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ABSTRACT 21 
Background 22 
A primary goal of precision medicine is to identify patient subgroups and infer their underlying disease processes, 23 
with the aim of designing targeted interventions. However, few methods automatically identify both patient 24 
subgroups and their co-occurring characteristics simultaneously, measure their significance, and visualize the 25 
results. Such methods could enhance the interpretability of patient subgroups, and inform the design of 26 
classification and predictive models. 27 

Objectives 28 
To analyze patient subgroups in hospital readmitted patients using a three-step modeling approach. (1) Visual 29 
analytical modeling to automatically identify patient subgroups and their co-occurring comorbidities, and 30 
determine their statistical significance and clinical interpretability. (2) Classification modeling to classify patients 31 
into subgroups and measure its accuracy. (3) Prediction modeling to predict a patient’s risk of readmission and 32 
compare its accuracy with and without patient subgroup information. 33 

Methods  34 
We extracted 2013-2014 Medicare data related to hospital readmission in three conditions: chronic obstructive 35 
pulmonary disease (COPD), congestive heart failure (CHF), and total hip/knee arthroplasty (THA/TKA). For each 36 
condition, we extracted cases defined as patients readmitted within 30 days of hospital discharge, and controls 37 
defined as patients not readmitted within 90 days of discharge, matched by age, gender, race, and Medicaid 38 
eligibility (n[COPD]=29,016, n[CHF]=51,550, n[THA/TKA]=16,498). These data were analyzed using: (1) bipartite 39 
networks to identify patient subgroups based on frequently co-occurring high-risk comorbidities; (2) multinomial 40 
logistic regression to classify patients into subgroups; and (3) hierarchical logistic regression to predict the risk 41 
of hospital readmission using subgroup membership, compared to standard logistic regression without subgroup 42 
membership. 43 

Results 44 
In each condition, the visual analytical model identified patient subgroups that were statistically significant 45 
(Q=0.17, 0.17, 0.31; P<.001, <.001, <.05), were significantly replicated (RI=0.92, 0.94, 0.89; P<.001, <.001, <.01), 46 
and were clinically meaningful to clinicians. (2) In each condition, the classification model had high accuracy in 47 
classifying patients into subgroups (mean accuracy=99.60%, 99.34%, 99.86%). (3) In two conditions (COPD, 48 
THA/TKA), the hierarchical prediction model had a small but statistically significant improvement in 49 
discriminating between the readmitted and not readmitted patients as measured by net reclassification 50 
improvement (NRI=.059, .11), but not as measured by the C-statistic or integrated discrimination improvement 51 
(IDI). 52 

Conclusions 53 
While the visual analytical models identified statistically and clinically significant patient subgroups, the results 54 
pinpoint the need to analyze subgroups at different levels of granularity for improving the interpretability of 55 
intra- and inter-cluster associations. The high accuracy of the classification models reflects the strong separation 56 
of the patient subgroups despite the size and density of the datasets. Finally, the small improvement in predictive 57 
accuracy suggests that comorbidities alone were not strong predictors for hospital readmission, and the need 58 
for more sophisticated subgroup modeling methods. Such advances could improve the interpretability and 59 
predictive accuracy of patient subgroup models for reducing the risk of hospital readmission and beyond.  60 
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INTRODUCTION 61 
Background 62 
A wide range of studies [1-9] on topics ranging from molecular to environmental determinants of health have 63 
shown that most humans tend to share a subset of characteristics (e.g., comorbidities, symptoms, genetic 64 
variants), forming distinct patient subgroups. A primary goal of precision medicine is to identify such patient 65 
subgroups and infer their underlying disease processes to design interventions targeted to those processes [2, 66 
10]. For example, recent studies in complex diseases such as breast cancer [3, 4], asthma [5-7] and COVID-19 67 
[11] have revealed patient subgroups, each with different underlying mechanisms precipitating the disease, and 68 
therefore each requiring different interventions. 69 

A critical requirement for designing such interventions is the clinical interpretability of patient subgroups. Such 70 
interpretability requires clinicians to understand (a) how characteristics (e.g., comorbidities, symptoms, genetic 71 
variants) frequently and significantly co-occur across patients, and (b) the risk for adverse outcomes (e.g., 72 
mortality, hospital readmission) of patient subgroups that have those co-occurrences. An integration of the co-73 
occurrence of characteristics, with the risk of outcomes in patient subgroups, is critical to infer the disease 74 
processes underlying each patient subgroup, and to design precision interventions targeted to those patient 75 
subgroups. However, few methods automatically identify both patient subgroups and their co-occurring 76 
characteristics simultaneously, which is important for measuring the risk for adverse outcomes and inferring 77 
their mechanisms. Such integrated methods could enhance the interpretability of patient subgroups by clinicians 78 
for designing interventions, and for informing the design of classification and predictive models that provide 79 
clinical decision support. 80 

To address this need, we used a visual analytical method to identify and analyze patient subgroups in hospital 81 
readmitted patients. While we have previously demonstrated [12] the use of visual analytics to identify patient 82 
subgroups and their characteristics in hospital readmission, here we explore how the approach generalizes 83 
across three hospital readmission conditions and its use in classification and predictive modeling. This was done 84 
through an analytical framework for Modeling and Interpreting Patient Subgroups (MIPS) which used a three-85 
step modeling approach: (1) Visual analytical modeling through bipartite networks to automatically identify 86 
patient subgroups and their co-occurring characteristics, and determine their statistical significance and clinical 87 
interpretability. (2) Classification modeling through multinomial logistic regression to classify patients into 88 
subgroups. (3) Prediction modeling through logistic regression with and without subgroup information to predict 89 
the risk of hospital readmission. Application of the MIPS analytical framework to three datasets helped pinpoint 90 
methodological and data limitations in our approach, which provided implications for improving the 91 
interpretability of patient subgroups in large and dense datasets, and for the design of clinical decision support 92 
systems to prevent adverse outcomes such as hospital readmissions. 93 

Current Approaches for Identifying Patient Subgroups 94 
A patient subgroup is a subset of patients drawn from a population (e.g., older adults) that share one or more 95 
characteristics (e.g., renal failure and diabetes). Patients have been divided into subgroups by using (a) 96 
investigator-selected variables such as race for developing hierarchical regression models [13], or assigning 97 
patients to different arms of a clinical trial, (b) existing classification systems such as the Medicare Severity-98 
Diagnosis Related Group (MS-DRG) [14] to assign patients into a disease category for purposes of billing, and (c) 99 
computational methods such as classification [15-17] and clustering [5, 18] to discover patient subgroups from 100 
data (also referred to as subtypes or phenotypes depending on the condition and variables analyzed). 101 

One of the simplest computational methods to identify patient subgroups is by enumerating conjunctions 102 
(identify all pairs, all triples, etc.) of variables such as comorbidities [19] that co-occur across patients and then 103 
examining the most prevalent subgroups. While such approaches are intuitive, they can lead to a combinatorial 104 
explosion (e.g., enumerating combinations of the 31 Elixhauser comorbidities would lead to 231 or 2147483648 105 
combinations), and most combinations do not incorporate the full range of comorbidities (e.g., the most 106 
frequent pair of comorbidities ignores other comorbidities that might exist in the profile of patients with that 107 
pair). Other approaches use unipartite clustering methods [17, 18] (e.g., clustering patients or comorbidities, but 108 
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not both together) such as k-means and hierarchical clustering; and dimensionality-reduction methods such as 109 
principal component analysis (PCA) [17] to identify principal components to define a reduced dimensionality 110 
plane on which patients or comorbidities are projected, which are then clustered using unipartite methods such 111 
as k-means (together referred to as spectral clustering).  112 

However, because these methods are unipartite, there is no agreed-upon method to identify the patient 113 
subgroup defined by a cluster of characteristics, or vice-versa, which substantially reduces the interpretability of 114 
the results. Furthermore, such methods have well-known limitations, including (a) requiring a user-defined input 115 
for a similarity measure (e.g., Jaccard distance) to calculate the similarity between pairs of patients based on 116 
their profiles, or pairs of characteristics based on how their co-occurrence across patients, (b) requiring a user-117 
defined input for the expected number of clusters, and (c) the absence of a quantitative measure to measure 118 
the quality of the clustering, critical for measuring the statistical significance of the clustering.   119 

More recent bipartite network analytical 120 
methods [20] have attempted to address 121 
these limitations by automatically identifying 122 
biclusters [18, 21, 22] (e.g., clustering of 123 
patients and comorbidities simultaneously). 124 
A network consists of nodes and edges; 125 
nodes represent one or more types of 126 
entities (e.g., patients or comorbidities), and 127 
edges between the nodes represent a 128 
specific relationship between the entities. 129 
Figure 1A shows a unipartite network, where 130 
nodes are of the same type (often used to 131 
analyze co-occurrence of comorbidities [23]). 132 
In contrast, Figure 1B shows a bipartite 133 
network where nodes are of two types, and 134 
edges exist only between different types 135 
such as between patients (circles) and 136 
comorbidities (triangles). This approach uses bipartite modularity maximization [20, 24-26], a graph-theoretic 137 
approach to (a) quantitatively output the number, size, and statistical significance [18, 27] of biclusters 138 
(consisting of a patient subgroup and its most frequently co-occurring comorbidities), and (b) visualize those 139 
biclusters using layout algorithms [28, 29] to enable their clinical interpretation [11, 12, 30-36]. As shown in Fig. 140 
1C, a bipartite visualization could enable clinicians to inspect the bicluster associations, infer potential 141 
mechanisms in each patient subgroup, and design targeted interventions. Our prior use of bipartite networks 142 
have enabled three types of discoveries related to subgroups: (1) novel subtypes (e.g., in asthma [33]); (2) 143 
frequency of known subtypes in a new condition (e.g., in COVID-19 [11]), and (3) risk of subtypes for adverse 144 
outcomes (e.g., in hip fracture hospital readmission [12]). Furthermore, the above subgroups could be used to 145 
train classifiers for classifying a new patient into a subgroup, and to build predictive models that leverage such 146 
patient subgroups to predict an outcome in a new patient. 147 

Leveraging Patient Subgroups in Predictive Modeling 148 

Patient subgroups are leveraged in predictive modeling using two common approaches [37] that trade-off 149 
simplicity with accuracy: (1) Hierarchical Modeling adds subgroup information (e.g., a subgroup membership 150 
variable specifying to which subgroup a patient belongs, predicted by a classifier) to a Standard Model without 151 
subgroup membership information to improve accuracy. However, while this approach is simple, it potentially 152 
trade-offs accuracy as the model’s parameters (e.g., slope and intercept of a regression model) are fixed for all 153 
patients, regardless of subgroup membership. (2) Subgroup-Specific Modeling develops multiple models, one 154 
for each subgroup, allowing each model to have different model parameters, potentially improving accuracy. 155 
However, this improved accuracy trade-offs simplicity as the evaluation requires several additional steps: build 156 
multiple predictive models, predict the outcomes for each patient using the appropriate model (predicted by a 157 

 
Fig. 1. Comparison between a unipartite (A) and a bipartite network 
representation (B), and how a bipartite network analysis can 
automatically identify biclusters containing patient subgroups and 
their most frequently co-occurring comorbidities (C).  
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classifier), aggregate the accuracy of predictions across all patients, and compare it to the predictive accuracy of 158 
all patients generated from the Standard Model. Given this complexity, we used the simpler Hierarchical 159 
Modeling approach as a preliminary step for leveraging patient subgroups. 160 

The Need for Automatic Identification of Patient Subgroups in Hospital Readmission 161 
An estimated one in five elderly patients (over 2.3 million Americans) is readmitted to a hospital within 30-days 162 
after being discharged [38]. While many readmissions are unavoidable, an estimated 75% of readmissions are 163 
unplanned and mostly preventable [39], imposing a significant burden in terms of mortality, morbidity, and 164 
resource consumption. Across all conditions, unplanned readmissions cost almost $17 billion annually in the US 165 
[39], making them an ineffective use of costly resources, and therefore closely scrutinized as a marker for the 166 
poor quality of care by organizations such as the Centers for Medicare & Medicaid Services (CMS) [40]. 167 

To address this epidemic of hospital readmission, CMS sponsored the development of models to predict the 168 
patient-specific risk of readmission in specific index conditions such as chronic obstructive pulmonary disease 169 
(COPD) [41], congestive heart failure (CHF) [42], and hip/knee arthroplasty (THA/TKA) [43]. These models have 170 
two characteristics that are pertinent to the current study: 171 

1. Inclusion of Comorbidities as Independent Variables. The independent variables (predictors) in the CMS 172 
models were prior comorbidities (as recorded in Medicare claims data), and demographics (age, gender, and 173 
race). The use of comorbidities was based on extensive literature showing the critical role comorbidities play 174 
in increasing the risk for adverse outcomes in older adults [38]. For example, almost two-thirds of older 175 
adults have two or more comorbid conditions, resulting in a heightened risk for adverse health outcomes 176 
such as hospital readmission and mortality [44]. Furthermore, multiple comorbidities often do not act 177 
independently, but rather interact with each other, resulting in processes that can precipitate readmission 178 
[45]. For example, due to the systemic nature of renal disease, a hip fracture patient with congestive heart 179 
failure and renal failure is at a higher risk of renal failure exacerbation, precipitating a hospital readmission, 180 
compared to one who only had renal failure [12]. To enable a head-to-head comparison with the CMS 181 
predictive models, we used the same independent variables for our predictive models. 182 

2. Exclusion of Patient Subgroups. None of the CMS models used information related to patient subgroups. 183 
Therefore, while such models provide the risk of readmission for an individual patient, they do not leverage 184 
the existence of patient subgroups known to be present among patients with hospital readmission [12]. Such 185 
patient subgroups could be used in hierarchical regression models to potentially achieve higher predictive 186 
accuracy. Furthermore, while the primary focus of the CMS models was on predicting the risk of readmission 187 
of a patient, they provide little clinical guidance for the design of clinical interventions to address that risk. 188 
In contrast, if a patient belongs to a previously-identified patient subgroup with a comorbidity profile (often 189 
referred to as a phenotype), such information could be leveraged to classify patients into the best-fitting 190 
phenotype, and then to use that classification as a starting point to design clinical interventions targeted to 191 
the patient. 192 

Here we demonstrate the development and use of an analytical framework for Modeling and Interpreting 193 
Patient Subgroups (MIPS) by using a three-step modeling approach: (1) bipartite networks to automatically 194 
identify subgroups of readmitted patients and their frequently co-occurring comorbidities, (2) classifiers to 195 
classify patients into a best-fitting subgroup, and (3) hierarchical predictive models which leverage the subgroup 196 
information to predict each patient’s risk of readmission. This analytical framework was tested across three 197 
index conditions where readmission frequently occurs. 198 

METHOD 199 
Overview of Method 200 
Fig. 2 provides a conceptual description of the data inputs and outputs from the three-step modeling in MIPS. 201 
As shown, the visual analytical model identifies the patient subgroups, and visualizes them through a network. 202 
The classification model predicts subgroup membership for cases and controls, and uses it to measure the risk 203 
of readmission within each subgroup based on its proportion of cases. This risk information is juxtaposed with 204 
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the visualization to enable clinicians 205 
interpret the readmitted patient 206 
subgroups. Finally, the predictive model 207 
uses the subgroup membership 208 
assignment of cases and controls to 209 
predict the readmission risk of a patient. 210 

Data Description  211 
Study population. We analyzed patients 212 
hospitalized for chronic obstructive 213 
pulmonary disease (COPD), congestive 214 
heart failure (CHF), and total hip/knee 215 
arthroplasty (THA/TKA). We selected 216 
these three index conditions because: (a) 217 
hospitalizations for each of these 218 
conditions are highly prevalent in older 219 
adults [38]; (b) hospitals report very high 220 
variations in their readmission rates [38]; 221 
and (c) there exist well-tested 222 
readmission prediction models for each of 223 
these conditions that did not consider 224 
patient subgroups [41-43, 46, 47].  225 

For each index condition, we used the 226 
same inclusion and exclusion criteria used 227 
to develop the CMS models, but with the 228 
most recent years (2013-2014) provided 229 
by Medicare when we started the project. 230 
We used 100% of the 30-day readmitted 231 
patients in 2013 and 2014 Medicare claims data, from which we extracted all patients that were admitted to an 232 
acute care hospital on or after July 2013-August 2014 with a principal diagnosis of the index condition, were 66 233 
years of age or older, and were enrolled in both Medicare parts A and B fee-for-service plans in the 6 months 234 
before admission. Furthermore, we excluded patients who were transferred from other facilities, died during 235 
the hospitalization, or transferred to another acute care hospital. Similar to the CMS models, we selected the 236 
first admission for patients with multiple admissions during the study period, and did not use Medicare Part D 237 
(related to prescription medications).  238 

Next, we extracted 100% controls who were not readmitted for at least 90 days since discharge. CMS uses this 239 
90-day window of no re-admittance to ensure that the controls are substantially free of complications that result 240 
in readmission during this period [48, 49]. A small percentage (0.8%) of Medicare patients had “unknown race” 241 
for the Race attribute, so we grouped “unknown race” and “other race” and ensured that there was an equal 242 
number of them in the cases and control datasets. The low rate of missing data on race had too low a risk for 243 
bias to warrant a sensitivity analysis. Appendix-1 shows the detailed inclusion and exclusion criteria used to 244 
extract cases and controls for COPD, CHF, and THA/TKA, and the respective numbers of patients extracted at 245 
each step, in addition to the International Classification of Diseases, Ninth Version codes (ICD-9) codes for each 246 
of the three index conditions selected for analysis. Each modeling method used appropriate subsets of the above 247 
data described in the sections below. 248 

Variables. The dependent variable (outcome) was whether a patient with an index admission (COPD, CHF, 249 
THA/TKA) had an unplanned readmission to an acute-care hospital within 30 days of discharge, as was recorded 250 
in the MEDPAR file (inpatient claims) in the Medicare database.  251 

 
Fig. 2. Inputs and outputs for the three-step modeling in MIPS. The visual 
analytical model quantitatively identifies the patient subgroups, and 
visualizes them using a bipartite network. The classification model 
predicts subgroup membership of cases and controls in addition to the 
risk of each subgroup, which is juxtaposed with the visualization to 
enable clinicians to qualitatively interpret the readmission subgroups. 
The predictive model uses subgroup membership, comorbidities, and 
demographics to predict the risk of a new patient for being readmitted. 
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The independent variables included comorbidities, and patient demographics (age, gender, race). Comorbidities 252 
common in older adults were derived from three established comorbidity indices: Charlson Comorbidity Index 253 
(CCI) [50], Elixhauser Comorbidity Index (ECI) [51], and the Center for Medicare and Medicare Services Condition 254 
Categories (CMS-CC) used in the CMS readmission models [52] (the variables in the CMS models varied across 255 
the index conditions). As these indices had overlapping comorbidities, we derived a union of them, which was 256 
verified by the clinician stakeholders. They recommended that we also include the following additional variables 257 
as they were pertinent to each index condition: COPD (history of sleep apnea, mechanical ventilation); CHF 258 
(history of coronary artery bypass graft surgery); THA/TKA (congenital deformity of the hip joint, post-traumatic 259 
osteoarthritis). For each patient in our cohort, we extracted the above comorbidities and variables from the 260 
physicians, outpatient, and inpatient Medicare claims data in the 6 months before (to guard against miscoding), 261 
and on the day of the index admission.  262 

Analytical and Evaluation Approach 263 
Overview of the MIPS Framework. Table 1 provides a summary of the inputs and outputs of the three-step 264 
modeling approach in the MIPS framework, which was applied across the three index conditions.  265 

Visual Analytical Modeling. The data used to build the visual analytical model consisted of 100% cases, and an 266 
equal number of 1:1 matched controls extracted by randomly selecting a control without replacement to match 267 
each case based on age, gender, race/ethnicity, and Medicaid eligibility [53]. The resulting dataset was divided 268 
randomly into a training (50%) and replication (50%) dataset (we use the term replication to avoid confusion 269 
with the term validation typically used in classification and prediction models). We used a bipartite network to 270 
 

Model Inputs Outputs 

1. Visual 
Analytical 
(Bipartite Network 
Analysis) 

• Training Dataset: 50% 
random sample of 100% 
cases, and an equal number 
of 1:1 matched controls 
(used only for feature 
selection) 

• Replication Dataset: 50% 
random sample of 100% 
cases and equal number of 
1:1 matched controls 

• Model Training 
Feature Selection: Set of comorbidities univariably significant in both the 
training and replication datasets 
Biclustering: Modularity (degree of biclusteredness) and its significance, 
number of biclusters (subgroups), and their patient and comorbidity 
members in the training and replication datasets 

• Model Replication 
Comorbidity Co-Occurrence: Rand Index (degree of replication), and its 
significance to measure replicability of comorbidity co-occurrence 

• Model Interpretation 
Visualization: Layout of the bipartite network juxtaposed with risk of 
individual comorbidities and subgroups 
Clinical Significance: Interpretation by clinicians for face validity of 
patient subgroups based on comorbidity co-occurrence, leading to 
inference of mechanisms precipitating readmission, and interventions 

2. Classification 
(Multinomial 
Logistic 
Regression) 

• Training Dataset: Random 
sample of 75% cases, with 
bicluster membership 

• Internal Validation Dataset: 
Random sample of 25% of 
cases (with subgroup 
membership used to validate 
the model) 

• Model Training 
Subgroup Membership: Probability of membership of each case to each 
subgroup (soft labels), with the highest used to determine subgroup 
membership (hard labels) 

• Model Internal Validation 
Internal Validation: Accuracy of classification model based on hard labels 

• Model Application 
Classification: Subgroup classification of 100% cases and 100% controls 
Subgroup Risk: Proportion of cases in each subgroup 

3. Prediction 
(Binary Logistic 
Regression, and 
Hierarchical Binary 
Logistic 
Regression) 

• Training Dataset: Random 
samples of 75% of 100% 
cases and controls, with 
subgroup membership 

• Internal Validation Dataset: 
Random sample of 25% of 
cases and controls (with 
case/control labels used to 
validate the model) 

• Model Training 
Predicted Risk: Each patient’s probability of being readmitted. 

• Model Internal Validation 
Internal Validation: C-statistic (discrimination), and calibration-in-the-
large and calibration slope (calibration) 

• Model Comparison 
Accuracy: Net Reclassification Improvement (NRI) and Integrated 
Discrimination Improvement (IDI) 

Table 1. Inputs used to train and replicate/validate the three models, and the analytical outputs they produced. 
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model the cases (30-day readmitted patients) and significant comorbidities in each index condition using the 271 
following steps: 272 

A. Model Training. The training of the bicluster network model consisted of the following two steps: 273 

I. Feature Selection. Given the large number of patients and comorbidities in the dataset, we used feature 274 
selection to identify comorbidities with the strongest signal and therefore interpretability for readmission 275 
using the following steps: (1) excluded comorbidities with prevalence less than 1% (as is commonly done 276 
in studies to reduce noise [54]); (2) selected significant comorbidities in the training dataset based on a 277 
2-way interaction test using odds ratio (OR) with directionality, and correcting for multiple testing using 278 
Bonferroni, and (3) tested the surviving comorbidities for replication in the replication dataset, and 279 
selected those that were significant in both datasets. Appendix-2 shows the number of comorbidities, 280 
and variables that were included in the analysis for each of the three index conditions. The above feature 281 
selection generated a single set of significant and replicated comorbidities used for the following bipartite 282 
network analysis. 283 

II. Biclustering. We used bipartite networks on the training dataset to analyze heterogeneity in readmission 284 
using the following steps. (1) Removed all cases that did not have any comorbidities (as the modularity 285 
maximization algorithm will trivially put disconnected nodes into a separate cluster). (2) Represented the 286 
cases (30-day readmitted patients in the training dataset) and their significant and replicated 287 
comorbidities (selected in Step A) as a bipartite network. As shown in Fig. 1, the nodes represented cases 288 
or comorbidities, and edges represented which case had which comorbidity. (3) Used a bipartite 289 
modularity maximization algorithm to identify the number of biclusters, their boundaries, and degree of 290 
biclusteredness using modularity. Modularity is defined as the fraction of edges falling within a cluster, 291 
minus the expected fraction of such edges in a network of the same size with randomly assigned edges 292 
[20]. Modularity ranges from -0.5 to +1, with values >0 indicating biclustering that is higher than can be 293 
expected by chance. We used the bipartite version of modularity [55, 56] to find biclusters in the network. 294 
(4) Measured the significance of the bicluster modularity by comparing it to a distribution of the same 295 
quantity generated from 1000 random permutations of the network, by preserving the network size 296 
(number of nodes) and the network density (number of edges). 297 

B. Model Replication. Repeated the above biclustering steps 1-4 to identify subgroups in the replication 298 
dataset, and compared the comorbidity co-occurrence in the training dataset, to that in the replication 299 
dataset using the Rand index (RI) [57]. RI measures the proportion of comorbidity pairs that co-occurred and 300 
did not co-occur in a cluster in the training and replication datasets (where 0=no inter-network cluster 301 
similarity, and 1=total inter-network cluster similarity). The significance of RI was measured by comparing it 302 
to a distribution of the same quantity generated from 1000 random permutations of the training and 303 
replication networks. All tests of statistical significance in Steps A and B were 2-sided. 304 

C. Model Interpretation. The model interpretation consisted of the following steps:  305 

I. Visualization. We used the following steps to visualize the network generated from the training dataset. 306 
(1) Used Fruchterman-Reingold (FR) [58], a force-directed algorithm to lay out the bipartite network. 307 
This layout algorithm pulls together nodes that are strongly connected, and pushes apart nodes that are 308 
not. This results in nodes with a similar pattern of connections to be placed close to each other in 309 
Euclidean space, and those that are dissimilar are pushed apart. (2) As the FR algorithm often cannot 310 
entirely separate clusters in large and dense networks, the network layout needs to be visually enhanced 311 
before it is interpretable by clinician stakeholders. Therefore, we used the ExplodeLayout algorithm [28, 312 
29] to separate the biclusters to reduce their visual overlap. This algorithm preserves the distances of 313 
nodes within a bicluster, but increases the distance of nodes between clusters to improve 314 
interpretability. (3) Juxtaposed the risk of readmission with the network visualization (in response to a 315 
request from the clinical stakeholders). This was done by (a) displaying comorbidity labels with their 316 
univariable ORs for readmission (measured in Step A) ranked by their odds ratios (ORs) for each 317 
subgroup, and (b) measuring the readmission risk for each patient subgroup based on the full case-318 
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control population (explained in more detail in the section on predictive modeling), and juxtaposing it 319 
with the respective subgroup. 320 

II. Clinical Interpretation. We used the following steps to solicit clinical interpretations of the above 321 
bipartite network. (1) Recruited a pulmonologist specializing in COPD and hospital readmission to 322 
interpret the COPD results, and a geriatrician with expertise in treating older adults in CHF and THA/TKA 323 
to interpret the respective results. (2) Requested each clinician stakeholder to interpret the patient 324 
subgroups, their mechanisms, and potential interventions to reduce the risk for readmission. 325 

Classification Modeling. As shown in the bipartite network example in Fig. 1, the biclusters identified through 326 
the modularity maximization algorithm contain patient subgroups and their most frequently co-occurring 327 
comorbidities with respect to other patients in the network. However, there are often many edges between 328 
biclusters, revealing that many patients within a bicluster have comorbidities that exist in other biclusters. As is 329 
true for most partitioning cluster methods, including modularity, membership of a new patient to each bicluster 330 
is therefore probabilistic. The classification of a patient into a cluster is therefore not defined by the inclusion or 331 
exclusion of comorbidities (e.g., hypertension and diabetes), but rather by the probability of being in a patient 332 
subgroup. Patients are therefore similar or different, not just in a handful of carefully-selected comorbidities 333 
while ignoring others, but based on all of their recorded comorbidities. This overall profile of patients reflects 334 
the reality of comorbid conditions.  335 

To model the above complexity, we used multinomial logistic regression [17] to develop classification models in 336 
each index condition. This approach has the advantage of generating probabilities (“soft labels”) for a patient to 337 
belong to each patient subgroup. The models were trained, internally validated, and then applied to generate 338 
information for the other two modeling methods, as described below: 339 

A. Model Training. The data used to build the classification model consisted of the training dataset and 340 
subgroup membership from the visual analytical model. We trained a multinomial logistic regression model 341 
using the above data, with independent variables that included comorbidities identified through feature 342 
selection done for the visual analytical modeling. Accuracy of the trained model was measured by calculating 343 
the percentage of times the model correctly classifed the cases into the subgroups, using the highest 344 
predicted probability across the subgroups (“hard labels”). 345 

B. Model Internal Validation. To internally validate the classifier, we randomly split the above data into training 346 
(75%) and testing (25%) datasets, 1000 times. For each iteration, we trained a model using the training 347 
dataset, and measured its accuracy on the testing dataset. This was done by predicting the subgroup 348 
membership using the highest predicted probability among all the subgroups. The overall predicted accuracy 349 
was then estimated by calculating the mean accuracy across the 1000 models. 350 

C. Model Application. Using the 100% cases, in addition to the 100% controls from July 2013-August 2014 351 
(representing the entire Medicare population of each index condtion from those years), we generated the 352 
following two types of information for use in the other models. (1) Used the classifier trained in Step A above, 353 
to classify 100% cases and 100% controls into a subgroup. This information was used by the subsequent 354 
predictive modeling. (2) While the visual analytical model used the 1:1 matched controls for feature 355 
selection, this cohort did not represent the entire population. Therefore, to accurately measure the 356 
subgroup risk, we used the entire case-control population classified into the subgroups (as described in the 357 
above step), and measured the proportion of cases in each subgroup. Furthermore, as requested by the 358 
clinicians, we juxtaposed these subgroup risks next to the respective subgroups in the bipartite network 359 
visualization, to improve their interpretability. 360 

Predictive Modeling. The data used to build the predictive models consisted of 100% cases and 100% controls, 361 
in addition to their subgroup membership generated from the above classification models. These data were 362 
randomly spilt into a training (75%) and validation (25%) dataset. The predictive models were trained, internally 363 
validated, and compared for predictive accuracy, as described below: 364 
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A. Model Training. We used the training dataset to train a Standard Model (binary logistic regression without 365 
subgroup membership similar to the CMS models), and a Hierarchical Model (binary logistic regression with 366 
subgroup membership), with 30-day unplanned readmission (yes vs. no) as the outcome. Independent 367 
variables for both models included comorbidities identified through the feature selection in each index 368 
condition (see Appendix-2), and demographics. The Hierarchical Model additionally included subgroup 369 
membership. 370 

B. Model Internal Validation. We used the validation dataset to internally validate the models through the 371 
following two measures: 372 

I. Discrimination (model’s ability to distinguish readmitted patients from those not readmitted) was 373 
measured using the C-statistic, which is identical to the area under the receiver operating characteristic 374 
(ROC) curve. Model discrimination was examined using box plots to show the average risk prediction for 375 
patients with and without readmission. 376 

II. Calibration (model’s agreement of the predicted probabilities with the observed risk) was measured using 377 
calibration-in-the-large, and calibration slope, which was examined through a calibration plot showing the 378 
proportion of patients actually admitted, versus deciles of predicted probability of having readmission. 379 
Good calibration is when calibration-in-the-large is close to zero, and the calibration slope is close to one. 380 
Since the large sample size overpowered the study, we did not measure the calibration based on statistical 381 
significance (e.g., P values of the Hosmer-Lemeshow and calibration indices). 382 

C. Model Comparisons. We used the chi-squared test to compare the C-statistic of the Standard Model to that 383 
of the Hierarchical Model. We also measured the C-statistic of the Standard Model applied to each subgroup 384 
separately. This enabled examination of how the Standard Model performed on patient subgroups to 385 
identify, for example, which subgroups underperformed when using the current Standard Model.  386 

Because the above models used the feature selection step to select comorbidities for use as independent 387 
variables, they differed from those used in the published CMS models. Therefore, to perform a head-to-head 388 
comparison with the published CMS models, we additionally developed a logistic regression model using 389 
independent variables that were identical to the published CMS model (CMS Standard Model), which was 390 
compared to the same model that included subgroup membership (CMS Hierarchical Model). We used the 391 
chi-squared test to compare the C-statistic of the CMS Standard Model to that from the CMS Hierarchical 392 
Model, in addition to the following measures of model accuracy: 393 

I. Net Reclassification Improvement (NRI) measured the proportion of patients whose predicted probability 394 
of readmission improved with reference to actual readmission status. We used two NRI statistics: (a) 395 
categorical NRI, which predicted readmission probabilities divided into 10 sequential categories ranging 396 
from 0-1, with improvement requiring a shift between categories; and (b) continuous NRI which is based 397 
on the proportions of patients with any improved predicted probability of readmission, regardless of the 398 
size of that improvement. 399 

II. Integrated Discrimination Improvement (IDI) measured the difference in the average improvement in 400 
predicted risks between the CMS Standard Model and the CMS Hierarchical Model.  401 

RESULTS  402 
Data 403 
Table 2 provides a summary of the number of cases and/or controls used to develop the three models in each 404 
condition.  405 

Visual Analytical Modeling 406 
The visual analytical modeling of readmitted patients in all three index conditions produced statistically and 407 
clinically significant patient subgroups and their most frequently co-occurring comorbidities, which were 408 
significantly replicated. Results from each condition are described below: 409 
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COPD. The inclusion and exclusion 410 
selection criteria (see Appendix-1) 411 
resulted in a training dataset 412 
(n=14,508 matched case/control 413 
pairs, of which 51 patient pairs with 414 
no dropped comorbidities), and a 415 
replication dataset (n=14,508 416 
matched case/control pairs, of 417 
which 51 patient pairs with no 418 
dropped comorbidities), matched 419 
by age, sex, race, and Medicaid 420 
eligibility (a proxy for economic 421 
status). The feature selection 422 
method (see Appendix-2) used 45 423 
unique comorbidities identified 424 
from a union of the three 425 
comorbidity indices, plus 2 426 
condition-specific comorbidities. Of 427 
these, 3 were removed because of 428 
<1% prevalence. Of the remaining, 429 
30 survived the significance and replication testing with Bonferroni correction. The visual analytical model used 430 
these surviving comorbidities (d=30), and cases consisting of CHF readmitted patients with at least one of those 431 
comorbidities (n=14,457). As shown in Fig. 3, the bipartite network analysis identified 4 biclusters, each 432 

 

Model Training Replication/ 
Validation Total 

Visual Analytical* 
  COPD (cases/controls) 14,508/14,508 14,508/14,508 29,016/29,016 
  CHF (cases/controls) 25,775/25,775 25,775/25,775 51,550/51,550 
  THA/TKA (cases/controls) 8,249/8,249 8,249/8,249 16,498/16,948 
Classification 
  COPD (cases) 10,842 3,615 14,457 
  CHF (cases) 19,254 6,418 25,672 
  THA/TKA (cases) 5,257 1,753 7,010 
Prediction 
  COPD (cases/controls) 21,692/117,839 7,334/39,176 29,026/157,015 
  CHF (cases/controls) 38,728/183,093 12,845/61,095 51,573/244,188 
  THA/TKA (cases/controls) 12,376/255,203 41,44/85,049 16,520/340,252 

Table 2. Training and replication/validation datasets used to develop the 
three models in each of the three index conditions.  
*The visual analytical models used 1:1 matched controls for the feature 
selection, and used only cases for the bipartite networks to analyze 
heterogeneity in readmission. The numbers shown for the visual analytical 
models are before removing patients with no comorbidities. The resulting cases-
only datasets were used for the classification modelling as shown. 

  
Fig. 3. The COPD visual analytical model showing four biclusters consisting of patient subgroups and their most 
frequently co-occurring comorbidities (whose labels are ranked by their univariable ORs, shown within 
parentheses), and their risk of readmission (shown in blue text). 

Abbreviations: CardioRespShock, cardiorespiratory shock; COPD, chronic obstructive pulmonary disease; GI, 
gastrointestinal; Id, identifier; OB, obesity; Pneu, pneumonia; Psych, psychiatric; Uncomp, uncomplicated; HD_other, 
other and unspecified heart disease; MV, history of mechanical ventilation. 
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representing a subgroup of readmitted COPD patients and their most frequently co-occurring comorbidities. The 433 
biclustering had significant modularity (Q=0.17, z=7.3, P<.001), and significant replication (RI=0.92, z=11.62, 434 
P=<.001) of comorbidity co-occurrence. Furthermore, as requested by the clinician stakeholders, we juxtaposed 435 
a ranked list of comorbidities based on their ORs for readmission in each bicluster, in addition to the risk for each 436 
of the patient subgroups.   437 

The pulmonologist inspected the visualization and noted that the readmission risk of the patient subgroups had 438 
a wide range (12.7% to 19.6%) with clinical (face) validity. Furthermore, the co-occurrence of comorbidities in 439 
each patient subgroup was clinically meaningful with interpretations for each subgroup. Subgroup-1 had a low 440 
disease burden with uncomplicated hypertension leading to the lowest risk (12.7%). This subgroup represented 441 
patients with early organ dysfunction and would benefit from using checklists such as regular monitoring of 442 
blood pressure in pre-discharge protocols to reduce the risk of readmission. Subgroup-3 had mainly psychosocial 443 
comorbidities, which could lead to aspiration precipitating pneumonia leading to an increased risk for 444 
readmission (15.9%). This subgroup would benefit from early consultation with specialists (e.g., psychiatrists, 445 
therapists, neurologists, and geriatricians) that had expertise in psycho-social comorbidities, with a focus on the 446 
early identification of aspiration risks and precautions. Subgroup-2 had diabetes with complications, renal failure 447 
and heart failure and therefore had higher disease burden leading to an increased risk for readmission (17.8%) 448 
compared to Subgroup-1. This subgroup had metabolic abnormalities with greater end-organ dysfunction and 449 
would therefore benefit from case management from advanced practice providers (e.g., nurse practitioners) 450 
with rigorous adherence to established guidelines to reduce the risk of readmission. Subgroup-4 had diseases 451 
with end-organ damage including gastro-intestinal disorders, and therefore had the highest disease burden and 452 
risk for readmission (19.6%). This subgroup would also benefit from case management with rigorous adherence 453 
to established guidelines to reduce the risk of readmission. Furthermore, as patients in this subgroup typically 454 
experience complications that could impair their ability to make medical decisions, they should be provided with 455 
early consultation with a palliative care team to ensure that care interventions align with patients' preferences 456 
and values.  457 

CHF. The inclusion and exclusion selection criteria (see Appendix-1) resulted in a training dataset (n=25,775 458 
matched case/control pairs, of which 103 patient pairs with no dropped comorbidities) and a replication dataset 459 
(n=25,775 matched case/control pairs, of which 104 patient pairs with no dropped comorbidities), matched by 460 
age, sex, race, and Medicaid eligibility (a proxy for economic status). The feature selection method (see 461 
Appendix-2) used 42 unique comorbidities identified from a union of the three comorbidity indices, plus 1 462 
condition-specific comorbidity. Of these, 1 comorbidity was removed because of <1% prevalence. Of those 463 
remaining, 37 survived the significance and replication testing with Bonferroni correction. The visual analytical 464 
model (Fig. 4) used these surviving comorbidities (d=37), and cases consisting of CHF readmitted patients with 465 
at least one of those comorbidities (n=25,672). As shown in Fig. 4, the bipartite network analysis of the CHF cases 466 
identified 4 biclusters, each representing a subgroup of readmitted CHF patients and their most frequently co-467 
occurring comorbidities. The analysis revealed that the biclustering had significant modularity (Q=0.17, z=8.69, 468 
P<.001), and significant replication (RI=0.94, z=17.66, P<.001) of comorbidity co-occurrence. Furthermore, as 469 
requested by the clinicians, we juxtaposed a ranked list of comorbidities based on their ORs for readmission in 470 
each bicluster, in addition to the risk for each of the patient subgroups.  471 

The geriatrician inspected the visualization and noted that the readmission risk of the patient subgroups, ranging 472 
from 15.1% to 19.9%, was wide with clinical (face) validity. Furthermore, the co-occurrence of comorbidities in 473 
each patient subgroup was clinically meaningful. Subgroup-1 had chronic but stable conditions, and therefore 474 
had the lowest risk for readmission (15.1%). Subgroup-3 had mainly psychosocial comorbidities, but were not as 475 
clinically unstable or fragile compared to subgroups 2 and 4, and therefore had medium risk (16.6%). Subgroup-476 
2 had severe chronic conditions, making them clinically fragile (with potential benefits from early palliative and 477 
hospice care referrals), and were therefore at high risk for readmission if non-palliative approaches were used 478 
(19.9%). Subgroup-4 had severe acute conditions which were also clinically unstable, associated with substantial 479 
disability and care debility, and therefore at high risk for readmission and recurrent intensive care unit (ICU) use 480 
(19.9%).  481 
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THA/TKA. The inclusion and exclusion selection criteria (see Appendix-1) resulted in a training dataset (n=8,249 482 
matched case/control pairs, of which 1239 patient pairs with no dropped comorbidities) and a replication 483 
dataset (n=8,249 matched case/control pairs, of which 1264 patient pairs with no dropped comorbidities), 484 
matched by age, sex, race, and Medicaid eligibility (a proxy for economic status). The feature selection (see 485 
Appendix-2) used 39 unique comorbidities identified from the three comorbidity indices plus 2 condition-specific 486 
comorbidities. Of these, 11 comorbidities were removed because of <1% prevalence. Of the remaining, 11 487 
survived the significance and replication testing with Bonferroni correction. The visual analytical model (Fig. 5) 488 
used these surviving comorbidities (d=11), and cases consisting of readmitted patients with at least one of those 489 
comorbidities (n=7,010).  490 

As shown in Fig. 5, the bipartite network analysis of the THA/TKA cases identified 7 biclusters, each representing 491 
a subgroup of readmitted THA/TKA patients and their most frequently co-occurring comorbidities. The analysis 492 
revealed that the biclustering had significant modularity (Q=0.31, z=2.52, P=.011), and significant replication 493 
(RI=0.89, z=3.15, P=.002) of comorbidity co-occurrence. Furthermore, as requested by the clinician stakeholders, 494 
we juxtaposed a ranked list of comorbidities based on their ORs for readmission in each bicluster, in addition to 495 
the risk for each of the patient subgroups.  496 

The geriatrician inspected the network and noted that TKA patients, in general, were healthier compared to THA 497 
patients, and therefore the network was difficult to interpret when the two index conditions were merged 498 
together. While our analysis was constrained because we were using the conditions as defined by CMS, these 499 
results nonetheless suggest that the interpretations did not suffer from a confirmation bias (manufactured 500 
interpretations to fit the results). However, he noted that the range of readmission risk had clinical (face) validity. 501 

 
Fig. 4. The CHF visual analytical model showing four biclusters consisting of patient subgroups and their most 
frequently co-occurring comorbidities (whose labels are ranked by their univariable ORs, shown within 
parentheses), and their risk of readmission (shown in blue text). 

Abbreviations: CABG, coronary artery bypass graft; CardioRespShock, cardiorespiratory shock; CHF, congestive heart 
failure; comp, complicated; COPD, chronic obstructive pulmonary disease; GI, gastrointestinal; Id, identifier; Neuro, 
neurologic; OB, obesity; Pneu, pneumonia; Psych, psychiatric; Uncomp, uncomplicated; uri, urinary; w_comp, with 
complications; HD_other, other and unspecified heart disease. 
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Furthermore, subgroups 2, 4, and 5 had more severe comorbidities related to lung, heart, and kidney, and 502 
therefore had a higher risk for readmission compared to subgroups 1, 6, and 7 that had less severe comorbidities 503 
with a lower risk for readmission. In addition, subgroups 2, 5, 6 and 7 would benefit from chronic care case 504 
management from advanced practice providers (e.g., nurse practitioners). Finally, subgroups 2 and 5 could 505 
benefit from using well-established guidelines for CHF and COPD, subgroup 7 would benefit from mental health 506 
care and management of psycho-social comorbidities, and subgroup 6 would benefit from care for obesity and 507 
metabolic disease management.  508 

Classification Modeling  509 
The classification model used multinomial logistic regression in each index condition (see Appendix-3 for the 510 
model coefficients) to predict the membership of patients using subgroups (identified from the above visual 511 
analytical models). The results revealed that in each index condition, the classification model had high accuracy 512 
in classifying all the cases in the full dataset (training dataset used in the visual analytical modeling). Similarly, 513 
the internal validation results using a 75%-25% split of the above dataset also had high classification accuracy 514 
(Table 3 with classification accuracy divided into quantiles). We report both results for each index condition:  515 

COPD. The model correctly predicted subgroup membership for 99.90% of the cases (14443/14457) in the full 516 
dataset. Furthermore, as shown in Table 3, the internal validation results revealed that the percentage of COPD 517 
cases correctly assigned to a subgroup in the testing dataset, ranged from 99.10% to 100.00%, with a median 518 
(Q.50) of 99.60%, and with 95% being in the range from 99.30% to 99.80%. 519 

CHF. The model correctly predicted subgroup membership for 99.20% of the cases (25476/25672) in the full 520 
dataset. Furthermore, as shown in Table 3, the internal validation results revealed that the percentage of CHF 521 

 
Fig. 5. The THA/TKA visual analytical model showing four biclusters consisting of patient subgroups and their 
most frequently co-occurring comorbidities (whose labels are ranked by their univariable ORs, shown within 
parentheses), and their risk for readmission (shown in blue text). 

Abbreviations: CHF, congestive heart failure; comp, complicated; COPD, chronic obstructive pulmonary disease; Id, 
identifier; OB, obesity; Symp, symptom; THA/TKA, total hip/knee arthroplasty; Uncomp, uncomplicated. 
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cases correctly assigned to a subgroup in the testing dataset, ranged from 98.70% to 99.70%, with a median 522 
(Q.50) of 99.30%, and with 95% being in the range from 99.00% to 99.60%. 523 

THA/TKA. The model correctly predicted subgroup membership 100.00% of the cases (7010/7010) in the full 524 
dataset. Furthermore, as shown in Table 3, the internal validation results revealed that the percentage of CHF 525 
cases correctly assigned to a subgroup in the testing dataset, ranged from 99.40% to 100.00%, with a median 526 
(Q.50) of 99.90%, and with 95% being in the range from 99.70% to 100.00%. 527 

Application of the Classification Model to Generate Information for Other Models. The above classification 528 
model was used to classify 100% cases and 100% controls for use in the prediction model (described below). 529 
Furthermore, the proportion of cases and controls classified into each subgroup was used to calculate the risk 530 
of readmission for each subgroup (see Appendix 3). As this subgroup risk information was requested by the 531 
clinicians to improve interpretability of the visual analytical model, the values were juxtaposed next to the 532 
respective subgroups in the bipartite network visualizations (see blue text in Fig. 3-5).  533 

Prediction Modeling 534 
For each of the three index conditions, we developed two binary logistic regression models to predict 535 
readmission, with comorbidities in addition to sex, age, and race: (1) Standard Model representing all patients 536 
without subgroup membership, similar to the CMS 537 
models; and (2) Hierarchical Model with an 538 
additional variable that adjusted for subgroup 539 
membership.  540 

COPD. The inclusion and exclusion selection criteria 541 
(see Appendix-1) resulted in a cohort of 186,041 542 
patients (29,026 cases and 157,015 controls). As 543 
shown in Fig. 6A, the Standard Model had a C-544 
statistic of 0.624 (95% CI: 0.617-0.631) which was not 545 
significantly (P=.8578) different from the 546 
Hierarchical Model that had a C-statistic of 0.625 547 
(95% CI: 0.618-0.632). The calibration plots revealed 548 
that both models had a slope close to 1, and an 549 
intercept close to 0 (see Appendix-4).  550 

As shown in Fig. 6B, the Standard Model was used to 551 
measure the predictive accuracy of patients in each 552 
subgroup separately. The results showed that 553 
Subgroup-1 had a lower C-statistic compared to 554 
Subgroup-3 and Subgroup-4. While the C-statistics in 555 
Fig. 6A and Fig. 6B cannot be compared as they are 556 

Models Quantiles Summary 
Q .025 Q .25 Q .50 Q .75 Q .975 Min Max Mean SD 

COPD 
  Training (n=10842) 99.90 100.00 100.00 100.00 100.00 99.70 100.00 100.00 0.02 
  Testing (n=3615) 99.30 99.40 99.60 99.60 99.80 99.10 100.00 99.60 0.15 
CHF 
  Training (n=19254) 99.40 99.50 99.60 99.60 99.80 99.00 99.90 99.57 0.11 
  Testing (n=6418) 99.00 99.30 99.30 99.40 99.60 98.70 99.70 99.34 0.15 
THA/TKA 
  Training (n=5257) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 
  Testing (n=1753) 99.70 99.80 99.90 99.90 100.00 99.40 100.00 99.86 0.09 

Table 3. Internal validation results showing the percentage of COPD, CHF, and THA/TKA 
patients correctly-assigned to a subgroup by the classification models in each condition. 

 
Fig. 6. (A) Predictive accuracy of the Standard Model 
compared to the Hierarchical model in COPD, as 
measured by the C-Statistic. The C-statistic for the CMS 
published model is shown as a dotted line. (B) 
Predictive accuracy of the Standard Model when 
applied separately to patients classified to each 
subgroup. S-1 has lower accuracy compared to S-3 and 
S-4. (C-statistics in A and B cannot be compared as they 
are based on models from different populations). 
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based on models developed from different 557 
populations, these results reveal that the current 558 
CMS readmission model for CHF might be 559 
underperforming for one COPD patient subgroup, 560 
pinpointing which one might benefit by a Subgroup-561 
Specific Model.  562 

 CHF. The inclusion and exclusion selection criteria 563 
(see Appendix-1) resulted in a cohort of 295,761 564 
patients (51,573 cases and 244,188 controls). As 565 
shown in Fig. 7A, the Standard Model had a C-566 
statistic of 0.600 (95% CI: 0.595-0.605), which was 567 
not significantly different (P=.2864) from the 568 
Hierarchical Model that also had a C-statistic of 569 
0.600 (95%CI: 0.595-0.605). The calibration plots 570 
revealed that all models had a slope close to 1, and 571 
an intercept close to 0 (see Appendix-4).  572 

As shown in Fig. 7B, the Standard Model was used to 573 
measure the predictive accuracy of patients in each 574 
subgroup separately. The results showed that 575 
Subgroup-1 had a lower C-statistic compared to 576 
Subgroup-4. While the C-statistics in Fig. 7A and Fig. 577 
7B cannot be compared as they are based on models developed from different populations, but similar to the 578 
results in COPD, these results reveal that the current CMS readmission model for CHF might be underperforming 579 
for one CHF patient subgroup, pinpointing which one might benefit by a Subgroup-Specific Model.  580 

THA/TKA. The application of the inclusion and exclusion selection criteria (see Appendix-1) resulted in a cohort 581 
of 356,772 patients (16,520 cases and 340,252 controls). As shown in Fig. 8A, the Standard Model had a C-582 
statistic of 0.638 (95% CI: 0.629-0.646), which was not significantly different (P=.6817) from the Hierarchical 583 
Model that had a C-statistic of 0.638 (95% CI: 0.629-0.647). The calibration plots (see Appendix-4) revealed that 584 
both models had a slope close to 1, and an intercept 585 
close to 0 (see Appendix-4).  586 

As shown in Fig. 8B, the Standard Model was used to 587 
measure the predictive accuracy of patients in each 588 
subgroup separately. The results showed that 589 
Subgroup-1 had a lower C-statistic compared to 590 
Subgroup-4. Again, while the C-statistics in Fig. 8A 591 
and Fig. 8B cannot be compared as they are based 592 
on models developed from different populations, 593 
similar to the results in COPD, these results reveal 594 
that the current CMS readmission model for 595 
THA/TKA might be underperforming for 4 patient 596 
subgroups, pinpointing which ones might benefit by 597 
Subgroup-Specific Models.  598 

CMS Standard Model vs. CMS Hierarchical Model. 599 
Unlike the CMS published models, the above models 600 
used only the comorbidities that survived feature 601 
selection. Therefore, to perform a head-to-head 602 
comparison with the published CMS models, we also 603 
developed a CMS Standard Model (using the same 604 
variables from the published CMS model), and 605 

 
Fig. 7. (A) Predictive accuracy of the Standard Model 
compared to the Hierarchical model in CHF as measured 
by the C-Statistic. The C-statistic for the CMS published 
model is shown as a dotted line. (B) Predictive accuracy 
of the Standard Model when applied separately to 
patients classified to each subgroup. S-1 has lower 
accuracy compared to S-3 and S-4. (C-statistics in A and 
B cannot be compared as they are based on models 
from different populations). 
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Fig. 8. (A) Predictive accuracy of the Standard Model 
compared to the Hierarchical model in THA/TKA as 
measured by the C-Statistic. The C-statistic for the CMS 
published model is shown as a dotted line. (B) Predictive 
accuracy of the Standard Model when applied 
separately to patients classified to each subgroup. S-1 
has lower accuracy compared to S-7. (C-statistics in A 
and B cannot be compared as they are based on models 
developed from different populations). 
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compared it to the corresponding CMS Hierarchical Model (with an additional variable for subgroup 606 
membership) in each condition. Similar to the models in Fig. 6-8, there were no significant differences in the C-607 
statistics between the two modeling approaches in any condition (see Appendix-4). However, as shown in Table 608 
4, the CMS Hierarchical Model for COPD had significantly higher NRI, but not significantly higher NDI compared 609 
to the CMS Standard Model; the CMS Hierarchical Model for CHF had a significantly lower NRI and IDI compared 610 
to the CMS Standard Model, and the CMS Hierarchical Model for THA/TKA had a significantly higher NDI and IDI 611 
compared to the CMS Standard Model. Furthermore, similar to the results in 6B-8B, when the CMS Standard 612 
Model was used to predict readmission separately in subgroups within each index condition, it identified 613 
subgroups that underperformed, pinpointing which ones might benefit by a Subgroup-Specific Model (See 614 
Appendix-4). In summary, the comparisons between the CMS Standard Models and the respective CMS 615 
Hierarchical Models showed that in two conditions (COPD and THA/TKA), there was a small but statistically 616 
significant improvement in discriminating between the readmitted and not readmitted patients as measured by 617 
NRI, but not as measured by the C-statistic or IDI, and that a subgroup in each index condition might be 618 
underperforming when using the CMS Standard Model.  619 

DISCUSSION 620 
Overview 621 

Our overall approach of using the MIPS framework for identifying patient subgroups through visual analytics, 622 
and using those subgroups to build classification and prediction models, revealed strengths and limitations for 623 
each modeling approach, and for our data source. This examination led to insights for developing future clinical 624 
decision support systems, and a methodological framework for improving the clinical interpretability of 625 
subgroup modeling results.  626 

Strengths and Limitations of Modeling Methods and Data Source 627 

Visual Analytical Modeling. The results revealed three strengths of the visual analytical modeling: (1) the use of 628 
bipartite networks to simultaneously model patients and comorbidities, enabled the automatic identification of 629 
patient-comorbidity biclusters, and the integrated analysis of co-occurrence and risk; (2) the use of a bipartite 630 
modularity maximization algorithm to identify the biclusters enabled the measurement of the strength of the 631 
biclustering, critical for gauging its significance; and (3) the use of a graph representation enabled the results to 632 
be visualized through a network. Furthermore, the request from the domain experts to juxtapose the risk of 633 
each subgroup with their visualizations appeared to be driven by a need to reduce working memory loads (from 634 
having to remember that information spread over different outputs), which could have enhanced their ability to 635 
match bicluster patterns with chunks (previously-learned patterns of information) stored in long-term memory. 636 
The resulting visualizations enabled them to recognize subtypes based on co-occurring comorbidities in each 637 
subgroup, reason about the processes that precipitate readmission based on the risk of each subtype relative to 638 
the other subtypes, and propose interventions that were targeted to those subtypes and their risks. Finally, the 639 
fact that the geriatrician could not fully interpret the THA/TKA network because it mixed two fairly different 640 
conditions, suggests that the clinical interpretations were not the result of a confirmation bias (interpretations 641 
leaning towards fitting the results). 642 

However, the results also revealed two limitations: (1) while modularity is estimated using a closed-form 643 
equation (formula), no closed-form equation exists to estimate the modularity variance, which is necessary to 644 
measure its significance. To estimate modularity variance, we therefore used a permutation test by generating 645 

Model NRI IDI 
 Categorical (95% Interval) Continuous (95% Interval) IDI (95% Interval) 

COPD .023 (.012, .034)* .059 (.034, .083)* .0002 (-.0004, .0008) 
CHF -.010 (-.016, -.0004)* -.038 (-.057, -.019)* -.0006(-.0009,- .0003)* 
THA/TKA .022 (.012, .032)* .111 (.080, .142)* -.003(-.002,- .003)* 

Table 4. Comparison of the CMS Standard Model with the CMS Hierarchical Model across the three index 
conditions based on NRI and IDI (* = significant at the .05 level). 
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1000 random permutations of the data, and then compared the modularity generated from the real data to the 646 
mean modularity generated from the permuted data. Given the size of our datasets (ranging from 7K-25K 647 
patients), this computationally-expensive test took approximately 7 days to complete, despite the use of a 648 
dedicated server with multiple cores; and (2) while bicluster modularity was successful in identifying significant 649 
and meaningful patient-comorbidity biclusters, the visualizations themselves were extremely dense, and 650 
therefore potentially concealed patterns within and between the subgroups. Future research should explore a 651 
closed-form equation to estimate modularity variance, with the goal of accelerating the estimation of modularity 652 
significance, and more powerful analytical and visualization methods to reveal intra- and inter-cluster 653 
associations in large and dense networks.  654 

Classification Modeling. The results revealed two strengths of the classification modeling: (1) the use of a simple 655 
multinomial classifier was adequate to predict with high accuracy to which subgroup a patient belonged; (2) 656 
because the model produced membership probabilities for each patient for each subgroup, the model captured 657 
the dense inter-cluster edges observed in the network visualization; and (3) the coefficients of the trained 658 
classifier could be inspected by an analyst making it more transparent (relative to most deep-learning classifiers 659 
which tend to be a black box).  660 

However, because we dichotomized the classification probabilities into a single subgroup membership, our 661 
approach did not fully leverage the membership probabilities for modeling and visual interpretation. For 662 
example, some patients have high classification probabilities (representing strong membership) to a single 663 
subgroup (as shown by patients in the outer periphery of the biclusters with edges only within their bicluster), 664 
whereas others have equal probabilities to all subgroups (as shown in the inner periphery of the biclusters with 665 
edges going to multiple clusters). Future research should explore incorporating the probability of subgroup 666 
membership into the design of hierarchical models to improve predictive accuracy, and visualization methods 667 
to help clinicians interpret patients with different profiles of membership strength, with the goal of designing 668 
patient-specific interventions.  669 

Predictive Modeling. The results revealed two strengths of the predictive modeling: (1) the use of the Standard 670 
Model to measure predictive accuracy across the subgroups helped to pinpoint which subgroups tend to have 671 
lower predictive accuracy compared to the rest, and therefore which of them could benefit from a more complex 672 
but accurate subgroup-specific model; and (2) despite the use of a simple Hierarchical Model with a 673 
dichotomized membership label for each patient, the predictive CMS models detected significant differences in 674 
the prediction accuracy as measured by NRI in two of the conditions, when compared to the CMS Standard 675 
Models. However, the results also revealed that the differences in predictive accuracy as measured by the C-676 
statistic and NDI were small, suggesting that comorbidities on their own were potentially insufficient for 677 
accurately predicting readmission. Future research should explore the use of electronic health records, and 678 
multiple subgroup-specific models targeted to each subgroup, to improve the predictive accuracy of the models. 679 

Data Source. The Medicare claims data had four key strengths: (1) scale of the datasets which enabled subgroup 680 
identification with sufficient statistical power; (2) spread of the data collected from across the US which enabled 681 
generalizability of the results; (3) data about older adults which enabled examination of subgroups in an 682 
underrepresented segment of the US population; and (4) data used by CMS to build predictive readmission 683 
models, which enabled a head-to-head comparison with the hierarchical modeling approach. 684 

However, the data had two critical limitations. (1) As we compared our models with the CMS models, we had to 685 
use the same definition for controls (90 days with no readmission) that had been used, which introduced a 686 
selection bias that exaggerates the separation between cases and controls. Similarly, by excluding patients who 687 
died, this exclusion criterion potentially biased the results towards healthier patients. (2) Administrative data 688 
have known limitations such as the lack of comorbidity severity and test results, which could strongly impact the 689 
accuracy of predictive models. Future research should consider the use of national-level electronic health record 690 
(EHR) data such as those being assembled by the National COVID Cohort Collaborative (N3C) [59], and the 691 
TriNetX [60] initiatives, which could overcome the above limitations by providing laboratory values and 692 
comorbidity severity, but could also introduce new as yet unknown limitations. 693 
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Implications for Clinical Decision-Support Systems that Leverage Patient Subgroups 694 

While the focus of this project was to develop and evaluate the MIPS framework, its application to three index 695 
conditions coupled with extensive discussions with clinicians led to insights for designing a future clinical decision 696 
support system. Such a system could integrate outputs from all three models. As we have shown, the visual 697 
analytical model automatically identified and visualized the patient subgroups, which enabled the clinicians to 698 
comprehend the co-occurrence and risk information in the visualization, reason about the processes that lead 699 
to readmission in each subgroup, and design targeted interventions. The classification model leveraged the 700 
observation that many patients have comorbidities in other biclusters (shown by a large number of edges 701 
between biclusters), and accordingly generated a membership probability of a patient belonging to each 702 
bicluster, from which the highest was chosen for bicluster membership. Finally, the predictive model predicts 703 
the risk for readmission for a patient, by using in the future the most accurate model designed for the bicluster 704 
to which the patient belongs. 705 

The outputs from the above models could be integrated into a clinical decision support system to provide 706 
recommendations for a specific patient using the following algorithm: (1) use the classifier to generate the 707 
membership probability (MP) of a new patient belonging to each subgroup; (2) multiply the MP in each subgroup 708 
with the patient’s risk (R) for readmission provided by the predictive model for that subgroup, to generate an 709 
importance score [IS = f(MP) X g(R)] for the respective intervention; (3) rank the subgroups and their respective 710 
interventions using IS; and (4) use the ranking to display in descending order, the subgroup comorbidity profiles 711 
along with their respective potential mechanisms, recommended treatments, and the respective IS. Such model-712 
based information, displayed through a user-friendly interface, could enable a clinician to rapidly scan the ranked 713 
list to (a) determine why a specific patient’s profile fits into one or more subgroups, (b) review the potential 714 
mechanisms and interventions ranked by their importance, and (c) use the combined information to design a 715 
treatment that is customized for the real-world context of the patient. Consequently, such a clinical decision 716 
support system could not only provide a quantitative ranking of membership to different subgroups, and the 717 
importance score for the associated interventions, but also enable the clinician to understand the rationale 718 
underlying those recommendations, making the system interpretable and explainable. Comparative evaluation 719 
of such a system to standard care could determine its clinical efficacy. 720 

Implications for Analytical Granularity to Enhance the Interpretability of Patient Subgroups 721 

While the visual analytical model enabled the clinicians to interpret the patient subgroups, they were unable to 722 
interpret the associations within and between the subgroups due to the large number of nodes in each bicluster 723 
and the dense edges between them. Several network filtering methods [61, 62] have been developed to “thin 724 
out” such dense networks such as by dropping or bundling nodes and edges based on user-defined criteria, to 725 
improve visual interpretation. However, such filtering could bias the results, or modify the clusters resulting 726 
from the reduced data.  727 

An alternate approach that preserves the full dataset leverages the notion of analytical granularity, where the 728 
data is progressively analyzed at different levels. For example, we have analyzed COVID-19 patients [11] at the 729 
cohort, subgroup, and patient levels, and we are currently using the same approach to examine symptom co-730 
occurrence and risk at each level in Long COVID patients. Our preliminary results suggest that analyzing data at 731 
different levels of granularity enables clinicians to progressively interpret patterns such as within and between 732 
subgroups, in addition to guiding the systematic development of new algorithms. For example, at the subgroup 733 
level, we have designed an algorithm that identifies which patient subgroups have a significantly higher 734 
probability for having characteristics that are clustered in another subgroup, providing critical information to 735 
clinicians about how to design interventions for such overlapping subgroups; at the patient level, we have 736 
identified patients that are outliers to their subgroups based on their pattern of characteristics inside and outside 737 
their subgroup. Such patient outliers could be flagged to examine if they need individualized interventions versus 738 
those recommended for the rest of their subgroup. Such analytical granularity could therefore inform the design 739 
of interventions by clinicians, in addition to the design of decision support systems that provide targeted and 740 
interpretable recommendations to physicians, who can then customize them to fit the real-world context of a 741 
patient. 742 
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Implications of the MIPS Framework for Precision Medicine 743 

While we have demonstrated the application of the MIPS framework across multiple readmission conditions, its 744 
architecture has three properties that should enable its generalizability across other medical conditions. First, 745 
as shown in Fig. 2, the framework is modular with explicit inputs and outputs, enabling the use of other methods 746 
at each of the three modeling steps. For example, the framework could use other biclustering (e.g.,  Non-747 
negative Matrix Factorization [63]), classification (e.g., deep learning [64]), and prediction methods (e.g., 748 
subgroup-specific modeling [17]). Second, the framework is extensible, enabling an elaboration of the methods 749 
at each modeling step to improve the analysis and interpretation of subgroups. For example, as discussed above, 750 
the analytical granularity at the cohort, subgroup, and patient levels could improve the interpretability of 751 
subgroups in large and dense datasets. Third, the framework is integrative as it systematically combines the 752 
strengths of machine learning, statistical, and precision medicine approaches. For example, the visual analytical 753 
modeling leverages search algorithms to discover co-occurrence in large datasets; the classification and 754 
prediction modeling leverages probability theory to measure the risk of co-occurrence patterns; and clinicians 755 
leverage medical knowledge and human cognition to interpret patterns of co-occurrence and risk for designing 756 
precision-medicine interventions. Such integration of different models and their interpretation operationalizes 757 
team-centered informatics [65] designed to facilitate data scientists, biostatisticians, and clinicians in 758 
multidisciplinary translational teams [66] to work more effectively across disciplinary boundaries, with the goal 759 
of designing interventions for precision medicine.  Our current research tests the generality of the MIPS 760 
framework in other conditions such as Long COVID and Post-Stroke Depression, with the goal of designing and 761 
evaluating precision medicine interventions targeted to patient subgroups. 762 

CONCLUSIONS 763 
Although a primary goal of precision medicine is to identify patient subgroups and to design targeted 764 
interventions, few methods automatically identify both patient subgroups and their co-occurring characteristics 765 
simultaneously, measure their significance, and visualize the results. Here we demonstrated the use of the MIPS 766 
framework, which used a three-step approach to model and interpret patient subgroups. A visual analytical 767 
method automatically identified statistically significant and replicated patient subgroups and their frequently 768 
co-occurring comorbidities. Next, a multinomial logistic regression classifier had high accuracy in correctly 769 
classifying patients into the patient subgroups identified by the visual analytical model. Finally, despite using a 770 
simple hierarchical logistic regression model to incorporate subgroup information, the predictive models had a 771 
statistically significant improvement in discriminating between the readmitted and not readmitted patients in 772 
two of the three readmission conditions, and further analysis pinpointed for which patient subgroups the current 773 
CMS model might be underperforming. Finally, by integrating the co-occurrence and risk patterns in a 774 
visualization, the MIPS framework enabled clinicians to interpret the patient subgroups, reason about 775 
mechanisms precipitating hospital readmission, and design targeted interventions. 776 

However, evaluation of the methods across three readmission index conditions also helped to identify 777 
limitations of the models and the data. The visual analytical model was too dense to enable the clinicians to 778 
interpret the associations within and between the subgroups, and the absence of a closed-form equation to 779 
measure modularity variance required a computationally-expensive process to measure the significance of the 780 
biclustering. Furthermore, the small improvement in predictive accuracy suggested that comorbidities on their 781 
own were insufficient for predicting hospital readmission. 782 

By leveraging the modular and extensible nature of the MIPs framework, future research should address the 783 
above limitations by developing more powerful algorithms which analyze subgroups at different levels of 784 
granularity to improve the interpretability of intra- and inter-cluster associations, and the evaluation of 785 
subgroup-specific models to predict outcomes. Furthermore, EHR data made available through national-level 786 
data initiatives such as N3C and TriNetX now provide access to critical variables including laboratory results and 787 
comorbidity severity, which should lead to higher predictive power for predicting adverse outcomes. Finally, 788 
extensive discussions with clinicians provided implications for the design of future decision support systems, 789 
which could integrate outputs from the three models to provide for a specific patient, predicted subgroup 790 
memberships, ranked interventions, along with associated subgroup profiles and mechanisms. Such 791 
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interpretable and explainable systems could enable clinicians to use patient subgroup information for informing 792 
the design of precision medicine interventions, with the goal of reducing adverse outcomes such as unplanned 793 
hospital readmissions and beyond. 794 
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