Title page

Impact of diabetes mellitus on the stabilization and osseointegration of dental implants: a systematic review

Aglaia Katsiroumpa, RN, MSc, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece

Petros Galanis, Assistant Professor, Clinical Epidemiology Laboratory, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece

Ioannis Diamantis, DDS, MSc, Oral Surgeon, Athens, Greece

Sofia Georgikopoulou, DDS, MSc, Athens, Greece

Theodoros Katsoulas, Associate Professor, Faculty of Nursing, National & Kapodistrian University of Athens, Athens, Greece

Elissavet Katsimperi, DDS student, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece

Evangelos Konstantinou, Professor, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece

Corresponding author: Petros Galanis, Assistant Professor, Clinical Epidemiology Laboratory, Faculty of Nursing, National and Kapodistrian University of Athens, 123 Papadiamantopoulou street, GR-11527, Athens, Greece, e-mail: pegalan@nurs.uoa.gr, https://orcid.org/0000-0002-1308-5782

Abstract

Introduction: Diabetes mellitus is a chronic metabolic disorder leading to hyperglycemia, which causes various complications due to vasculopathy. Adequate dental rehabilitation including dental implants plays a key role in promoting the eating habits of diabetics and better metabolic control.

Aim: We performed a systematic literature review to investigate the effect of diabetes mellitus on the stabilization and osseointegration of dental implants.

Methods: We searched PubMed and Scopus until October 2021. We used the following inclusion criteria: (i) study population included diabetics type I or II, (ii) outcomes were the dental implant failure or resonance frequency analysis, (iii) studies that investigate the effect of diabetes mellitus on the stabilization and osseointegration of dental implants, (iv) studies that were published in English, (v) studies that were published in journals with peer review system, (vi) studies including humans and not animals, (vii) studies that compared diabetics with non-diabetics, and (ix) quantitative studies.

Results: Twenty-nine studies met the inclusion criteria. Regarding implant failure, four studies found statistically significant more frequent implant failure in diabetics, while five studies found that implant failure was more frequent in diabetics but was not statistically significant. In contrast, ten studies found that implant failure was more frequent in non-diabetics but was not statistically significant. In addition, seven studies found that all diabetics and non-diabetics retained their implant during the study. In six studies that performed the resonance frequency analysis, no statistically significant difference was found between diabetics and non-diabetics. In three studies, the mean value of the implant stability quotient increased statistically significant in non-diabetics, while in three studies the mean value of the implant stability quotient increased statistically significant in diabetics.

Conclusions: The results of this review suggest that implant failure is not higher for diabetics than for non-diabetics. Diabetics seem to be able to achieve a rate of dental implants survival like that of non-diabetics. With regards to the resonance frequency analysis, no difference is found between diabetics and non-diabetics.

Key-words: diabetes mellitus, dental implants, resonance frequency analysis, implant failure, implant stability quotient

Introduction

Dental implants are a method to restore lost teeth. Advances in dental research and implant creation have established implants as a highly effective method. In particular, the average implant survival rate reaches 94.6% even after 10 years of implant placement (Moraschini et al., 2015). The survival of an implant initially depends on its successful osseointegration after its placement. Several factors influence implant survival with diabetes mellitus being a potential factor to be investigated.

Diabetes mellitus is a chronic metabolic disorder leading to hyperglycemia, which causes various complications due to vasculopathy. Diabetics have an increased incidence of periodontitis and tooth loss, delayed wound healing and worse outcomes in infections (Abiko & Selimovic, 2010; Khader et al., 2006). The prevalence of diabetes is continuously increasing. For example, in 1980, more than 150 million people worldwide had diabetes, and in 2008, this number exceeded 350 million people (Danaei et al., 2011). For this reason, a better understanding of diabetes and its treatment, as well as its impact on the outcome of dental implants, is essential.

The role of dental implants in diabetics is extremely important, as these patients, after tooth loss, avoid foods that cause them difficulty in chewing, resulting in an inappropriate diet. Adequate dental rehabilitation with the use of implants plays a key role in promoting the eating habits of diabetics and better metabolic control. Identifying the factors that increase the risk of complications in dental patients enables surgeons to make rational decisions according to the evidence and determine the best possible plan of care, achieving the best clinical outcomes (Chrcanovic et al., 2014).

The aim of this systematic literature review was to investigate the effect of diabetes mellitus on the stabilization and osseointegration of dental implants.

Methods

We searched PubMed and Scopus until October 2021. We used the following inclusion criteria: (i) study population included diabetics type I or II, (ii) outcomes were the dental implant failure or resonance frequency analysis, (iii) studies that investigate the effect of diabetes mellitus on the stabilization and osseointegration of dental implants, (iv) studies that were published in English, (v) studies that were published in journals with peer review system, (vi) studies including humans and not

animals, (vii) studies that compared diabetics with non-diabetics, and (ix) quantitative studies.

We applied the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PICO methodology was used to create the search strategy (Table 1). We used the following search strategy: (("dental implant" OR "dental implant surgery") AND (diabetic* OR "diabetes mellitus" OR "type 1 diabetes mellitus" OR "type 2 diabetes mellitus" OR "diabetic type 1" OR "diabetic type 2")) AND ("resonance frequency analysis" OR RFA OR survival OR "dental implant survival" OR failure OR "dental implant failure").

Flowchart of the systematic literature review is presented in Figure 1. Initially, we found 68 records in PubMed and 2080 record in Scopus. Applying inclusion criteria, 29 studies included in our review.

Results

Twenty-nine studies met the inclusion criteria. Detailed characteristics of the studies included in the systematic literature review are presented in Table 2. The majority of studies were conducted in Asia (n=12) and the USA (n=11), while five studies were conducted in Europe and one study in Brazil.

Most of the studies were follow-up studies (n=16) and retrospective studies (n=10), while two studies were case-control, and one study was cross-sectional. Study population included mainly diabetics type II (n=24), while one study included diabetics type I and II. Four studies did not mention the type of diabetes mellitus. Glycemic control was used in 20 studies to clarify the diabetic status of the participants, while self-assessment was used in nine studies.

The outcome in most studies (n=23) was the dental implant failure, while the resonance frequency analysis was used in three studies. Also, three studies measured both the dental implant failure and the resonance frequency analysis. Multivariate analysis was used in 15 studies eliminating confounders, while bivariate analysis was used in 14 studies.

Detailed results of the studies included in the systematic literature review are shown in Table 3. Regarding implant failure, four studies found statistically significantly more frequent implant failure in diabetics (Daubert et al., 2015; Loo et al., 2009; Moy et al., 2005; Zupnik et al., 2011), while five studies found that implant failure was

> more frequent in diabetics but was not statistically significant (Aguilar-Salvatierra et al., 2016; Morris et al., 2000; Ormianer et al., 2018; Sghaireen et al., 2020; Tawil et al., 2008). In contrast, ten studies found that implant failure was more frequent in nondiabetics but was not statistically significant (Alsaadi et al., 2008; Anner et al., 2010; Bell et al., 2011; Busenlechner et al., 2014; Doyle et al., 2007; Keller et al., 1999; Le et al., 2013; Levin et al., 2011; Oates et al., 2014; van Steenberghe et al., 2002). In addition, seven studies found that all diabetics and non-diabetics retained their implant during the study (Al Amri et al., 2016; Alsahhaf et al., 2019; Al Shibani et al., 2019; Dowell et al., 2007; Erdogan et al., 2015; Gómez-Moreno et al., 2015; Sundar et al., 2019). In six studies that performed the resonance frequency analysis, no statistically significant difference was found between diabetics and non-diabetics (Al Zahrani & Al Mutairi, 2018; Erdogan et al., 2015; Ghiraldini et al., 2016; Oates et al., 2009, 2014; Sundar et al., 2019). In three studies, the mean value of the implant stability quotient increased statistically significant in non-diabetics (Ghiraldini et al., 2016; Oates et al., 2014; Sundar et al., 2019), while in three studies the mean value of the implant stability quotient increased statistically significant in diabetics (Al Zahrani & Al Mutairi, 2018; Oates et al., 2014; Sundar et al., 2019).

Discussion

We performed a systematic literature review to investigate the effect of diabetes mellitus on the stabilization and osseointegration of dental implants. In general, diabetes mellitus does not seem to affect the stabilization and osseointegration of dental implants since only four studies found that implant failure was statistically significant more frequent in diabetics. Also, five studies found that implant failure was more frequent in diabetics but was not statistically significant, but ten studies found that implant failure was more frequent in non-diabetics but was not statistically significant. Moreover, seven studies found that all diabetics and non-diabetics retained their implant during the study.

Other systematic reviews found similar findings with us (Andrade et al., 2021; Chrcanovic et al., 2014; Shang & Gao, 2021). In particular, Chrcanovic et al. (2014) found that the diabetic status does not significantly affect implant failure rates (odds ratio = 1.07, 95% confidence interval = 0.8 to 1.44, p-value = 0.65). On the other hand, Chrcanovic et al. (2014) found a statistically significant difference between diabetics and non-diabetics regarding marginal bone loss, in favor of non-diabetics

(mean difference = 0.2, 95% confidence interval = 0.08 to 0.31, p-value = 0.001). Shang & Gao (2021) did not find significant differences in rates of implant failure (odds ratio = 1.39, 95% confidence interval = 0.58 to 3.3, p-value = 0.46) and probing death (mean difference = 0.2, 95% confidence interval = -0.04 to 0.44, p-value = 0.1) between diabetics and non-diabetics, but they found significant differences in periimplant bleeding on probing (mean difference = 0.32, 95% confidence interval = 0.19 to 0.45, p-value < 0.001) and peri-implant bone loss (mean difference = 0.12, 95% confidence interval = 0.02 to 0.22, p-value = 0.02), favoring non-diabetics. Meta-analysis of Andrade et al. (2021) showed no significant difference between diabetics and non-diabetics regarding marginal bone loss (mean difference = -0.08, 95% confidence interval = -0.25 to 0.08, p-value = 0.33) and implant survival rates (odds ratio = 1.0, 95% confidence interval = 0.96 to 1.04, p-value = 0.91) even in diabetics with poor glycemic control (odds ratio = 1.08, 95% confidence interval = 0.87 to 1.33, p-value = 0.48).

There is a disagreement among studies about what occurs with the uncontrolled diabetic patients. Several studies have shown the unsatisfactory outcomes of dental treatment in diabetics with poor glycemic control (de Lima et al., 2020; Lagunov et al., 2019; Quirino et al., 1995), but a meta-analysis found that the dental implant survival rate was similar in uncontrolled diabetics and non-diabetics (Andrade et al., 2021). Moreover, uncontrolled diabetics have higher values of marginal bone loss, bleeding on probing, and pocket depth (Aguilar-Salvatierra et al., 2016; Al Amri et al., 2016). Satisfactory glycemic control in diabetic patients is essential since the HbA1c level is related with peri-impant pathology (Ibraheem et al., 2019; Javed & Romanos, 2009).

Diabetes considered being a contraindication for treatment with implants (Michaeli et al., 2009), but success rates among diabetics with controlled glucose may be similar to those of non-diabetics (Ciancio et al., 1995; Oates et al., 2013). However, a few studies only in this review monitored the glycemic control throughout the follow-up study. Moreover, in nine studies the measurement of glucose was not even carried out at the beginning of the study and the diabetic status was defined through self-assessment. This fact may have lead to confusion in our review. Satisfactory glycemic control is related with high implant survival rate probably due to the absence of bacteria and their products in systemic circulation (Al Amri et al., 2016; Javed & Romanos, 2009).

Limitations

Our review had several limitations. Study population included diabetics type II in 24 studies, while one study included diabetics type I and II and four studies did not mention the type of diabetes mellitus. Therefore, more studies should be carried out with type 1 diabetics in order to draw safer conclusions about these patients. Moreover, an information bias could be introduced since the diabetic status of patients was defined through self-assessment in nine studies. The resonance frequency analysis to measure objectively the stabilization of dental implants was used only in six studies. Also, almost half of the studies in our review did not use multivariate analysis to eliminate confounders and only crude measures of effect were estimated. Possible confounding factors can influence the impact of diabetes mellitus on the stabilization and osseointegration of dental implants. Since the effect of diabetes mellitus on the stabilization and osseointegration of dental implants remains unclear, randomized controlled trials examining the influence of diabetes on the survival of dental implants should be conducted as soon as possible. Furthermore, possible confounding should be eliminated to minimize bias.

Conclusions

The results of this systematic literature review suggest that implant failure is not higher for diabetics than for non-diabetics. Diabetics seem to be able to achieve a rate of dental implants survival like that of non-diabetics. With regards to the resonance frequency analysis, no difference is found between diabetics and non-diabetics. Moreover, in three studies, the mean value of the implant stability quotient increased statistically significant in non-diabetics, while three studies arrived at the exact opposite conclusion. A greater number of well-designed randomized controlled trials are required to draw safer conclusions.

Figure 1. Flowchart of the systematic literature review.

PICO	Keywords					
Р	dental implant OR dental implant surgery					
Ι	diabetic* OR diabetes mellitus OR type 1 diabetes mellitus OR type 2					
	diabetes mellitus OR diabetic type 1 OR diabetic type 2					
С	non-diabetic*					
0	resonance frequency analysis OR RFA OR survival OR dental implant					
	survival OR failure OR dental implant failure					

Table 1. Search strategy in PubMed και Scopus using PICO methodology.

Reference	Country	Year	Type of study	Diabetes	Determinant	Outcome	Type of
				mellitus			analysis
(Ghiraldini et	Brazil	2012-	Case-control	II	Glycemic	Resonance frequency	Bivariate
al., 2016)		2013			control	analysis, implant failure	
(Sundar et al.,	India	2015-	Follow-up	II	Glycemic	Resonance frequency	Bivariate
2019)		2017			control	analysis	
(Oates et al.,	USA	Not	Follow-up	II	Glycemic	Resonance frequency	Multivariate
2009)		mentioned			control	analysis	
(Morris et al.,	USA	1991-	Follow-up	II	Glycemic	Implant failure	Multivariate
2000)		1997			control		
(Alsaadi et	Belgium	2003-	Follow-up	I and II	Self-	Implant failure	Multivariate
al., 2008)		2006			assessment		
(Tawil et al.,	Lebanon	Not	Follow-up	II	Glycemic	Implant failure	Multivariate
2008)		mentioned			control		
(Al Zahrani &	Saudi	Not	Follow-up	II	Glycemic	Resonance frequency	Bivariate
Al Mutairi,	Arabia	mentioned			control	analysis	
2018)							
(Ormianer et	Israel	1995-	Retrospective	II	Glycemic	Implant failure	Bivariate
al., 2018)		2015			control		
(Anner et al.,	Israel	1995-	Follow-up	II	Self-	Implant failure	Multivariate
2010)		2006			assessment		
(Aguilar-	Spain	2015	Follow-up	II	Glycemic	Implant failure	Bivariate
Salvatierra et					control		
al., 2016)							
(Busenlechner	Austria	2004-	Retrospective	Not	Self-	Implant failure	Multivariate
et al., 2014)		2012		mentioned	assessment		
(Daubert et	USA	1998-	Cross-sectional	Not	Self-	Implant failure	Multivariate
al., 2015)		2003		mentioned	assessment		
(Dowell et al.,	USA	Not	Follow-up	II	Glycemic	Implant failure	Bivariate
2007)		mentioned			control		
(Erdogan et	Turkey	Not	Follow-up	II	Glycemic	Resonance frequency	Bivariate
al., 2015)		mentioned			control	analysis, implant failure	
(Moy et al.,	USA	Not	Retrospective	Not	Glycemic	Implant failure	Multivariate
2005)		mentioned		mentioned	control		
(Oates et al.,	USA	2007-	Follow-up	II	Glycemic	Resonance frequency	Bivariate
2014)		2012			control	analysis, implant failure	
(Zupnik et al.,	USA	2003-	Retrospective	Not	Glycemic	Implant failure	Multivariate

Table 2. Detailed characteristics of the studies included in the systematic literature review.

2011)		2006		mentioned	control		
(Loo et al.,	China	2005-	Follow-up	II	Glycemic	Implant failure	Bivariate
2009)		2007			control		
(Keller et al.,	USA	1987-	Retrospective	II	Glycemic	Implant failure	Multivariate
1999)		1999			control		
(van	Belgium	1995-	Retrospective	II	Self-	Implant failure	Multivariate
Steenberghe		1997			assessment		
et al., 2002)							
(Doyle et al.,	USA	1993-	Retrospective	II	Self-	Implant failure	Multivariate
2007)		2002			assessment		
(Levin et al.,	Israel	1996-	Retrospective	II	Self-	Implant failure	Multivariate
2011)		2006			assessment		
(Bell et al.,	USA	2001-	Retrospective	II	Self-	Implant failure	Multivariate
2011)		2009			assessment		
(Le et al.,	USA	2004-	Retrospective	II	Self-	Implant failure	Multivariate
2013)		2010			assessment		
(Sghaireen et	Saudi	2013-	Case-control	II	Glycemic	Implant failure	Bivariate
al., 2020)	Arabia	2016			control		
(Al Amri et	Saudi	2013-	Follow-up	II	Glycemic	Implant failure	Bivariate
al., 2016)	Arabia	2015			control		
(Gómez-	Spain	2012-	Follow-up	II	Glycemic	Implant failure	Bivariate
Moreno et al.,		2014			control		
2015)							
(Alsahhaf et	Saudi	2015-	Follow-up	II	Glycemic	Implant failure	Bivariate
al., 2019)	Arabia	2018			control		
(Al□Shibani	Saudi	2015-	Follow-up	II	Glycemic	Implant failure	Bivariate
et al., 2019)	Arabia	2018			control		

ſ

Table 3. Detailed results of the studies included in the systematic literature review

Reference	Statistically	Greater	Percentage of dental implant failure
	significant	improvement in	
	difference		
(Ghiraldini et al., 2016)	No	None	Not mentioned
(Sundar et al., 2019)	No	None	0% in diabetics and non-diabetics
(Oates et al., 2009)	No	None	Not mentioned
(Morris et al., 2000)	No	Non-diabetics	Not mentioned
(Alsaadi et al., 2008)	No	Diabetics	Not mentioned
(Tawil et al., 2008)	No	Non-diabetics	Not mentioned
(Al Zahrani & Al Mutairi, 2018)	No	None	Not mentioned
(Ormianer et al., 2018)	No	Non-diabetics	6% in diabetics and 4.4% in non-diabetics
(Anner et al., 2010)	No	Diabetics	Not mentioned
(Aguilar-Salvatierra et al., 2016)	No	Non-diabetics	3.4% in diabetics and 0% in non-diabetics
(Busenlechner et al., 2014)	No	Diabetics	3% in diabetics and 4.9% in non-diabetics
(Daubert et al., 2015)	Yes	Non-diabetics	Not mentioned
(Dowell et al., 2007)	No	None	0% in diabetics and non-diabetics
(Erdogan et al., 2015)	No	None	0% in diabetics and non-diabetics
(Moy et al., 2005)	Yes	Non-diabetics	Not mentioned
(Oates et al., 2014)	No	Non-diabetics	0% in diabetics and 1% in non-diabetics
(Zupnik et al., 2011)	Yes	Non-diabetics	Not mentioned
(Loo et al., 2009)	Yes	Non-diabetics	Not mentioned
(Keller et al., 1999)	No	Diabetics	Not mentioned
(van Steenberghe et al., 2002)	No	Diabetics	Not mentioned
(Doyle et al., 2007)	No	Diabetics	Not mentioned
(Levin et al., 2011)	No	Diabetics	Not mentioned
(Bell et al., 2011)	No	Diabetics	Not mentioned
(Le et al., 2013)	No	Diabetics	Not mentioned
(Sghaireen et al., 2020)	No	Non-diabetics	Not mentioned
(Al Amri et al., 2016)	No	None	0% in diabetics and non-diabetics
(Gómez-Moreno et al., 2015)	No	None	0% in diabetics and non-diabetics
(Alsahhaf et al., 2019)	No	None	0% in diabetics and non-diabetics
(Al Shibani et al., 2019)	No	None	0% in diabetics and non-diabetics

References

Abiko, Y., & Selimovic, D. (2010). The mechanism of protracted wound healing on oral mucosa in diabetes. Review. *Bosnian Journal of Basic Medical Sciences*, *10*(3), 186–191. https://doi.org/10.17305/bjbms.2010.2683

Aguilar-Salvatierra, A., Calvo-Guirado, J. L., González-Jaranay, M., Moreu, G., Delgado-Ruiz, R. A., & Gómez-Moreno, G. (2016). Peri-implant evaluation of immediately loaded implants placed in esthetic zone in patients with diabetes mellitus type 2: A two-year study. *Clinical Oral Implants Research*, 27(2), 156–161. https://doi.org/10.1111/clr.12552

Al Amri, M. D., Kellesarian, S. V., Al-Kheraif, A. A., Malmstrom, H., Javed, F., & Romanos, G. E. (2016). Effect of oral hygiene maintenance on HbA1c levels and periimplant parameters around immediately-loaded dental implants placed in type-2 diabetic patients: 2 years follow-up. *Clinical Oral Implants Research*, 27(11), 1439–1443. https://doi.org/10.1111/clr.12758

Al Zahrani, S., & Al Mutairi, A. A. (2018). Stability and bone loss around submerged and non-submerged implants in diabetic and non-diabetic patients: A 7-year followup. *Brazilian Oral Research*, *32*, 57. https://doi.org/10.1590/1807-3107bor-2018.vol32.0057

Alsaadi, G., Quirynen, M., Komárek, A., & van Steenberghe, D. (2008). Impact of local and systemic factors on the incidence of late oral implant loss. *Clinical Oral Implants Research*, *19*(7), 670–676. https://doi.org/10.1111/j.1600-0501.2008.01534.x

Alsahhaf, A., Alshiddi, I. F., Alshagroud, R. S., Al Aali, K. A., Vohra, F., & Abduljabbar, T. (2019). Clinical and radiographic indices around narrow diameter implants placed in different glycemic level patients. *Clinical Implant Dentistry and Related Research*, cid.12778. https://doi.org/10.1111/cid.12778

Al Shibani, N., Al Aali, K. A., Al Hamdan, R. S., Alrabiah, M., Basunbul, G., & Abduljabbar, T. (2019). Comparison of clinical peri implant indices and crestal bone levels around narrow and regular diameter implants placed in diabetic and non diabetic patients: A 3 year follow up study. *Clinical Implant Dentistry and Related Research*, *21*(2), 247–252. https://doi.org/10.1111/cid.12712

Andrade, C. A. S., Paz, J. L. C., de Melo, G. S., Mahrouseh, N., Januário, A. L., & Capeletti, L. R. (2021). Survival rate and peri-implant evaluation of immediately

loaded dental implants in individuals with type 2 diabetes mellitus: A systematic review and meta-analysis. *Clinical Oral Investigations*. https://doi.org/10.1007/s00784-021-04154-6

Anner, R., Grossmann, Y., Anner, Y., & Levin, L. (2010). Smoking, diabetes mellitus, periodontitis, and supportive periodontal treatment as factors associated with dental implant survival: A long-term retrospective evaluation of patients followed for up to 10 years. *Implant Dentistry*, *19*(1), 57–64. https://doi.org/10.1097/ID.0b013e3181bb8f6c

Bell, C. L., Diehl, D., Bell, B. M., & Bell, R. E. (2011). The immediate placement of dental implants into extraction sites with periapical lesions: A retrospective chart review. *Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons*, 69(6), 1623–1627. https://doi.org/10.1016/j.joms.2011.01.022

Busenlechner, D., Fürhauser, R., Haas, R., Watzek, G., Mailath, G., & Pommer, B. (2014). Long-term implant success at the Academy for Oral Implantology: 8-year follow-up and risk factor analysis. *Journal of Periodontal & Implant Science*, 44(3), 102–108. https://doi.org/10.5051/jpis.2014.44.3.102

Chrcanovic, B. R., Albrektsson, T., & Wennerberg, A. (2014). Diabetes and oral implant failure: A systematic review. *Journal of Dental Research*, *93*(9), 859–867. https://doi.org/10.1177/0022034514538820

Ciancio, S. G., Lauciello, F., Shibly, O., Vitello, M., & Mather, M. (1995). The effect of an antiseptic mouthrinse on implant maintenance: Plaque and peri-implant gingival tissues. *Journal of Periodontology*, *66*(11), 962–965. https://doi.org/10.1902/jop.1995.66.11.962

Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M., Cowan, M. J., Paciorek, C. J., Lin, J. K., Farzadfar, F., Khang, Y.-H., Stevens, G. A., Rao, M., Ali, M. K., Riley, L. M., Robinson, C. A., Ezzati, M., & Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose). (2011). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. *Lancet (London, England)*, 378(9785), 31–40. https://doi.org/10.1016/S0140-6736(11)60679-X

Daubert, D. M., Weinstein, B. F., Bordin, S., Leroux, B. G., & Flemming, T. F. (2015). Prevalence and predictive factors for peri-implant disease and implant failure:

> A cross-sectional analysis. *Journal of Periodontology*, 86(3), 337–347. https://doi.org/10.1902/jop.2014.140438

> de Lima, A. K. A., Amorim dos Santos, J., Stefani, C. M., Almeida de Lima, A. de, & Damé-Teixeira, N. (2020). Diabetes mellitus and poor glycemic control increase the occurrence of coronal and root caries: A systematic review and meta-analysis. *Clinical Oral Investigations*, 24(11), 3801–3812. https://doi.org/10.1007/s00784-020-03531-x

Dowell, S., Oates, T. W., & Robinson, M. (2007). Implant success in people with type 2 diabetes mellitus with varying glycemic control: A pilot study. *Journal of the American Dental Association (1939)*, *138*(3), 355–361; quiz 397–398. https://doi.org/10.14219/jada.archive.2007.0168

Doyle, S. L., Hodges, J. S., Pesun, I. J., Baisden, M. K., & Bowles, W. R. (2007). Factors affecting outcomes for single-tooth implants and endodontic restorations. *Journal of Endodontics*, *33*(4), 399–402. https://doi.org/10.1016/j.joen.2006.12.025 Erdogan, Ö., Uçar, Y., Tatlı, U., Sert, M., Benlidayı, M. E., & Evlice, B. (2015). A clinical prospective study on alveolar bone augmentation and dental implant success in patients with type 2 diabetes. *Clinical Oral Implants Research*, *26*(11), 1267–1275. https://doi.org/10.1111/clr.12450

Ghiraldini, B., Conte, A., Casarin, R. C., Casati, M. Z., Pimentel, S. P., Cirano, F. R.,
& Ribeiro, F. V. (2016). Influence of Glycemic Control on Peri-Implant Bone
Healing: 12-Month Outcomes of Local Release of Bone-Related Factors and Implant
Stabilization in Type 2 Diabetics: Peri-Implant Bone Healing in Type 2 Diabetics. *Clinical Implant Dentistry and Related Research*, 18(4), 801–809.
https://doi.org/10.1111/cid.12339

Gómez-Moreno, G., Aguilar-Salvatierra, A., Rubio Roldán, J., Guardia, J., Gargallo, J., & Calvo-Guirado, J. L. (2015). Peri-implant evaluation in type 2 diabetes mellitus patients: A 3-year study. *Clinical Oral Implants Research*, *26*(9), 1031–1035. https://doi.org/10.1111/clr.12391

Ibraheem, E. M. A., Hammad, H. G. H., & El-Sisy, A. M. E. (2019). Comparing marginal bone height changes around immediately and delayed implant-retained mandibular overdentures in controlled diabetic patients: A randomized clinical study. *Bulletin of the National Research Centre*, *43*(1), 198. https://doi.org/10.1186/s42269-019-0228-1

> Javed, F., & Romanos, G. E. (2009). Impact of diabetes mellitus and glycemic control on the osseointegration of dental implants: A systematic literature review. *Journal of Periodontology*, 80(11), 1719–1730. https://doi.org/10.1902/jop.2009.090283

> Keller, E. E., Tolman, D. E., & Eckert, S. E. (1999). Maxillary antral-nasal inlay autogenous bone graft reconstruction of compromised maxilla: A 12-year retrospective study. *The International Journal of Oral & Maxillofacial Implants*, *14*(5), 707–721.

Khader, Y. S., Dauod, A. S., El-Qaderi, S. S., Alkafajei, A., & Batayha, W. Q. (2006). Periodontal status of diabetics compared with nondiabetics: A meta-analysis. *Journal* of *Diabetes and Its Complications*, 20(1), 59–68. https://doi.org/10.1016/j.jdiacomp.2005.05.006

Lagunov, V. L., Sun, J., & George, R. (2019). Evaluation of biologic implant success parameters in type 2 diabetic glycemic control patients versus healthy patients: A meta analysis. *Journal of Investigative and Clinical Dentistry*, *10*(4). https://doi.org/10.1111/jicd.12478

Le, B. T., Follmar, T., & Borzabadi-Farahani, A. (2013). Assessment of short dental implants restored with single-unit nonsplinted restorations. *Implant Dentistry*, 22(5), 499–502. https://doi.org/10.1097/ID.0b013e31829afaf2

Levin, L., Ofec, R., Grossmann, Y., & Anner, R. (2011). Periodontal disease as a risk for dental implant failure over time: A long-term historical cohort study. *Journal of Clinical Periodontology*, *38*(8), 732–737. https://doi.org/10.1111/j.1600-051X.2011.01745.x

Loo, W., Jin, L., Cheung, M., & Wang, M. (2009). The impact of diabetes on the success of dental implants and periodontal healing. *Afr J Biotechnol*, *8*, 5122–5127.

Michaeli, E., Weinberg, I., & Nahlieli, O. (2009). Dental implants in the diabetic patient: Systemic and rehabilitative considerations. *Quintessence International (Berlin, Germany: 1985)*, 40(8), 639–645.

Moraschini, V., Poubel, L. A. da C., Ferreira, V. F., & Barboza, E. dos S. P. (2015). Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. *International Journal of Oral and Maxillofacial Surgery*, 44(3), 377–388. https://doi.org/10.1016/j.ijom.2014.10.023

> Morris, H. F., Ochi, S., & Winkler, S. (2000). Implant survival in patients with type 2 diabetes: Placement to 36 months. *Annals of Periodontology*, *5*(1), 157–165. https://doi.org/10.1902/annals.2000.5.1.157

> Moy, P. K., Medina, D., Shetty, V., & Aghaloo, T. L. (2005). Dental implant failure rates and associated risk factors. *The International Journal of Oral & Maxillofacial Implants*, 20(4), 569–577.

Oates, T. W., Dowell, S., Robinson, M., & McMahan, C. A. (2009). Glycemic Control and Implant Stabilization in Type 2 Diabetes Mellitus. *Journal of Dental Research*, 88(4), 367–371. https://doi.org/10.1177/0022034509334203

Oates, T. W., Galloway, P., Alexander, P., Vargas Green, A., Huynh-Ba, G., Feine, J., & McMahan, C. A. (2014). The effects of elevated hemoglobin A(1c) in patients with type 2 diabetes mellitus on dental implants: Survival and stability at one year. *Journal of the American Dental Association (1939)*, *145*(12), 1218–1226. https://doi.org/10.14219/jada.2014.93

Oates, T. W., Huynh-Ba, G., Vargas, A., Alexander, P., & Feine, J. (2013). A critical review of diabetes, glycemic control, and dental implant therapy. *Clinical Oral Implants Research*, 24(2), 117–127. https://doi.org/10.1111/j.1600-0501.2011.02374.x

Ormianer, Z., Block, J., Matalon, S., & Kohen, J. (2018). The Effect of Moderately Controlled Type 2 Diabetes on Dental Implant Survival and Peri-implant Bone Loss: A Long-Term Retrospective Study. *The International Journal of Oral & Maxillofacial Implants*, *33*(2), 389–394. https://doi.org/10.11607/jomi.5838

Quirino, M. R., Birman, E. G., & Paula, C. R. (1995). Oral manifestations of diabetes mellitus in controlled and uncontrolled patients. *Brazilian Dental Journal*, *6*(2), 131–136.

Sghaireen, M. G., Alduraywish, A. A., Srivastava, K. C., Shrivastava, D., Patil, S. R., Al Habib, S., Hamza, M., Ab Rahman, S., Lynch, E., & Alam, M. K. (2020). Comparative Evaluation of Dental Implant Failure among Healthy and Well-Controlled Diabetic Patients-A 3-Year Retrospective Study. *International Journal of Environmental Research and Public Health*, *17*(14), E5253. https://doi.org/10.3390/ijerph17145253

Shang, R., & Gao, L. (2021). Impact of hyperglycemia on the rate of implant failure and peri-implant parameters in patients with type 2 diabetes mellitus. *The Journal of*

> *the American Dental Association*, *152*(3), 189-201.e1. https://doi.org/10.1016/j.adaj.2020.11.015

> Sundar, G., Sridharan, S., Sundaram, R. R., Prabhu, S., Rao, R., & Rudresh, V. (2019). Impact of well-controlled type 2 diabetes mellitus on implant stability and bone biomarkers. *The International Journal of Oral & Maxillofacial Implants*, *34*(6), 1441–1449. https://doi.org/10.11607/jomi.7547

Tawil, G., Younan, R., Azar, P., & Sleilati, G. (2008). Conventional and advanced implant treatment in the type II diabetic patient: Surgical protocol and long-term clinical results. *The International Journal of Oral & Maxillofacial Implants*, *23*(4), 744–752.

van Steenberghe, D., Jacobs, R., Desnyder, M., Maffei, G., & Quirynen, M. (2002). The relative impact of local and endogenous patient-related factors on implant failure up to the abutment stage. *Clinical Oral Implants Research*, *13*(6), 617–622. https://doi.org/10.1034/j.1600-0501.2002.130607.x

Zupnik, J., Kim, S., Ravens, D., Karimbux, N., & Guze, K. (2011). Factors associated with dental implant survival: A 4-year retrospective analysis. *Journal of Periodontology*, 82(10), 1390–1395. https://doi.org/10.1902/jop.2011.100685