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Abstract 

 

Background: Undiagnosed chronic kidney disease (CKD) is a common and usually 

asymptomatic disorder that causes a high burden of morbidity and early mortality worldwide. We 

developed a deep learning model for CKD screening from routinely acquired ECGs. 

Methods: We collected data from a primary cohort with 111,370 patients which had 247,655 

ECGs between 2005 and 2019. Using this data, we developed, trained, validated, and tested a 

deep learning model to predict whether an ECG was taken within one year of the patient 

receiving a CKD diagnosis. The model was additionally validated using an external cohort from 

another healthcare system which had 312,145 patients with 896,620 ECGs from between 2005 

and 2018. 

Results: Using 12-lead ECG waveforms, our deep learning algorithm achieved discrimination 

for CKD of any stage with an AUC of 0.77 (95% CI 0.76-0.77) in a held-out test set and an AUC 

of 0.71 (0.71-0.71) in the external cohort. Our 12-lead ECG-based model performance was 

consistent across the severity of CKD, with an AUC of 0.75 (0.0.74-0.77) for mild CKD, AUC of 

0.76 (0.75-0.77) for moderate-severe CKD, and an AUC of 0.78 (0.77-0.79) for ESRD. In our 

internal health system with 1-lead ECG waveform data, our model achieved an AUC of 0.74 

(0.74-0.75) in detecting any stage CKD. In the external cohort, our 1-lead ECG-based model 

achieved an AUC of 0.70 (0.70-0.70). In patients under 60 years old, our model achieved high 

performance in detecting any stage CKD with both 12-lead (AUC 0.84 [0.84-0.85]) and 1-lead 

ECG waveform (0.82 [0.81-0.83]). 

Conclusions: Our deep learning algorithm was able to detect CKD using ECG waveforms, with 

particularly strong performance in younger patients and patients with more severe stages of 

CKD. Given the high global burden of undiagnosed CKD, further studies are warranted to 

evaluate the clinical utility of ECG-based CKD screening.   
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Introduction 

 
Almost 700 million individuals globally have chronic kidney disease (CKD), an important but 

often unrecognized cause of morbidity and early mortality (1). The initial presentation of CKD is 

usually asymptomatic and without overt clinical manifestations especially in early stages of the 

disease. Recently, the Global Burden of Diseases, Injuries and Risk Factors Study 

(GBD) estimated that CKD accounts for 4.6% of total mortality worldwide, with a 41.5% increase 

between 1990-2017(1). Delayed diagnosis and limited patient recognition of the condition 

contributes significantly to the burden of morbidity(2, 3). Early detection can potentially change 

the disease trajectory. The most common causes of CKD, such as hypertension and diabetes, 

can be reversible or treatable, and early diagnosis is crucial for avoiding renal replacement 

therapy(4, 5). There are few methods to cheaply or non-invasively screen for CKD, with 

conventional risk calculators lacking specificity and requiring both serum and urine laboratory 

testing(6). 

Electrocardiograms (ECGs) are inexpensive, non-invasive, widely available, and rapid 

diagnostic tests frequently obtained during routine visits, prior to exercise, during preoperative 

evaluation, and for patients at increased risk of cardiovascular disease. Deep learning 

algorithms (DLA) have recently been applied to medical imaging and clinical data to achieve 

high precision, and to identify additional information beyond the interpretation of human 

experts(7, 8). Deep learning analysis of ECG waveforms has had potentially promising 

performance in prognosticating outcomes(9), identifying subclinical disease(10, 11), and 

identifying systemic phenotypes not traditionally associated with ECGs(12, 13). Given the prior 

success in identifying occult arrhythmias(14, 15), ventricular dysfunction(10), anemia(13), and 

age(12), DLA applied to screening ECGs could potentially identify patients who would benefit 

from further evaluation for kidney disease. 

The high prevalence of concomitant cardiovascular disease and the well established changes 

that accompany electrolyte abnormalities suggest that the ECG is also altered in the setting of 

CKD and that discrete electrocardiographic signatures could be identifiable with deep learning 

techniques. Patients with CKD have a disproportionate accumulation of CV risk factors, such as 

diabetes and hypertension, as well as subclinical cardiovascular changes such as left 

ventricular hypertrophy, myocardial fibrosis, and diastolic dysfunction(16). It is not fully clear at 

which stage CKD patients start to develop manifest cardiovascular changes. However, recent 
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studies have reported that patients with early-stage CKD may already have an increase in 

diffuse myocardial fibrosis on cardiac MRI(17). In addition to myocardial remodeling, CKD 

associates with a variety of electrolyte abnormalities that also cause widespread ECG 

abnormalities (e.g., decreased T-wave amplitudes in hypokalemia, large-amplitude T-waves, 

and prolonged QRS duration in hyperkalemia, and QTc prolongation in hypocalcemia)(18). 

Given such observations, it may be possible that asymptomatic CKD presents with subtle ECG 

alterations that are not visible to the human eye.  

To overcome current limitations in screening for occult CKD, we designed, trained, and 

validated a deep learning model to predict CKD, including end-stage renal disease (ESRD), by 

analysis of waveform signals from a single 12-lead and 1-lead ECG. Incorporating both 

structured information from medical diagnoses as well as laboratory data, we assessed the 

ability of our model to evaluate the entire spectrum of kidney disease. To further evaluate our 

model, we validated its performance using corresponding data from a separate healthcare 

system.  
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Methods 

Data sources and study population 

We retrospectively identified 54,582 ECGs among 7,947 patients between 2005-2019 which 

were linked to a diagnosis of CKD within a 1-year window at Cedars-Sinai Medical Center. We 

also identified 193,073 ECGs among 103,814 patients between 2008-2019 with no CKD 

diagnoses at any point, which were used as matched negative controls. The study population 

from CSMC was randomly split 8:1:1 into training, validation, and test cohorts by patient such 

that the multiple ECGs from the same patient were limited to one cohort. In addition, we 

identified 896,620 ECGs among 312,145 patients at Stanford Healthcare from 8/2005 to 6/2018, 

which were used for external validation (Figure 1).  

The ECG waveform data were acquired at a sampling rate of 500 Hz and extracted as 10 

second, 12x5000 matrices of amplitude values. ECGs with missing leads were excluded from 

the study cohort. Associated clinical data for each patient was obtained from the electronic 

health record (EHR). Disease diagnoses were identified by International Classification of 

Diseases (ICD) 9th edition codes and demographic and clinical characteristics (e.g., age, 

gender, BMI, cardiovascular disease) were also extracted from the electronic health records 

(Table 1). The institutional review boards of Cedars-Sinai Medical Center and Stanford 

Healthcare approved the study protocol.   

AI Model Design and Training 

We designed a novel convolutional neural network, for ECG interpretation with potential for 

clinical data integration to predict the primary outcomes of chronic kidney disease and end-

stage renal disease (Figure 2). The model was trained to predict outcomes with the input of one 

12-lead ECG obtained within 1 year of diagnosis. If the same patient had multiple ECGs, each 

was considered an independent case. Models were trained using the PyTorch deep learning 

framework. The model was initialized with random weights and trained using a binary cross-

entropy loss function for up to 100 epochs with an ADAM optimizer and an initial learning rate of 

1e-4. Early stopping was performed based on the validation dataset’s area under the receiver 

operating curve. Local Interpretable Model-agnostic Explanations (LIME)(15, 19) was used with 
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1000 samples per study to identify relevant features in the ECG waveform by iteratively 

randomly perturbing 0.5% of the waveform and identifying which changes most impacted model 

performance. 

Statistical Analysis 

All analyses were performed on the held-out test dataset, which was never seen during model 

training. The performance of the model in predicting the primary outcomes was mathematically 

assessed by the area under the curve (AUC) of the receiver operating characteristic (ROC) 

curve. After model derivation and training, primary and secondary analyses were performed on 

trained models using the held-out test cohort. Secondary sensitivity analyses were limited to 

procedures performed in patients with diabetes, hypertension, male, and age greater or lower 

than 60 years old. We computed two-sided 95% confidence intervals using 1,000 bootstrapped 

samples for each calculation. Statistical analysis was performed in R and Python. 

 

 

Results 

 

Primary cohort characteristics 

 

Our primary cohort consisted of a total of 247,655 ECGs, of which 221,974 were randomized to 

the training set (for both training and validation) and 25,681 to the testing set. The number of 

patients in the training set was 100,233 of which 0.8% had mild CKD, 3.5% had moderate-

severe CKD, and 2.7% had ESRD. The testing set included 11,137 patients of which 0.7% had 

mild CKD, 3.6% had moderate-severe CKD, and 2.8% had ESRD. The mean age of the primary 

cohort was 61.3 ±19.7 years and 48% were female. The proportion of Caucasians was 60.4%, 

whereas 13.8% were black, 5.5% were Asians, and 20.3% had other or unknown race. 

Demographic and clinical characteristics are presented in Table 2. 

 

Model performance in the primary cohort 

 

Our 12-lead ECG-based model achieved discrimination of any stage CKD with an AUC of 0.767 

(95% CI 0.76-0.773). The model performance was consistent across the range of CKD stage, 

with our model achieving an AUC of 0.753 (0.735-0.770) in discriminating mild CKD, AUC of 

0.759 (0.750-0.767) in discriminating moderate-severe CKD, and AUC of 0.783 (0.730-0.752) in 
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discriminating ESRD. In all cases, negative examples were defined as ECGs without CKD 

diagnoses. Sensitivity and specificity at detecting any stage CKD were 0.699 (0.699-0.699) and 

0.698 (0.698-0.698), respectively.  

 

Given the increased prevalence of wearable technologies, particularly devices that include 

single lead ECG information, we trained an additional deep learning model with information from 

only single lead ECG information to simulate the DLA’s performance with single-lead wearable 

information. With 1-lead ECG waveform data, DLA achieved an AUC of 0.744 (0.737-0.751) in 

detecting any stage CKD, with sensitivity and specificity of 0.723 (0.723-0.723) and 0.643 

(0.643-0.643), respectively. In addition, 1-lead ECG-based DLA achieved an AUC of 0.746 

(0.728-0.764) in detecting mild CKD, AUC of 0.735 (0.726-0.744) in detecting moderate-severe 

CKD, and AUC of 0.757 (0.748-0.767) in detecting ESRD.  

 

Since early detection of CKD is crucial to prevent disease progression and complications in 

older age, we tested the performance of our model in younger patients (<60 years of age). 12-

lead and 1-lead ECG-based DLAs were able to detect any stage CKD with AUCs of 0.843 

(0.834-0.852) and 0.824 (0.814-0.833) among patients under 60 years of age, respectively. 

Sensitivity in detecting any stage CKD was 0.761 (0.761-0.761) with 12-lead ECG waveform 

and 0.812 (0.812-0.812) with 1-lead ECG waveform. Specificities were 0.787 (0.787-0.787) and 

0.705 (0.705-0.705) for 12-lead and 1-lead ECG waveforms, respectively.  

 

We also tested the performance of our model separately among diabetic, hypertensive, older 

patients, who are generally considered as high-risk subgroups. 12-lead based model detected 

CKD with an AUC of 0.747 (0.707-0.783) among diabetic patients, an AUC of 0.714 (0.701-

0.726) among patients with hypertension, and an AUC of 0.706 (0.697-0.716) among patients 

greater than 60 years old. Similarly, 1-lead ECG-based DLA achieved discrimination of any 

stage CKD among diabetic, hypertensive, and patients > 60 years with AUCs of 0.663 (0.625-

0.707), 0.678 (0.663-0.691), and 0.681 (0.671-0.691), respectively. In addition, 12-lead and 1-

lead ECG-based models detected CKD with similar accuracy among male (AUCs of 0.764 

(0.755-0.772) and 0.742 (0.733-0.750), respectively) and female patients (AUCs of 0.756 

(0.745-0.768) and 0.735 (0.723-0.747), respectively). Detailed results for 1-lead and 12-lead 

ECG-based DLA performance in the held-out test set are presented in Table 3 and Table 4, 

while AUC curves are illustrated in Figure 3. 
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Electrocardiographic features in CKD 

 

To understand the key features of relevance for our deep learning model to be able to detect 

CKD, we performed two sets of experiments to evaluate the ECG parameters that are important 

for identifying CKD. We found statistically significant differences in all available ECG variables 

(heart rate, PR interval, P wave duration, QRS duration, QTc interval, P-wave axis, R-wave 

axis, T-wave axis) between CKD stages (Table 5). Most prominently, patients with CKD had 

prolonged PR interval, prolonged QRS duration, prolonged QTc interval, and skewed T wave 

axis in comparison to those without CKD.  

 

Secondly, we used LIME to identify which ECG segments were particularly used in the 

identification of CKD. Figure 4 shows examples of LIME-highlighted ECG segments in 12-lead 

and 1-lead ECG waveforms taken from correctly recognized CKD and healthy control patients in 

the held-out test set. In both examples, the LIME-highlighted ECG features focused mostly on 

QRS complexes and PR intervals. In addition, QRS complexes and PR intervals in limb leads 

were most frequently highlighted, potentially denoting CKD-associated electrophysiologic 

alterations.   

 

External validation cohort characteristics 

 

The external validation cohort consisted of a total of 896,620 ECGs among 312,145 patients. 

The prevalence of mild CKD was 1.2% while 3.6% had moderate-severe CKD, and 0.9% had 

ESRD. The mean age of the external validation cohort was 56.7±18.7 years and 50.4% were 

female. The proportion of Caucasians was 47.5%, while 3.6% were black, 12.3% were Asians, 

and 36.6% had other or unknown race. Demographic and clinical characteristics are presented 

in Table 1. 

 

Model performance in the external validation dataset 

 

In the external validation dataset, our 12-lead and 1-lead models’ performances were  

comparable to the primary cohort. 12-lead ECG-based model achieved an AUC of 0.709 (0.708-

0.710) in discriminating any stage CKD, with a sensitivity of 0.212 (0.210-0.214) and specificity 

of 0.926 (0.926-0.927). Additionally, 12-lead ECG-based model achieved an AUC of 0.679 
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(0.675-0.682) in discriminating mild CKD, AUC of 0.714 (0.713-0.716) in discriminating 

moderate-severe CKD, and AUC of 0.767 (0.764-0.769) in discriminating ESRD. 1-lead ECG-

based model detected any stage CKD with an AUC of 0.701 (0.700-0.702), mild stage CKD with 

an AUC of 0.671 (0.668-0.674), moderate-severe CKD with an AUC of 0.694 (0.692-0.695), and 

ESRD with an AUC of 0.780 (0.778-0.782).  

 

Consistent with the primary cohort in which our model achieved higher CKD detection accuracy 

among younger patients, 12-lead and 1-lead ECG-based models achieved AUCs of 0.784 

(0.782-0.786) and 0.777 (0.775-0.779) in detecting any stage CKD among subjects under 60 

years of age, respectively. However, the 12-lead ECG-based model’s CKD discrimination 

accuracy was somewhat lower in high-risk subgroups with an AUC of 0.699 (0.697-0.702) 

among diabetic, AUC of 0.712 (0.710-0.714) among hypertensive, and AUC of 0.660 (0.658-

0.661) among subjects over 60 years of age. Detailed results for 1-lead and 12-lead ECG-based 

DLA performance in the external validation cohort are presented in Table 6 and Table 7. 

 

Discussion 

In the present study, we investigated the performance of a novel deep learning model to detect 

CKD using ECG waveforms. Our 12-lead ECG-based model had good accuracy in identifying 

any stage CKD and higher accuracy in detecting CKD in patients under 60 years of age. 

Accuracy also improved along with the worsening CKD stage. These results were validated in a 

separate health care system, that also showed good discrimination accuracy for the presence of 

any stage CKD in the whole study population and higher discrimination accuracy among 

patients under 60 years of age. While 12-lead ECGs are widely available in the healthcare unit 

settings, rapid adoption of wearable technology has also introduced opportunities for large-scale 

data collection outside of formal healthcare settings. Our 1-lead ECG-based DLA showed good 

discrimination accuracy for CKD in young patients, suggesting artificial intelligence may possess 

significant potential in widescale screening in this patient population. One-lead ECGs could also 

increase screening rates in high-risk patients (Figure 5 and Figure 6).  

 

Low awareness of CKD and limitations in current screening measures highlight the urgency of 

novel screening strategies to increase detection rates of early-stage CKD. Previous studies 

have demonstrated that the cost-effectiveness of CKD screening is highly dependent on patient 

risk factor profile and CKD probability, and there has been debate on whether CKD screening 
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should be targeted only to high-risk patients, or also extend to patients without risk factors for 

CKD(20-23). Although screening high-risk patients is guideline-recommended, testing rates 

remain low as only about 20% of high-risk patients receive guideline-recommended assessment 

in the U.S.(24). Consequently, most of the high-risk patients are likely to be unaware of 

underlying CKD(2, 3).  

 

Our model performed better at detecting CKD in younger patients, whereas detection accuracy 

was lower in older and high-risk patients. Reasons for this observation are not fully clear but 

may be due to the fact that younger patients in general have fewer comorbidities, meaning that 

any detected ECG abnormalities may be especially meanintgul and specific.. Although older 

age is a well-known risk marker for CKD, the prevalence of CKD in younger patients is also 

notably high in the U.S. (8-10% in <65 years)(3). Remarkably, however, awareness of 

underlying CKD is also very low in younger patients, as only about 8% are aware of the 

disease(3). Given the availability of effective low-risk CKD treatments and  the reversibility of 

CKD, there are substantial potential benefits for detecting and treating CKD, especially in the 

young.  

 

The strengths of our study include the large cohort of patients undergoing ECG recording 

across a decade and the use of state-of-the-art deep learning architectures. We also used two 

separate approaches to understand the key features of relevance for our deep learning model. 

While previous studies have reported that patients with CKD have high rates of P wave 

abnormalities, prolonged PR interval, QTc prolongation, QT dispersion, and LVH(25-28), in the 

present study CKD was associated with skewed P-, R-, and T-wave axes in addition to 

prolonged QRS, PR, and QTc intervals. However, a few limitations warrant consideration. Our 

study is retrospective, and study populations are derived from two large academic medical 

centers situated in dense urban metropolitan areas. Validation in prospective general population 

cohorts in outpatient settings is required to confirm an ECG-based DLA's ability to recognize 

patients with CKD. Moreover, the prevalence of mild CKD was low in our cohort and we cannot 

exclude the possibility that some of the study subjects without CKD diagnosis in electronic 

health records have an undiagnosed disease, as especially mild-stage CKD can often be 

undiagnosed, particularly using an ICD9 code-based adjudication.  
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By 2030, the UN's Sustainable Development Goals are to reduce premature mortality related to 

non-communicable diseases by a third. Given the high prevalence of asymptomatic CKD, 

serious consequences of untreated disease, presence of effective low-risk treatment, and 

detectable preclinical state with inexpensive and simple diagnostic tests, CKD represents a 

good target for large-scale population screening and harbors the potential for reducing 

premature mortality related to non-communicable diseases. In addition to the high mortality and 

morbidity due to CKD, treatment costs for CKD are also high and have increased during the last 

decades(29). Especially, the increasing number of patients requiring renal replacement creates 

challenges for health care systems worldwide, and the shortage of sufficient replacement 

services may cause at least 2 million premature deaths annually(30). Therefore, widely 

available, inexpensive, and effective CKD prevention and management strategies are warranted 

to enable equal opportunities in reducing CKD-related disability-adjusted life years. 

 

Conclusions 

Our ECG-based deep learning model was able to detect CKD with good discrimination accuracy 

in multiple study populations and with particularly high accuracy in patients under 60 years of 

age. These results suggest that deep learning-based ECG analysis may provide additional 

value in detecting various CKD stages, especially in younger patients. The clinical significance 

of this study lies in the importance of novel screening methods for early detection of CKD, which 

is crucial to enable early treatment and prevent disease progression.  
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Tables and figures 

 

 

Figure 1. Study subject selection. CKD=Chronic kidney disease. 
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Disease ICD9-code(s) 

Any stage CKD 585.1+585.2+585.3+585.4+585.5+585.6 

Mild stage CKD 585.1+585.2 

Moderate-severe CKD 585.3+585.4+585.5 

ESRD 585.6 

Hypertension 401 

Diabetes Mellitus 250 

Cardiovascular disease 410-414+430-438 

Heart failure 428 

Proteinuria 791.0 

Anemia 280-285 

Table 1. List of ICD9-codes that were used in the present study. CKD=Chronic kidney disease. ESRD=End-stage renal disease. 
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Figure 2. Schematic illustration of deep learning model training, testing, and validation. CKD=Chronic kidney disease. 
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Characteristic Internal training and validation datasets 
 

External validation 

dataset  
Total Training Test 

  

Number of patients 111,370 100,233 11,137 
 

312,145 

Number of ECGs 247,655 221,974 25,681 
 

896,620 

Demographics 
     

Age, years 61.3 ±19.7 61.3 ±19.6 61.5 ±19.9 
 

56.7±18.7 

Female, n (%) 53,476 (48.0%) 48,133 (48.0%) 5,343 (48.0%) 
 

139,235 (50.4%) 

BMI, kg/m
2
 26.7±16.6 26.7 ±18.2 26.6 ±7.2 

 
27.6±6.6 

Caucasian, n (%) 67,253 (60.4%) 60,550 (60.4%) 6,703 (60.2%) 
 

148,367 (47.5%) 

Black, n (%) 15,323 (13.8%) 13,751 (13.7%) 1,572 (14.1%) 
 

11,191 (3.6%) 

Asian, n (%) 6,135 (5.5%) 5,558 (5.5%) 577 (5.2%) 
 

38,229 (12.3%) 

Other/unknown race, n (%) 22,659 (20.3%) 20,374 (20.3%) 2,285 (20.5%) 
 

114,358 (36.6%) 

Clinical characteristics, n 

(%) 

      
  

Hypertension 18,335 (16.5%) 14,621 (16.4%)  1,871 (16.8%)  
 

110,311 (35.3%) 

Diabetes Mellitus 8,728 (7.8%)   6,970 (7.8%) 914 (8.2%)  
 

14,152 (4.5%) 

Cardiovascular disease  15,719 (14.1%) 12,561 (14.1%)  1,577 (14.2%)  
 

34,582 (11.1%) 

Heart Failure 9,604 (8.6%)  7,634 (8.6%)  995 (8.9%)  
 

20,167 (6.5%) 

Proteinuria 1,007 (0.9%)  795 (0.9%)  110 (1.0%)  
 

2,086 (0.7%) 

Anemia 11,933 (10.7%) 9,537 (10.7%) 1,194 (10.7%) 
 

18,653 (6.0%) 

Chronic kidney disease, 

n (%) 

     

Mild (Stage 1 -2) 864 (0.8%) 782 (0.8%) 82 (0.7%) 
 

3,727 (1.2%) 

Moderate (Stage 3-5) 3918 (3.5%) 3515 (3.5%) 403 (3.6%) 
 

11,335 (3.6%) 

ESRD 3034 (2.7%) 2722 (2.7%) 312 (2.8%) 
 

2,940 (0.9%) 

 

Table 2. Demographic and clinical characteristics in the internal and external dataset. Continuous variables are presented as 

mean±standard deviation. BMI=Body mass index, ESRD=End-stage renal disease. 
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Model AUC  

(95% CI) 

Sensitivity  

(95% CI) 

Specificity  

(95% CI) 

PPV  

(95% CI) 

NPV 

 (95% CI) 

12-lead ECG models           

Any stage CKD  0.767 (0.76-0.773) 0.699 (0.699-0.699) 0.698 (0.698-0.698) 0.443 (0.443-0.443) 0.871 (0.871-0.871) 

Mild CKD 0.753 (0.735-0.77) 0.75 (0.75-0.75) 0.644 (0.644-0.644) 0.064 (0.064-0.064) 0.987 (0.987-0.987) 

Moderate-severe CKD 0.759 (0.75-0.767) 0.785 (0.785-0.785) 0.598 (0.598-0.598) 0.271 (0.271-0.271) 0.936 (0.936-0.936) 

ESRD 0.783 (0.773-0.793) 0.704 (0.704-0.704) 0.726 (0.726-0.726) 0.237 (0.237-0.237)  0.953 (0.953-0.953) 

High Risk Subgroup analyses for any 

stage CKD 

     

Diabetic patients 0.747 (0.707-0.783) 0.699 (0.699-0.699) 0.682 (0.682-0.682) 0.906 (0.906-0.906) 0.342 (0.342-0.342) 

Hypertensive patients 0.714 (0.701-0.726) 0.659 (0.659-0.659) 0.66 (0.66-0.66) 0.798 (0.798-0.798) 0.487 (0.487-0.487) 

Age > 60 years 0.706 (0.697-0.716) 0.604 (0.604-0.604) 0.701 (0.701-0.701) 0.397 (0.397-0.397) 0.844 (0.844-0.844) 

Male 0.764 (0.755-0.772) 0.727 (0.727-0.727) 0.666 (0.666-0.666) 0.485 (0.485-0.485) 0.849 (0.849-0.849) 

Female 0.756 (0.745-0.768) 0.699 (0.699-0.699) 0.680 (0.680-0.680) 0.351 (0.351-0.351) 0.902 (0.902-0.902) 

Screening cohort (age < 60) 
     

Any stage CKD 0.843 (0.836-0.852) 0.761 (0.761-0.761) 0.787 (0.787-0.787) 0.57 (0.57-0.57) 0.899 (0.899-0.899) 

Mild CKD 0.795 (0.766-0.823) 0.702 (0.702-0.702) 0.748 (0.748-0.748) 0.075 (0.075-0.075) 0.989 (0.989-0.989) 

Moderate-severe CKD 0.854 (0.842-0.865) 0.792 (0.792-0.792) 0.787 (0.787-0.787) 0.373 (0.373-0.373) 0.959 (0.959-0.959) 

ESRD 0.842 (0.831-0.853) 0.746 (0.746-0.746) 0.791 (0.791-0.791) 0.394 (0.394-0.394) 0.945 (0.945-0.945) 

 

Table 3. Performance of the 12-lead ECG-based deep learning algorithm in the internal dataset. AUC=area under the receiver 
operating characteristics curve, CI=Confidence interval, CKD=Chronic kidney disease, ESRD=End-stage renal disease. 
PPV=positive predictive value. NPV=negative predictive value. 
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Model AUC  

(95% CI) 

Sensitivity  

(95% CI) 

Specificity  

(95% CI) 

PPV  

(95% CI) 

NPV 

 (95% CI) 

1-lead ECG models           

Any stage CKD 0.744 (0.737-0.751) 0.723 (0.723-0.723) 0.643 (0.643-0.643) 0.41 (0.41-0.41) 0.871 (0.871-0.871) 

Mild CKD 0.746 (0.728-0.764) 0.735 (0.735-0.735) 0.66 (0.66-0.66) 0.066 (0.066-0.066) 0.987 (0.987-0.987) 

Moderate-severe CKD 0.735 (0.726-0.744) 0.732 (0.732-0.732)  0.618 (0.618-0.618) 0.267 (0.267-0.267) 0.924 (0.924-0.924) 

ESRD 0.757 (0.748-0.767) 0.738 (0.738-0.738) 0.647 (0.647-0.647) 0.202 (0.202-0.202) 0.953 (0.953-0.953) 

High Risk Subgroup analyses for any 

stage CKD 

     

Diabetic patients 0.663 (0.625-0.707) 0.819 (0.819-0.819) 0.457 (0.457-0.457) 0.868 (0.868-0.868) 0.367 (0.367-0.367) 

Hypertensive patients 0.678 (0.663-0.691) 0.713 (0.713-0.713) 0.555 (0.555-0.555) 0.765 (0.765-0.765) 0.487 (0.487-0.487) 

Age > 60 years 0.681 (0.671-0.691) 0.679 (0.679-0.679) 0.588 (0.588-0.588) 0.35 (0.35-0.35) 0.849 (0.849-0.849) 

Male 0.742 (0.733-0.75) 0.747 (0.747-0.747) 0.612 (0.612-0.612) 0.455 (0.455-0.455) 0.848 (0.848-0.848) 

Female 0.735 (0.723-0.747) 0.672 (0.672-0.672) 0.681 (0.681-0.681) 0.342 (0.342-0.342) 0.894 (0.894-0.894) 

Screening cohort (age < 60) 
     

Any stage CKD 0.824 (0.815-0.832) 0.812 (0.812-0.812) 0.705 (0.705-0.705) 0.506 (0.506-0.506) 0.91 (0.91-0.91) 

Mild CKD 0.819 (0.791-0.844) 0.771 (0.771-0.771) 0.758 (0.758-0.758) 0.085 (0.085-0.085) 0.991 (0.991-0.991) 

Moderate-severe CKD 0.828 (0.816-0.84) 0.814 (0.814-0.814) 0.713 (0.713-0.713) 0.313 (0.313-0.313) 0.96 (0.96-0.96) 

ESRD 0.82 (0.808-0.831) 0.82 (0.82-0.82) 0.693 (0.693-0.693) 0.328 (0.328-0.328) 0.955 (0.955-0.955) 

 

Table 4. Performance of the 1-lead ECG-based deep learning algorithm in the internal dataset. AUC=area under the receiver 
operating characteristics curve, CI=Confidence interval, CKD=Chronic kidney disease, ESRD=End-stage renal disease. 
PPV=positive predictive value. NPV=negative predictive value.  
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Figure 3. Model performance in the internal dataset. CKD=Chronic kidney disease. ESRD=End-stage renal disease. 
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Electrocardiographic 

characteristic 

Overall No CKD Mild CKD Moderate 

CKD 

ESRD P value 

Heart rate, bpm 81.1 

±21.8 

80.5 

±22.1 

85.7 

±21.2 

82.8 

±21.3 

80.9 

±19.2 

<0.001 

PR interval, ms 166.0 

±37.7 

164.5 

±36.9 

165.8 

±36.8 

172.5 

±43.2 

168.4 

±34.6 

<0.001 

P wave duration, ms 52.2 

±9.6 

52.1 

±9.2 

52.1 

±11.2 

51.9 

±11.1 

53.6 

±9.2 

<0.001 

QRS duration, ms 101.0 

±29.0 

98.7 

±27.2 

112.6 

±36.3 

111.8 

±35.6 

98.9 

±24.7 

<0.001 

QTc interval, ms 457.6 

±66.7 

 452.6 

±70.3 

477.4 

±60.2 

474.5 

±55.2 

468.3 

±43.7 

<0.001 

P-wave axis 50.2 

±27.5 

 50.3 

±27.0 

50.6 

±26.6 

50.2 

±29.9 

 48.9 

±26.2 

<0.001 

R-wave axis 23.6 

±60.2 

23.2 

±51.1 

 38.0 

±85.1 

24.6 

±75.1  

22.1 

±57.2  

<0.001 

T-wave axis 57.5 

±57.6 

54.1 

±54.9 

61.1 

±64.4 

67.6 

±66.3 

67.0 

±57.3 

<0.001 

 

Table 5. Electrocardiographic characteristics according to chronic kidney disease (CKD) stage in the training dataset. Data is 

presented as mean±standard deviation. ESRD=End-stage renal disease.  
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Figure 4. The Linear Interpretable Model-Agnostic Explanations (LIME) map of 12-lead and 1-lead ECGs highlights features that 
were important for deep learning model in chronic kidney disease detection. Important ECG features are highlighted with greater 
color intensity. In both true positive (A and C) and true negative patients (B and D) LIME highlighted QRS complexes and PR 
intervals. 
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Model AUC  

(95% CI) 

Sensitivity  

(95% CI) 

Specificity  

(95% CI) 

PPV  

(95% CI) 

NPV 

 (95% CI) 

12-lead ECG models           

Any stage CKD 0.709 (0.708-0.710) 
0.573 (0.571-0.575) 0.720 (0.719-0.721) 0.276 (0.275-0.278)  0.900 (0.900-0.901) 

Mild CKD 
0.679 (0.675-0.682) 0.525 (0.519-0.530) 0.720 (0.719-0.721) 0.047 (0.046-0.048) 0.983 (0.983-0.983) 

Moderate-severe CKD 
0.714 (0.713-0.716) 0.585 (0.582-0.588) 0.720 (0.719-0.720) 0.141 (0.140-0.143) 0.956 (0.956-0.957) 

ESRD 
0.767 (0.764-0.769) 0.665 (0.660-0.670) 0.720 (0.719-0.721) 0.083 (0.082-0.084) 0.983 (0.982-0.983) 

High Risk Subgroup analyses for any 

stage CKD 

     

Diabetic patients 
0.699 (0.697-0.702) 0.620 (0.615-0.625) 0.670 (0.665-0.674) 0.711 (0.708-0.716) 0.573 (0.568-0.577) 

Hypertensive patients 
0.712 (0.710-0.714) 0.555 (0.552-0.558) 0.741 (0.740-0.742) 0.378 (0.375-0.380) 0.855 (0.854-0.856) 

Age > 60 years 
0.660 (0.658-0.661) 0.582 (0.579-0.584) 0.648 (0.647-0.649) 0.349 (0.347-0.350) 0.827 (0.826-0.828) 

Male 
0.719 (0.718-0.721) 0.593 (0.590-0.596) 0.721 (0.720-0.723) 0.387 (0.384-0.389) 0.857 (0.856-0.858) 

Female 
0.728 (0.726-0.730) 0.537 (0.533-0.541) 0.769 (0.768-0.770) 0.279 (0.276-0.281) 0.909 (0.908-0.910) 

Screening cohort (age < 60) 
     

Any stage CKD 
0.784 (0.782-0.786) 0.552 (0.548-0.556) 0.843 (0.843-0.845) 0.326 (0.323-0.328) 0.932 (0.931-0.933) 

Mild CKD 
0.763 (0.757-0.767) 0.524 (0.516-0.536) 0.843 (0.843-0.844) 0.063 (0.061-0.065) 0.989 (0.989-0.989) 

Moderate-severe CKD 
0.780 (0.777-0.782) 0.548 (0.543-0.556) 0.843 (0.843-0.844) 0.128 (0.126-0.130) 0.978 (0.978-0.979) 

ESRD 
0.841 (0.839-0.844) 0.649 (0.644-0.656) 0.843 (0.843-0.845) 0.155 (0.153-0.158) 0.982 (0.982-0.982)  

 

Table 6. Performance of the 12-lead ECG-based deep learning algorithm in the external dataset. AUC=area under the receiver 
operating characteristics curve, CI=Confidence interval, CKD=Chronic kidney disease, ESRD=End-stage renal disease. 
PPV=positive predictive value. NPV=negative predictive value. 
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Model AUC  

(95% CI) 

Sensitivity 

 (95% CI) 

Specificity 

 (95% CI) 

PPV  

(95% CI) 

NPV 

 (95% CI) 

1-lead ECG models           

Any stage CKD 
0.701 (0.700-0.702) 0.660 (0.658-0.662) 0.635 (0.634-0.635) 0.252 (0.251-0.253) 0.909 (0.908-0.910) 

Mild CKD 
0.671 (0.668-0.674) 0.617 (0.612-0.621) 0.635 (0.634-0.636) 0.043 (0.042-0.043) 0.984 (0.984-0.985) 

Moderate-severe CKD 
0.694 (0.692-0.695) 0.649 (0.645-0.652) 0.635 (0.634-0.636) 0.123 (0.122-0.124) 0.958 (0.958-0.959) 

ESRD 
0.780 (0.778-0.782) 0.784 (0.780-0.788) 0.635 (0.634-0.636) 0.075 (0.075-0.076) 0.987 (0.987-0.987) 

High Risk Subgroup analyses for any 

stage CKD 

     

Diabetic patients 
0.678 (0.674-0.681) 0.710 (0.706-0.713) 0.544 (0.539-0.549) 0.671 (0.667-0.674) 0.588 (0.584-0.593) 

Hypertensive patients 
0.697 (0.696-0.699) 0.627 (0.623-0.630) 0.661 (0.659-0.662) 0.343 (0.340-0.346) 0.862 (0.861-0.863) 

Age > 60 years 
0.657 (0.655-0.658) 0.646 (0.643-0.649) 0.583 (0.582-0.585) 0.335 (0.332-0.336) 0.836 (0.834-0.837) 

Male 
0.722 (0.720-0.723) 0.667 (0.665-0.669) 0.661 (0.659-0.662) 0.368 (0.366-0.370) 0.870 (0.869-0.871) 

Female 
0.706 (0.704-0.708) 0.648 (0.644-0.652) 0.650 (0.648-0.651) 0.236 (0.234-0.237) 0.917 (0.916-0.918) 

Screening cohort (age < 60) 
     

Any stage CKD 
0.777 (0.775-0.779) 0.694 (0.690-0.697) 0.728 (0.726-0.729) 0.259 (0.257-0.261) 0.946 (0.945-0.946) 

Mild CKD 
0.752 (0.748-0.757) 0.657 (0.647-0.666) 0.728 (0.726-0.729) 0.046 (0.045-0.047) 0.991 (0.990-0.991) 

Moderate-severe CKD 
0.764 (0.761-0.768) 0.674 (0.668-0.679) 0.728 (0.726-0.729) 0.094 (0.092-0.095) 0.982 (0.981-0.982) 

ESRD 
0.837 (0.834-0.839) 0.799 (0.794-0.804) 0.728 (0.727-0.729) 0.115 (0.114-0.117) 0.988 (0.988-0.988) 

 

Table 7. Performance of the 1-lead ECG-based deep learning algorithm in the external dataset. AUC=area under the receiver 
operating characteristics curve, CI=Confidence interval, CKD=Chronic kidney disease, ESRD=End-stage renal disease. 
PPV=positive predictive value. NPV=negative predictive value. 
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Figure 5. Schematic illustration of utilizing ECG-based deep learning model to detect a high-risk subgroup of subjects under 60 
years of age for chronic kidney disease (CKD) screening. DLA=Deep learning algorithm.  
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Figure 6. Illustration of chronic kidney disease (CKD) prevalence and awareness in comparison to model performance. 
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