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Abstract  

 
Objective 

To develop a vocal biomarker for fatigue monitoring in people with COVID-19. 

Design Prospective cohort study. 

Setting Predi-COVID data between May 2020 and May 2021. 

Participants 

A total of 1772 voice recordings was used to train an AI-based algorithm to predict 

fatigue, stratified by gender and smartphone’s operating system (Android/iOS). The 

recordings were collected from 296 participants tracked for two weeks following 

SARS-CoV-2 infection. 

primary and secondary outcome measures  

Four machine learning algorithms (Logistic regression, k-nearest neighbors, support 

vector machine, and soft voting classifier) were used to train and derive the fatigue 

vocal biomarker. A t-test was used to evaluate the distribution of the vocal biomarker 

between the two classes (Fatigue and No fatigue). 
Results 

The final study population included 56% of women and had a mean (±SD) age of 40 

(±13) years. Women were more likely to report fatigue (P<.001). We developed four 

models for Android female, Android male, iOS female, and iOS male users with a 

weighted AUC of 79%, 85%, 86%, 82%, and a mean Brier Score of 0.15, 0.12, 0.17, 

0.12, respectively. The vocal biomarker derived from the prediction models 

successfully discriminated COVID-19 participants with and without fatigue (t-test 

P<.001). 

Conclusions 

This study demonstrates the feasibility of identifying and remotely monitoring fatigue 

thanks to voice. Vocal biomarkers, digitally integrated into telemedicine technologies, 

are expected to improve the monitoring of people with COVID-19 or Long-COVID. 

 
 

ClinicalTrials.gov Identifier: NCT04380987 
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Introduction 

Coronavirus disease 2019 (COVID-19) is a global outbreak. More than 199 million 

confirmed cases of COVID-19 have been detected worldwide as of 4 August 2021, 

with more than 4 million deaths reported by the World Health Organization1. The 

worldwide population and healthcare systems have been greatly impacted by the 

COVID-19 pandemic. The pandemic has essentially put whole healthcare systems 

under pressure, requiring national or regional lockdowns2. Finding solutions that 

allow healthcare providers to focus on the more important and urgent patients, was, 

and still is, critical.  

 

This outbreak continues to impact people, with many patients suffering from a range 

of acute symptoms, such as fatigue. Fatigue is a common symptom in patients with 

COVID-19 that can impact their quality of life, treatment adherence, and can be 

associated with numerous complications3. Recent findings showed that fatigue is a 

major symptom of the frequently reported Long-COVID syndrome. After recovering 

from the acute disease caused by the SARS outbreak, up to 60% of patients 

reported chronic fatigue 12 months later4. This supports the need for long-term 

monitoring solutions for these patients. 

 

In general, fatigue can be of two types: physical and mental5 experiencing lack of 

energy, inability to start and perform everyday activities, and lack of desire to do 

things. In the context of COVID-19, determinants of fatigue were categorized as both 

central and psychological factors, the latest might also be indirectly caused by 

pandemic-related fear and anxiety6,7. 

Fatigue affects men and women differently and has previously been shown to be 

reported differently in the two genders. Men and women have different anatomy and 

physiology, resulting in significant sex differences in fatigability8.  

  

Telemedicine, artificial intelligence (AI), and big data predictive analytics are 

examples of digital health technologies that have the potential to minimize the 

damaging effects of COVID-19 by improving responses to public health problems at 

a population level9.  
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Using telemonitoring technologies to enable self-surveillance and remote monitoring 

of symptoms might therefore help to improve and personalize COVID-19 care 

delivery10. 

 

Voice is a promising source of digital data since it is rich, user-friendly, inexpensive 

to collect, and non-invasive, and can be used to develop vocal biomarkers that 

characterize disease states. Previous research was mostly conducted in the field of 

neurodegenerative diseases, such as Parkinson’s disease11 and Alzheimer's 

disease12. There are also studies that confirm the relation of voice disorders to 

fatigue, e.g., in Chronic Fatigue Syndrome (CFS). Neuromuscular, 

neuropsychological and hormonal dysfunction associated with CFS can influence the 

phonation and articulation, and alter tension, viscosity and thickness of the tissue of 

the larynx, tongue and lips, leading to decreased voice quality13. Increased fatigue 

affects voice characteristics, such as pitch, word duration14 and timing of articulated 

sounds15. Vocal changes related to fatigue are more observed in consonant sounds 

that require a high average airflow16.  

 

In the context of the COVID-19 pandemic, respiratory sounds (e.g coughs, breathing, 

and voice) are also used as sources of information to develop COVID-19 screening 

tools17,18,19. However, no previous work has been devoted to investigating the 

association of voice with COVID-19 symptoms.  

We hypothesized that there is an association between fatigue and voice in patients 

with COVID-19 and that it is possible to train an AI-based model to identify fatigue 

and subsequently generate a digital vocal biomarker for fatigue monitoring. We used 

data from the large hybrid prospective Predi-COVID cohort study to investigate this 

hypothesis. 

 

Methods 

Study design  

This project uses data from the Predi-COVID study20. Predi-COVID is a hybrid cohort 

study that started in May 2020 in Luxembourg and involved participants who should 

meet all of the following requirements: (1) a signed informed consent form; (2) 

participants with confirmed SARS-CoV-2 infection as determined by PCR at one of 

Luxembourg’s certified laboratories; and (3) 18 years and older.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.01.22271496doi: medRxiv preprint 

https://doi.org/10.1101/2022.03.01.22271496
http://creativecommons.org/licenses/by-nd/4.0/


6 

 

This study combines data from the national surveillance system, which is used for 

virtually all COVID-19 positive patients. Biological sampling, electronic patient-

reported outcomes, and smartphone voice recording were collected to identify vocal 

biomarkers of respiratory syndromes and fatigue in this study. More details about the 

Predi-COVID study can be found elsewhere20. 

 

The National Research Ethics Committee of Luxembourg (study number 202003/07) 

gave a favorable opinion to the study in April 2020.  Health Inspection collaborators 

made the initial phone contact with potential participants. Those who consented to 

participate were contacted by a qualified nurse from the Clinical and Epidemiological 

Investigation Center (CIEC - Luxembourg Institute of Health), who outlined the study 

and arranged home or hospital visits.  

 

Data collection  

Participants were followed for up to a year using a smartphone app to collect voice 

data. To ensure a minimum quality level, participants were asked to record it in a 

quiet environment while maintaining a certain distance from the microphone, and an 

audio example of what was required was also provided.  

 

All the participants of this study were invited to record two audio types. The first, 

Type 1 audio, required participants to read paragraph 1 of article 25 of the 

Declaration of Human Rights21, in their preferred language: French, German, 

English, or Portuguese; and the second, Type 2 audio, required them to hold the [a] 

vowel phonation without breathing for as long as they could (see Supplementary 

Online Material 1 for more details). 

 

Predi-COVID collects data in conformity with the German Society of Epidemiology's 

best practices guidelines22. To draft the manuscript, we followed the TRIPOD criteria 

for reporting AI-based model development and validation, as well as the 

corresponding checklist. 
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All Predi-COVID participants recruited between May 2020 and May 2021 who 

reported their fatigue status (“I feel well” as “No Fatigue” and “I am fatigued”/“I don’t 

feel well” as “Fatigue”) on the same day as the audio recordings during the 14 days 

of follow-up were included in this study23. As a result, several audio recordings for a 

single participant were available for both audio types24. 

Audio characteristics and vocal biomarker training 

The audio recordings were collected in two formats, 3gp format (Android devices) 

and m4a format (iOS devices). Based on the smartphone’s operating system and the 

user's gender (male/female), we trained one model for each category. This 

stratification was performed to minimize data heterogeneity and deal with sex as a 

potential confounding bias. 

 

Audio pre-processing  

All of the raw audio recordings were pre-processed (Figure 1). They were initially 

converted to .wav files, with audios lasting less than 2 seconds being excluded. 

Then, an audio clustering (DBSCAN) on basic features was performed (duration, the 

average, sum, and standard deviation of signal power, and fundamental frequency) 

to detect the outliers and exclude poor quality audios. Finally, peak normalization 

was used to boost the volume of quiet audio segments, and leading and trailing 

silences longer than 350 seconds were trimmed. 

 

Feature extraction 

We used transfer learning for the feature extraction process since it is adapted for 

small training databases25. Transfer learning is a technique where a model is 

constructed and trained with a set containing a large amount of data and then 

transfer and apply this learning to our dataset on top of it. It has the advantage of 

reducing the amount of data required while shortening training time and improving 

performance when compared to models built from scratch26. 

  

Convolutional neural networks require a fixed input size, whereas audio instances in 

our dataset were of variable length. To deal with this issue, Zero-padding was used 

to set the duration of each audio file to 50 seconds (the maximum length in our 
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database). To raise the amount of information fed to the classifiers, type 1 and type 2 

audios were concatenated and used as a single input to the learning models. 

 

All the audio recordings were first resampled to 8kHz and then converted to Mel-

spectrograms using the Librosa library in Python. The hop-length was 2048 samples, 

and the number of Mel coefficients was set to 196. The Mel spectrograms were 

passed through VGG19 convolutional neural network architecture provided by Keras, 

which was pre-trained on the ImageNet database27. This approach, presented in 

Figure 2, may be considered as a feature extraction step, as it converts audio 

recordings to 512 feature maps, each of a size 6x6, leading to a total of 18432 

features.  

 

This large number of features is computationally expensive. Principal Component 

Analysis (PCA)28 is therefore used for dimensionality reduction and to select the 

number of relevant components explaining the maximum of the variance in the data. 

 

Statistical analysis 

We divided our data into “Fatigue” and “No Fatigue” groups based on the 

participant’s reported answers for the inclusion and daily fatigue assessment of 

Predi-COVID. To characterize participants, descriptive statistics were used, which 

included means, standard deviations for quantitative variables, and counts and 

percentages for qualitative variables. The two population groups (3gp (Android 

users) and m4a (iOS users)) were compared using a student test for continuous 

variables, and a χ2 test for categorical variables.  

 

A 10-fold cross-validation procedure was conducted on the training cohort 

participants to evaluate four classification models (logistic regression (LR), k-nearest 

neighbors (KNN), support vector machine (SVM), and soft voting classifier (VC), 

scikit-learn implementation in Python) at different regularization levels via a grid 

search, with the following evaluation metrics: area under the ROC curve (AUC), 

accuracy, F1-score, precision, and recall. The Brier score was also used to evaluate 

the calibration of the selected models. 
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The predicted probability of being classified as fatigued from the best model was 

considered as our final vocal biomarker, which may be used as a quantitative metric 

to monitor fatigue.  

We evaluated the vocal biomarker’s distribution in both classes (Fatigue and No 

Fatigue) and performed a t-test between the two groups.  

 

Results 

Study population characteristics  

The final study population is composed of 296 participants of whom 165 were 

women (56%), with an average age of 40 years (SD = 13). To record both audio 

types,109 (37%) participants utilized Android smartphones (3gp format), whereas 

187 (63%) used iOS devices (m4a format). We found no difference in the distribution 

of age, gender, body mass index, smoking, antibiotic usage, and asthma, between 

the two types of devices (P-value>.05). The overall rate of comorbidities in this study 

was relatively low: there were 31 (10%) participants who used antibiotics and only 12 

(4%) participants with asthma. More details are shown in Table 1.  

 

Participants reported their fatigue status on average 6 days during the first 14 days 

of follow-up, resulting in the analysis of 1772 audio recordings for each audio type 

(type 1 and type 2) when all inclusion criteria were met, including 550 audio 

recordings for participants with fatigue. In both audio sets, women reported 

experiencing fatigue at a higher rate than men (P-value<.001). Women constituted 

155 (60%) of all fatigued Android users and 190 (67%) of all fatigued iOS users. 

 

Prediction models 

We reduced the extracted features from Mel-spectrograms to 250 top components 

with PCA, explaining 97% and 99% of the variance in the data for iOS and Android 

audio sets respectively. We then compared the performances of the machine 

learning algorithms to select the best models for the derivation of the vocal 

biomarkers. 

 

The voting classifier was the best model selected for the development of the vocal 

biomarker for male iOS users, with an AUC of 82% and overall accuracy, precision, 

recall, and f1-score of 84%. The model selected for female iOS users was SVM with 
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an overall precision of 80% and an AUC of 86%. For male Android users, the 

selected model is the voting classifier with a precision and recall of 89%, a f1-score 

of 88%, and a weighted AUC of 85%. For female Android users, the SVM was 

selected with an overall precision of 79% and an AUC of 79%. More details are 

shown in Table 2. The calibrations of the selected models were good (Mean Brier 

Scores = 0.15, 0.12, 0.17, and 0.12 respectively for Android female users, Android 

male users, iOS female users, and iOS male users). 

 

Derivation of the digital fatigue vocal biomarker 

Based on the model selected for each audio set, we derived the trained vocal 

biomarkers which quantitatively represent the probability of being labeled as 

fatigued. As shown in Figure 3, we found a significant difference in the distributions 

of vocal biomarkers between the fatigue and no fatigue classes in our testing dataset 

(t-test P<.001). 

 

Discussion 

In this study, we built an AI-based pipeline to develop a vocal biomarker for both 

genders and both types of smartphones (male/female, Android/iOS) that effectively 

recognize fatigued and non-fatigued participants with COVID-19.  

 

We stratified the data to prevent data heterogeneity, which is considered 

contamination and makes it difficult to build a reliable and consistent classification 

model(s), resulting in poorer prediction performance. This contamination is caused 

by two factors: first, significant gender differences in fatigability, since it has 

previously been shown that men and women experience and report fatigue 

differently, and second, different microphone types incorporated in both smartphone 

devices used by the participants (iOS and Android), which have a direct impact on 

the quality of the recorded audios (machine learning algorithms separate the audio 

formats rather than the fatigue status if there is no constant microphone. (see 

Supplementary Online Material 2 for more details). 

 

With the increased interest in remote voice analysis as a noninvasive and powerful 

telemedicine tool, various studies have been carried out, mostly in neurological 

disorders (eg, Parkinson’s disease11 and Alzheimer’s disease29) and mental health 
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(eg. stress and depression30). Recently, a significant research effort has evolved to 

employ respiratory sounds for COVID-19 and the main focus was on the use of 

cough17,31 and breathing32 to develop a COVID-19 screening tool. However, no 

previous work has been devoted to investigating the association of voice with 

COVID-19 symptoms, precisely fatigue. 

 

Fatigue is one of the commonly reported symptoms of COVID-19 and Long-COVID 

syndrome33, which can persist regardless of how severe COVID-19's acute stage 

is34.  

A variety of cerebral, peripheral, and psychosocial factors35,7 play a role in the 

development of fatigue. It may also occur from chronic inflammation in the brain and 

at neuromuscular junctions. New evidence shows that patients with Long-COVID 

syndrome continue to have higher measures of blood clotting, thrombosis36, which 

may also explain the persistence of fatigue. COVID-19 is associated with variations 

in airway resistance37. This narrowing of the airway is manifested in the increase in 

audible turbulence in both sighing and yawning, which is frequently associated with 

fatigue38. 

 

Human voice is produced by the flow of air from the lungs through the larynx, which 

causes the vocal fold vibrations, generating a pulsating air stream39. The process is 

controlled by the laryngeal muscle activation40 but involves the entire respiratory 

system to provide the air pressure necessary for phonation. Decreased pulmonary 

function in COVID-19 patients can cause reduced glottal airflow that is essential for 

normal voice production41. Furthermore, in case of increased fatigue, the voice 

production process may be additionally disturbed due to reduced laryngeal muscle 

tension, resulting in dysphonia that appears in up to 49% of COVID-19 patients41.  

 

Study Limitations 

This study has several limitations. First, although our data was stratified based on 

gender and smartphone devices, the mix of languages might also result in different 

voice features subsequently, in different model performances. There is presently no 

comparable dataset with similar audio recordings for further external validation of our 

findings. Thus, more data should be collected to improve the transferability of our 

vocal biomarker to other populations. Second, our data labeling was only based on a 
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qualitative self-reported fatigue status. A fatigue severity scale would allow a 

quantitative assessment of fatigue severity in a uniform and unbiased way 

throughout all participants. Finally, time series voice analysis for each participant 

was not included in the study. More investigation, including time series analysis, 

would establish a personalized baseline for each participant, potentially enhancing 

the performance of our vocal biomarkers. 

 

Conclusion 

In this study, we demonstrated the association between fatigue and voice in people 

with COVID-19 and developed a fatigue vocal biomarker that can accurately predict 

the presence of fatigue. These findings suggest that vocal biomarkers, digitally 

incorporated into telemonitoring technologies, might be used to identify and remotely 

monitor this symptom in patients suffering from COVID-19 as well as other chronic 

diseases. 
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Table 1: Study population characteristics  

Table 2: Results of the prediction models 

Figure 1. General Pipeline 

Figure 2. VGG19 Feature Extraction 

Figure 3a. Derivation of the digital fatigue vocal biomarker for Android users 

Figure 3b. Derivation of the digital fatigue vocal biomarker for iOS users 

SOM 1. Text to read 

SOM 2. VGG19 extracted features from participants' audio recordings 
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Tables 

Table 1: Study population characteristics  

The clinical data in the table above describe the overall population of the study. The 

total number and its percentage are used to represent all categorical data. The table 

below summarizes general information for describing audio data. 

All p-values comparing iOS (m4a) and Andoid users (3gp) were calculated using 

chi2 and Student's t-tests. 

 
All 

m4a 3gp P-values 

(m4a, 3gp) Female Male Female Male 

Participants 

(N) 
Total 296 107 80 51 58 - 

Age (years) mean (SD) 40.3 (12.6) 38.8 (13.4) 42.9 (12.7) 37.8 (11.6) 41.5 (11.3) 0.28 

Body Mass 

Index (kg/m²) 
mean (SD) 24.1 (4.7) 24.6 (5.5) 26.5 (4.1) 24.1 (3.8) 26.6 (4.17) 0.95 

Antibiotic (%) 
No 265 (90%) 93 (87%) 73 (91%) 44 (86%) 55 (95%) 

0.87 
Yes 31 (10%) 14 (13%) 7 (9%) 7 (14%) 3 (5%) 

Asthma (%) 
No 284 (96%) 104 (97%) 75 (94%) 47 (92%) 58 (100%) 

0.82 
Yes 12 (4%) 3 (3%) 5 (6%) 4 (8%) 0 (0%) 

Smoking (%) 

Never 199 (67%) 77 (72%) 51 (64%) 36 (71%) 35 (60%) 

0.41 Former smoker 53 (18%) 19 (18%) 20 (25%) 9 (18%) 13 (22%) 

Current smoker 44 (15%) 11 (10%) 9 (11%) 6 (11%) 10 (18%) 

 

Audio 

recordings 

Total 1772 584 499 345 344 

<0.001 No Fatigue 1222 (69%) 394 (67%) 370 (74%) 190 (55%) 268 (78%) 

Fatigue 550 (31%) 190 (33%) 129 (26%) 155 (45%) 76 (22%) 

Mean (SD) and 

maximum of 

audio 

recording per 

participant in 

the 14-day 

mean (SD) 6 (5) 6 (5) 6 (5) 6 (5) 6 (5) 

- 
max 16 14 16 15 14 
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follow-up 

period 
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KNN: K-Nearest Neighbors, LR: Logistic Regression, Ov. : Overall, SVM: Support Vector Machine, VC: Voting Classifier 

Table 2: Results of the prediction models 

The selected models were selected using Recall_1 and weighted AUC and are highlighted in bold. 

Class 0: No fatigue 

Class 1: Fatigue 

Audio_format Gender ML model Accuracy Ov.Precision Precision_0 Precision_1 
Ov.Recal

l 
Recall_0 Recall_1 Ov.f1score f1-score_0 f1-score_1 

Weighted 

AUC 

3gp (Android) 

Female 

LR 0.77 0.77 0.81 0.73 0.77 0.76 0.77 0.77 0.78 0.75 0.85 

KNN 0.72 0.73 0.70 0.77 0.72 0.87 0.55 0.72 0.78 0.64 0.76 

SVM 0.80 0.80 0.80 0.79 0.80 0.84 0.74 0.80 0.82 0.77 0.86 

VC 0.78 0.78 0.81 0.75 0.78 0.79 0.77 0.78 0.80 0.76 0.86 

Male 

LR 0.78 0.79 0.87 0.50 0.78 0.85 0.53 0.79 0.86 0.52 0.81 

KNN 0.83 0.83 0.83 0.80 0.83 0.98 0.27 0.79 0.90 0.40 0.84 

SVM 0.84 0.83 0.88 0.67 0.84 0.93 0.53 0.83 0.90 0.59 0.82 

VC 0.84 0.84 0.89 0.64 0.84 0.91 0.60 0.84 0.90 0.62 0.82 

m4a (iOS) Female 

LR 0.72 0.72 0.80 0.56 0.72 0.77 0.61 0.72 0.79 0.58 0.75 

KNN 0.68 0.65 0.72 0.50 0.68 0.86 0.29 0.65 0.78 0.37 0.67 

SVM 0.79 0.79 0.81 0.75 0.79 0.91 0.55 0.79 0.86 0.64 0.79 
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VC 0.77 0.76 0.80 0.69 0.77 0.89 0.53 0.76 0.84 0.60 0.78 

Male 

LR 0.73 0.74 0.83 0.48 0.73 0.80 0.54 0.73 0.81 0.51 0.80 

KNN 0.89 0.89 0.89 0.89 0.89 0.97 0.65 0.88 0.93 0.76 0.81 

SVM 0.85 0.84 0.86 0.76 0.85 0.95 0.58 0.84 0.90 0.67 0.85 

VC 0.89 0.89 0.89 0.89 0.89 0.97 0.65 0.88 0.93 0.76 0.85 
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