pH 7.37 (7.32 - 7.41) 7.42 (7.36 - 7.43) 0.099 
Lactate (mEq/L) 1.3 (1.08 - 1.8) 1.1 (0.9 - 1.2) 0.040 
Tidal volume (ml) 479 (455 - 504) 500 (475 - 514) 0.499 
Tidal volume / PBW (ml/Kg) 7.5 (6.9 - 8.3) 8 (7.5 - 8.7) 0.239 
Plateau pressure (cmH2O) 27 (24 - 29.75) 25 (22 - 29) 0.776 
PEEP (cmH2O) 14 (12 - 15) 12 (10 - 12) 0.088 
Driving pressure (cmH2O) 14 (11 - 15) 15 (12 - 15) 0.568 
Compliance (ml/cmH2O) 36 (31 - 43) 31 (29 - 44) 0.697 
Creatinin (mg/dl) 0.92 (0.68 - 1.23) 0.71 (0.59 - 0.97) 0.130 
Procalcitonin (ng/ml) 0.23 (0.14 – 0.6) 0.14 (0.13 – 0.27) 0.250 
IL-6 (pg/ml) 113 (54 - 276) 164 (36 – 250) 0.784 
Ferritin (ng/ml) 1329 (968 - 1606) 1673 (856 - 2182) 0.576 
Leukocytes (/μl) 9010 (6750 - 11825) 5440 (4418 - 6453) 0.002 
Lymphocytes (/μl) 645 (482.5 - 948) 730 (580 - 908) 0.705 
D-dimer (ng/ml) 1495 (842 - 3304) 1084 (750 - 2126) 0.501 
Days from hospital to ICU 
admission 

2 (0 – 3) 2 (1 – 4) 0.5 

Treatments during ICU stay 
Mechanical ventilation 38 (90%) 11 (79%) 0.484 
Prone ventilation 23 (61%) 8 (73%) 0.981 
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Neuromuscular blockade 23 (61%) 6 (55%) 0.643 
Extracorporeal membrane 
oxygenation 

1 (3%) 0 1 

Vasoactive drugs 
 None 
 One 
 Two or more 

 
17 (40%) 
25 (60%) 
0 

 
6 (43%) 
7 (50%) 
1 (7%) 

0.204 

Steroid therapy 19 (45%) 5 (36%) 0.755 
ICU evolution 
IL-6 at day 7 54 (11 - 171) 42 (16 - 130) 0.713 
Ferritin at day 7 1100 (698 - 1504) 1544 (805 - 1908) 0.745 
D-dimer at day 7 2068 (1249 - 4586) 1541 (988 - 3370) 0.422 
Ventilator-free days at day 
28 

12 (0 - 19) 19 (9 – 23) 0.050 
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Table 2. Clinical data and outcomes in the validation cohort. APACHE-II: Acute 

Physiology and Chronic Health disease Classification System II. SOFA: 

Sequential Organ Failure Assessment. VFD: Ventilator-free days. P-values 

were calculated using a Wilcoxon test (quantitative data) or Chi-square test 

(proportions). 

 CTP1 CTP2 p_value 
Age (years) 63 (55 - 73) 64 (55 - 72) 0.842 
Transcriptomic score 216 (197 - 228) 365 (311 - 470) <0.001 
APACHE-II score 23 (20 - 34) 21 (14 - 25) 0.097 
SOFA score 7 (6 - 13) 8 (6 - 10) 0.35 
VFDs at day 28 0 (0 - 20) 18 (2 - 28) 0.016 
Zero VFDs at day 28 8 (62%) 8 (22%) 0.014 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

100

200

300

400

500

H
ei

gh
t

p=0.96 p=0.96

−6

−3

0

3

−2 0 2 4
UMAP1

U
M

AP
2

A B C

56 RNA samples

16903 genes quanti�ed

1727 high variance genes

2 sample clusters

RNA sequencing
Salmon pseudoalignment

log2 transformed TPMs
Top 5% variable features

Euclidean distance matrix
Ward clustering algorithm

Cluster CTP1 CTP2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genes
4

8

12

16

−10

0

5
Fold change

Activated in CTP2 Supressed in CTP2

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

0.8
0

0.8
5

0.9
0

0.9
5

1.0
0

B cell proliferation

T cell activation involved in immune response

NK cell activation involved in immune response

Type I interferon signaling pathway

Response to type I interferon

Response to dsRNA

B cell receptor signaling pathway

Regulation of regulatory T cell differentiation

Regulatory T cell differentiation

Gene Ratio

1e−04

1e−03

1e−02

5e−02
Adjusted p

Count
3

6

9

12

15

LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3LAG3

TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18TNFRSF18

LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4LILRB4

regulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiationregulatory T cell differentiation

regulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiationregulation of regulatory T cell differentiation

IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA6IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2IFNA2

IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17IFNA17

IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10IFNA10

IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14IFNA14

IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13IFNA13

IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21IFNA21

IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4IFNA4

IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1IFNB1

IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8IFNA8

IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7IFNA7

IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16IFNA16

IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1IFNA1

HLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−CHLA−C IFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNEIFNE

CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9CARD9

IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1IFNL1

CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19CCL19

IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5IL5

response to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferonresponse to type I interferon

type I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathwaytype I interferon signaling pathway
response to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNAresponse to dsRNA

T cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune responseT cell activation involved in immune response

natural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune responsenatural killer cell activation involved in immune response

B cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferationB cell proliferation

BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2BCL2

IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1IGHA1

IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1IGHG1

GCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAMLGCSAML

LCKLCKLCKLCKLCKLCKLCKLCKLCKLCKLCKLCKLCKLCKLCKLCKLCK

B cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathwayB cell receptor signaling pathway

A B

C D

E

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


PO
LA

1
PT

PN
11

IR
F3

SH
M

T2
IF

N
A2

1
IF

N
W

1
C

H
25

H
R

N
F2

6
IF

N
A1

0
IF

N
A6

IF
N

A2
IF

N
A1

7
IF

N
E

IF
N

A1
4

IF
N

A1
IF

N
A1

3
SM

PD
1

IF
N

A4
U

BE
2K

D
H

X3
3

TT
LL

12
U

BE
2G

2
H

SP
90

AB
1

YT
H

D
F2

FA
D

D
TP

R
JA

K1
M

U
L1

PT
PN

1
C

YL
D

AD
AR

N
FK

B1
M

YD
88

POLA1
PTPN11

IRF3
SHMT2
IFNA21
IFNW1
CH25H
RNF26
IFNA10
IFNA6
IFNA2

IFNA17
IFNE

IFNA14
IFNA1

IFNA13
SMPD1

IFNA4
UBE2K
DHX33
TTLL12

UBE2G2
HSP90AB1

YTHDF2
FADD

TPR
JAK1

MUL1
PTPN1
CYLD
ADAR

NFKB1
MYD88

PO
LA

1
PT

PN
11

IR
F3

SH
M

T2
IF

N
A2

1
IF

N
W

1
C

H
25

H
R

N
F2

6
IF

N
A1

0
IF

N
A6

IF
N

A2
IF

N
A1

7
IF

N
E

IF
N

A1
4

IF
N

A1
IF

N
A1

3
SM

PD
1

IF
N

A4
U

BE
2K

D
H

X3
3

TT
LL

12
U

BE
2G

2
H

SP
90

AB
1

YT
H

D
F2

FA
D

D
TP

R
JA

K1
M

U
L1

PT
PN

1
C

YL
D

AD
AR

N
FK

B1
M

YD
88

POLA1
PTPN11

IRF3
SHMT2
IFNA21
IFNW1
CH25H
RNF26
IFNA10
IFNA6
IFNA2

IFNA17
IFNE

IFNA14
IFNA1

IFNA13
SMPD1

IFNA4
UBE2K
DHX33
TTLL12

UBE2G2
HSP90AB1

YTHDF2
FADD

TPR
JAK1

MUL1
PTPN1
CYLD
ADAR

NFKB1
MYD88

HSP90AB1
CYLD

IFNA21

IFNA10

YTHDF2

IFNA1

IFNE

IFNA13

IFNA14

IFNA4

IFNA2

CH25H

IFNW1

IFNA6

IFNA17

HSP90AB1
CYLD

IFNA21

IFNA10

YTHDF2

IFNA1

IFNE

IFNA13

IFNA14

IFNA4

IFNA2

CH25H

IFNW1

IFNA6

IFNA17

MUL1

DHX33

JAK1

IRF3

TTLL12

POLA1

SHMT2

TPR

NFKB1

UBE2K ADAR

MYD88

PTPN1

RNF26

UBE2G2

SMPD1

FADD

PTPN11

SMPD1

FADD

PTPN11

MUL1

DHX33

JAK1

IRF3

TTLL12

POLA1

SHMT2

TPR

NFKB1

UBE2K ADAR

MYD88

PTPN1

RNF26

UBE2G2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Correlation coefficient

CTP1 CTP2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.05

0.10

0.15

CTP1
CTP2

Memory B−cell

0.0

0.2

0.4

CTP1
CTP2

Naive B−cell

0.05

0.10

0.15

0.20

CTP1
CTP2

CD8+

0.5

0.6

0.7

0.8

0.9

CTP1
CTP2

CD4+

0.05

0.10

0.15

0.20

CTP1
CTP2

Natural killer

0.1

0.2

0.3

0.4

0.5

0.6

CTP1
CTP2

Lymphocytes

0.1

0.2

0.3

0.4

0.5

CTP1
CTP2

Monocytes

0.0

0.2

0.4

CTP1
CTP2

Granulocytes

p<0.001 p=0.543 p<0.001
p=0.889

p=0.047p<0.001 p=0.015 p=0.110

B C DA

F G HE

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


Decreased
Increased

Predicted activation
Predicted inhibition

Experimental data

Predictions

hsa−miR−34a−5p

hsa−miR−199a−5p hsa−miR−21−5p hsa−miR−30c−5p

hsa−miR−139−5p hsa−miR−145−5p hsa−miR−181a−5p

CT
P1

CT
P2

CT
P1

CT
P2

CT
P1

CT
P2

CT
P1

CT
P2

CT
P1

CT
P2

CT
P1

CT
P2

CT
P1

CT
P2

20000

30000

50000

300

500

1000

10

100

1000

1e+04

3e+04

1e+05

3000

5000

10000

30

100

300

1000

500

1000

3000

5000

N
or

m
al

iz
ed

 c
ou

nt
s

N
or

m
al

iz
ed

 c
ou

nt
s

N
or

m
al

iz
ed

 c
ou

nt
s

p=0.026p=0.036p=0.681

p=0.944 p=0.105

p=0.600

p=0.810

A B C D

H

E F G

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/


0%

25%

50%

75%

0 50 100 150
Time (days)

IC
U

 d
is

ch
ar

ge

Cluster
CTP1
CTP2

0
42
14

50
6
0

100
1
0

150
1
0

25
15
3

75
4
0

125
1
0

Time ►
CTP1
CTP2N. at risk

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271576doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271576
http://creativecommons.org/licenses/by-nc-nd/4.0/

