
  
 
 

  

GatorTron: A Large Clinical Language Model to Unlock Patient Information 
from Unstructured Electronic Health Records 

 
Authors:  Xi Yang, PhD1,2, Nima PourNejatian, PhD3, Hoo Chang Shin, PhD3, Kaleb E Smith, 
PhD3, Christopher Parisien, PhD3, Colin Compas, PhD3, Cheryl Martin, BS3, Mona G Flores, 
MD3, Ying Zhang, MS4, Tanja Magoc, PhD5, Christopher A Harle, PhD1,5, Gloria Lipori, 
MBA5,6, Duane A Mitchell, MD7, PhD, William R Hogan, MD, MS1, Elizabeth A Shenkman, 
PhD1, Jiang Bian, PhD1,2, Yonghui Wu, PhD1,2 * 

 
Affiliations: 
1Department of Health Outcomes and Biomedical Informatics, College of Medicine, University 
of Florida, Gainesville, Florida, USA. 
2Cancer Informatics and eHealth core, University of Florida Health Cancer Center, Gainesville, 
Florida, USA. 
3NVIDIA, Santa Clara, California, USA. 
4Research Computing, University of Florida, Gainesville, Florida, USA. 
5Integrated Data Repository Research Services, University of Florida, Gainesville, Florida, USA. 
6University of Florida Health and Shands Hospital, Gainesville, FL 
7Lillian S. Wells Department of Neurosurgery, UF Clinical and Translational Science Institute, 
University of Florida. 

 
*Corresponding author 

 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.27.22271257doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.02.27.22271257
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract: There is an increasing interest in developing massive-size deep learning models in 

natural language processing (NLP) - the key technology to extract patient information from 

unstructured electronic health records (EHRs).  However, there are limited studies exploring 

large language models in the clinical domain; the current largest clinical NLP model was trained 

with 110 million parameters (compared with 175 billion parameters in the general domain).  It is 

not clear how large-size NLP models can help machines understand patients’ clinical information 

from unstructured EHRs.  In this study, we developed a large clinical transformer model – 

GatorTron – using >90 billion words of text and evaluated it on 5 clinical NLP tasks including 

clinical concept extraction, relation extraction, semantic textual similarity, natural language 

inference, and medical question answering.  GatorTron is now the largest transformer model in 

the clinical domain that scaled up from the previous 110 million to 8.9 billion parameters and 

achieved state-of-the-art performance on the 5 clinical NLP tasks targeting various healthcare 

information documented in EHRs.  GatorTron models perform better in understanding and 

utilizing patient information from clinical narratives in ways that can be applied to improvements 

in healthcare delivery and patient outcomes. 
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Introduction 

There has been an increasing interest in developing artificial intelligence (AI) systems to 

improve healthcare delivery and health outcomes by leveraging medical knowledge in electronic 

health records (EHRs).  A critical step in developing medical AI systems is training machines to 

understand patients’ clinical characteristics captured in longitudinal EHRs.  The more 

information we know about the patients, the better medical AI systems that we can develop.  In 

recent decades, hospitals and medical practices in the United States (US) rapidly adopted EHR 

systems1,2, resulting in massive stores of electronic patient data,  including structured (e.g., 

disease codes, medication codes) and unstructured (i.e., clinical narratives such as physicians’ 

progress notes and discharge summaries).  Physicians and other healthcare workers widely use 

clinical narratives to document detailed patient information in free text, leading to >80% of 

important patient information buried in unstructured text.3  There is an increasing number of 

studies exploring the rich, more fine-grained information about the patients in clinical narratives 

that led to improved diagnostic and prognostic models.4,5  Nevertheless, free-text narratives 

cannot be easily used in computational models that usually require structured data.  Researchers 

have increasingly turned to natural language processing (NLP) as the key technology to enable 

machines to understand clinical language used by humans to support various downstream clinical 

studies6.    

 

Historically, researchers designed several critical subtasks in clinical NLP such as clinical 

concept extraction7 and relation extraction8.  For a long time, researchers had to train different 

models for different NLP subtasks.  Today, most NLP solutions are based on deep learning 

models9 implemented using neural network architectures – a fast-developing sub-domain of 
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machine learning.  Convolutional neural networks10 (CNN) and recurrent neural networks11 

(RNN) have been successfully applied to NLP in the early stage of deep learning.  More recently, 

the transformer architectures12 (e.g., BERT) implemented with a self-attention mechanism13 have 

become state-of-the-art, achieving best performance on many NLP benchmarks. 14–17  In the 

general domain, the transformer-based NLP models have achieved state-of-the-art performance 

for many NLP tasks including name entity recognition18–20, relation extraction21–25, sentence 

similarity26–28, natural language inference28–31, and question answering28,29,32,33.  Notably, 

transformers perform more effectively by decoupling of language understanding (i.e., learning of 

language models using large unlabeled text corpora) and language utilization (i.e., applying the 

learned language models solving specific tasks often with labeled training data) into two 

independent phases, i.e., pretraining and fine-tuning.  After successful pretraining, the learned 

language model can be used to solve a variety of NLP subtasks through fine-tuning, which is 

known as transfer learning – a strategy to learn knowledge from one task and apply it in another 

task34.  Human language has a very large sample space – the possible combinations of words and 

sentences are innumerable.  Recent studies show that large transformer models trained using 

massive text data are remarkably better than traditional NLP models in terms of emergence and 

homogenization.34   

 

The promise of transformer models has led to further interest in exploring how increases in 

model and data size may improve massive-size (e.g., >billions of parameters) transformer 

models understanding clinical narratives.  The Generative Pre-trained Transformer 3 (GPT-3) 

model35, which has 175 billion parameters and was trained using >400 billion words of text 

demonstrated superior performance and capability in many NLP tasks.  In the biomedical 
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domain, researchers developed BioBERT12 (with 110 million parameters) and PubMedBERT36 

(110 million parameters) transformer models using text from PubMed literature.  Nvidia 

developed BioMegatron models in the biomedical domain with different sizes from 345 million 

to 1.2 billion parameters37 using PubMed literature.  However, few studies have explored large-

size transformer models in the clinical domain due to the sensitive nature of clinical narratives 

that contain Protected Health Information (PHI) and the requirement of massive computing 

power.  By developing not only larger models, but models that use clinical narratives, NLP may 

perform better in understanding and utilizing patient information in ways that can be applied to 

improvements in healthcare delivery and patient outcomes.  To date, the largest transformer 

model using clinical narratives is ClinicalBERT38.  ClinicalBERT has 110 million parameters 

and was trained using 0.5 billion words from the publicly available Medical Information Mart for 

Intensive Care III39 (MIMIC-III) dataset.  It is unclear how transformer-based models developed 

using significantly more clinical narrative text and more parameters may improve medical AI 

systems in understanding, extracting, and utilizing patient information. 

 

In this study, we developed a large clinical transformer model, GatorTron, using >90 billion 

words of text from the University of Florida (UF) Health, PubMed articles, and Wikipedia.  We 

trained GatorTron from scratch and empirically evaluated three models with different settings 

including (1) a base model with 345 million parameters, (2) a medium model with 3.9 billion 

parameters, and (3) a large model with 8.9 billion parameters.  We compared GatorTron models 

with existing large transformer models trained using biomedical literature and clinical narratives 

using 5 clinical NLP tasks including clinical concept extraction (or named entity recognition 

[NER]), medical relation extraction (MRE), semantic textual similarity (STS), natural language 
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inference (NLI), and medical question answering (MQA).  GatorTron outperformed previous 

transformer models from the biomedical and clinical domain on 5 clinical NLP tasks at different 

linguistic levels targeting various patient information.  This study significantly scaled up 

transformer models in the clinical domain from 110 million to 8.9 billion parameters and 

improved our understanding of how large transformer models help AI systems understand and 

utilize patient information documented in clinical narratives. 

Results  

We collected all clinical narrative notes from the UF Health Integrated Data Repository (IDR) 

from 2011 to early 2021.  The data included >82 billion medical words from >290 million notes 

related to >2 million patients and >50 million patient care encounters.  We applied a standard 

preprocessing pipeline to remove duplicated notes and clean the clinical text – unify character 

encoding, identify tokens and sentence boundaries.  Then, we merged the >82 billion words of 

clinical corpus with 6 billion words from PubMed (articles and abstracts)37, 2.5 billion words 

from Wikipedia37, and 0.5 billion words from the MIMIC-III corpus39 to generate a corpus with 

> 90 billion words.  Using this corpus, we trained GatorTron with different settings (base - 345 

million, medium - 3.9 billion, and large - 8.9 billion parameters) from scratch and fine-tuned 

GatorTron models for 5 clinical NLP tasks at different linguistic and complexity levels.  Fig. 1 

shows an overview of the study design.  We used 6 public clinical benchmark datasets (Table 1 

and Table 2) following the default training/test settings and calculated evaluation scores using 

official evaluation scripts associated with each benchmark dataset.  Table 1 and Table 2 compare 

GatorTron models with two existing biomedical transformer models (BioBERT and 

BioMegatron) and one clinical transformer model (Clinical BERT) on the 5 clinical NLP tasks.  
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Fig. 1 An overview of study design. 

Table 1. Comparison of GatorTron with existing biomedical and clinical transformer models for 
clinical concept extraction and medical relation extraction. 

 

  

Clinical concept extraction Medical relation 
extraction 

2010 i2b240 2012 i2b241 2018 n2c242 2018 n2c242 

Transformer Precisi
on Recall 

F1 
score 

Precisi
on Recall 

F1 
score 

Precisi
on Recall 

F1 
score 

Precisi
on Recall 

F1 
score 

BioBERT 0.8693 0.8653 0.8673 0.7478 0.8037 0.7747 0.8634 0.8921 0.8775 0.9663 0.9451 0.9555 

ClinicalBERT NA NA 0.8780 NA NA 0.7890 0.8592 0.8832 0.871 0.9678 0.9414 0.9544 

BioMegatron 0.8614 0.8761 0.8687 0.7591 0.8031 0.7805 0.8707 0.8915 0.881 0.9711 0.9434 0.9571 

GatorTron-base 0.8748 0.9043 0.8893 0.7644 0.8221 0.7922 0.8759 0.9038 0.8896 0.9719 0.9482 0.9599 

GatorTron-
medium 0.8869 0.9122 0.8994 0.7812 0.8245 0.8022 0.8954 0.9035 0.8994 0.9721 0.9503 0.9611 

GatorTron-large 0.8880 0.9116 0.8996 0.7862 0.8333 0.8091 0.8979 0.9021 0.9000 0.9776 0.9482 0.9627 

  Clinical concepts in 2010 i2b2 and 2012 i2b2 challenges: problems, treatments, lab tests; clinical concepts in 2018 n2c2 challenge: drugs, 

adverse events, and drug-related attributes (e.g., dose).  Medical relation in 2018 n2c2 challenge: drug induced adverse events. Best F1 scores are 

bolded. NA: scores not reported. 

Table 2. Comparison of GatorTron with existing biomedical and clinical transformer models for 
semantic textual similarity, natural language inference, and question answering. 

 

  

Semantic textual 
similarity 

Natural language 
inference 

Question answering 

2019 n2c243 MedNLI44 emrQA Medication45 emrQA Relation45 

Transformer Pearson correlation Accuracy F1 score Exact Match F1 score Exact Match 

BioBERT 0.8744 0.8050 0.6997 0.2475 0.9262 0.8361 

ClinicalBERT 0.8787 0.8270 0.6905 0.2406 0.9306 0.8533 

BioMegatron 0.8806 0.8390 0.7231 0.2882 0.9405 0.879 
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GatorTron-base 0.8810 0.8670 0.7181 0.2978 0.9543 0.9029 

GatorTron-medium 0.8903 0.8720 0.7354 0.3018 0.9677 0.9243 

GatorTron-large 0.8896 0.9020 0.7408 0.3155 0.9719 0.9310 
The best evaluation scores are bolded. 

Recognize clinical concepts and medical relations. Clinical concept extraction is a phrase-level 

task to identify the boundary of concepts with clinical meanings and classify their semantic 

categories (e.g., diseases, medications).  As shown in Table 1, all three GatorTron models 

outperformed existing biomedical and clinical transformer models in recognizing various types 

of clinical concepts on the three benchmark datasets (i.e., 2010 i2b240 and 2012 i2b241: problem, 

treatments, lab tests; 2018 n2c242: drug, adverse events, and drug-related attributes).  The 

GatorTron-large model outperformed the other two smaller GatorTron models and achieved the 

best F1-scores of 0.8996, 0.8091, and 0.9000, respectively, demonstrating performance gain 

from scaling up the size of the model.  For medical relation extraction – a task to identify 

medical relations between two clinical concepts, the GatorTron-large model also achieved the 

best F1-score of 0.9627 for identifying drug-cause-adverse event relations outperforming 

existing biomedical and clinical transformers and the other two smaller GatorTron models.  We 

consistently observed performance improvement when scaling up the size of the GatorTron 

model. 

Assess semantic textual similarity.  The task of measuring semantic similarity is to determine 

the extent to which two sentences are similar in terms of semantic meaning.  As shown in Table 

2, all GatorTron models outperformed existing biomedical and clinical transformer models in 

assessing the semantic similarity between two sentences.  Among the three GatorTron models, 

the GatorTron-medium model achieved the best Pearson correlation score of 0.8903, 

outperforming both GatorTron-base and GatorTron-large.  Although we did not observe 
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consistent improvement by scaling up the size of the GatorTron model, the GatorTron-large 

model significantly outperformed GatorTron-base and its performance is very close to the 

GatorTron-medium model (0.8896 vs. 0.8903). 

Natural language inference. The task of NLI is to determine whether a conclusion can be 

inferred from a given sentence – a sentence-level NLP task.  As shown in Table 2, all GatorTron 

models outperformed existing biomedical and clinical transformers, and the GatorTron-large 

model achieved the best accuracy of 0.9020, outperforming the BioBERT and ClinicalBERT by 

9.6% and 7.5%, respectively.  We observed a monotonic performance improvement by scaling 

up the size of the GatorTron model. 

Medical question answering.  MQA is a complex clinical NLP task that requires understand 

information from the entire document.  As shown in Table 2, all GatorTron models outperformed 

existing biomedical and clinical transformer models in answering medication and relation-related 

questions (e.g., “What lab results does patient have that are pertinent to diabetes diagnosis?”).  

For medication-related questions, the GatorTron-large model achieved the best exact match score 

of 0.3155, outperforming the BioBERT and ClinicalBERT by 6.8% and 7.5%, respectively.  For 

relation-related questions, GatorTron-large also achieved the best exact match score of 0.9301, 

outperforming BioBERT and ClinicalBERT by 9.5% and 7.77%, respectively.  We also observed 

a monotonic performance improvement by scaling up the size of the GatorTron model. 

 

Discussion 

In this study, we developed the largest clinical transformer model, GatorTron, using a corpus of 

>90 billion words from UF Health (>82 billion), Pubmed (6 billion), Wikipedia (2.5 billion), and 
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MIMIC III (0.5 billion).  We trained GatorTron with different model sizes including 345 million, 

3.9 billion, and 8.9 billion parameters and evaluated its performance on 5 clinical NLP tasks with 

different complexity (phrase level, sentence level, and document level) using 6 publicly-

available benchmark datasets from the clinical domain.  The experimental results show that 

GatorTron models outperformed existing biomedical and clinical transformers for all 5 clinical 

NLP tasks evaluated using 6 different benchmark datasets.  We observed monotonic 

improvements by scaling up the model size of GatorTron for 4 of the 5 tasks, excluding the 

semantic textual similarity task.  Our GatorTron model also outperformed the BioMegatron37, a 

transformer model with a similar model size developed in our previous study using >8.5 billion 

words from PubMed and Wikipedia (a small proportion of the >90 billion words of corpus for 

developing GatorTron).  This study scaled up the clinical transformer models from 345 million 

(ClinicalBERT) to 8.9 billion parameters in the clinical domain and demonstrated significant 

performance improvements.  To the best of our knowledge, GatorTron-large is the largest 

transformer model in the clinical domain. 

Scaling up model size and performance improvement.  There is an increasing interest in 

examining massive-size deep learning models in NLP as they demonstrated novel abilities such 

as emergence and homogenization34, which are more close to human intelligence than previous 

models.   In the general domain, the Megatron-Turing NLG model has scaled up to 530 billion 

parameters following the GPT-335 model with 175 billion parameters.  However, there are 

limited studies examining large transformer models in the clinical domain due to the sensitive 

nature of clinical text and massive computing requirements.  Prior to our study, the largest 

transformer in the clinical domain was ClinicalBERT with 110 million parameters trained using 

0.5 billion words.  Our study successfully scaled the transformer from 110 million to 8.9 billion 
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parameters and demonstrated performance improvement for 5 clinical NLP tasks on 6 public 

benchmark datasets.  Among the 5 tasks, GatorTron achieved significant improvements for 

complex NLP tasks such as natural language inference and medical question answering, but 

moderate improvements for easier tasks such as clinical concept extraction and medical relation 

extraction, indicating that large transformer models are more helpful to complex clinical NLP 

tasks. 

Model size and converge speed.  GatorTron was pretrained using unsupervised learning to 

optimize a mask language model (MLM).  We monitored training loss and calculated validation 

loss using a subset set of the clinical text (5%) to determine when to stop the training.  Fig. 2 

shows the training loss and validation loss for GatorTron models with three different settings.  

We observed that the larger GatorTron models converged faster than the base model.  For 

example, the GatorTron-base model converged in 10 epochs, whereas the medium and large 

models converged in 7 epochs.  This may indicate that larger transformer models learn faster 

than smaller models.  The training of the GatorTron-large model used about 6 days on 992 GPUs 

from 124 Nvidia SuperPOD nodes. 

 

Fig. 2 Training loss and validation loss for GatorTron base (345 million), medium (3.9 billion), and large (8.9 
billion) models. 
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Potentials in improving healthcare delivery and patient outcomes.  GatorTron models 

perform better in understanding and utilizing patient information in clinical narratives, which can 

be applied to various medical AI systems to improve healthcare delivery and patient outcomes.  

The rich, fine-grained patients’ information captured in clinical narratives is a critical resource 

powering medical AI systems.  With better performance in information extraction tasks (e.g., 

clinical concept extraction and medical relation extraction), GatorTron models can provide more 

accurate patients’ information to identify research-standard patient cohorts using computable 

phenotypes, support physicians making data-informed decisions by clinical decision support 

systems, and identify adverse events associated with drug exposures via pharmacovigilance.  The 

significant improvements in semantic textual similarity, natural language inference, and medical 

question answering can be applied for deduplication of clinical text, mining medial knowledge, 

and developing next-generation medical AI systems that can interact with patients using human 

language.  The emergence and homogenization abilities34 inherited from a large transformer 

architecture make it convenient to apply GatorTron to many other AI tasks through fine-tuning.  

We believe that GatorTron will improve the use of clinical narratives in developing various 

medical AI systems for better healthcare delivery and health outcomes. 

Methods 

Data Source 

The primary data source for this study is the clinical narratives from UF Health IDR, a research 

data warehouse of UF Health.  We collected a total of 290,482,002 clinical notes from 2011-

2021 from over 2 million patients and 50 million encounters.  After removing empty notes and 

duplicated notes, we generated a UFHealth clinical corpus with over 82 billion tokens.  Then, we 

merged the UFHealth clinical corpus with three additional corpora, including the MIMIC-III 
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corpus39 in the clinical domain with 0.5 billion words, a PubMed (combining PubMed abstracts 

and full-text commercial-collection) collection37 in the biomedical domain with 6 billion words, 

and a Wikipedia articles dump37 in the general domain with 2.5 billion words, to generate a 

corpus with >90 billion words.  We performed minimal preprocessing including tokenization and 

sentence boundary detection. 

Study design 

We seek to train a large clinical transformer model, GatorTron, using >90 billion words and 

examine how and whether scaling up mode size improves model performance on clinical NLP 

tasks.  Following standard practice, we first pretrained GatorTron using the >90 billion words as 

an unsupervised learning procedure and then applied GatorTron to 5 different clinical NLP tasks 

using a supervised fine-tuning procedure.  We adopted the BERT architecture implemented in 

MagaTron-LM and explored three different settings including a base model of 345 million 

parameters (i.e., GatorTron-base), a medium model of 3.9 billion parameters (i.e., GatorTron-

medium), and a large model of 8.9 billion parameters (i.e., GatorTron-large).  Then we compared 

the three GatorTron models to an existing transformer model from the clinical domain, 

ClinicalBERT (trained with 110 million parameters) and two transformer models from the 

biomedical domain, including, BioBERT (345 million parameters) and BioMegatron (1.2 billion 

parameters).  We examined the models on 5 clinical NLP tasks, including clinical concept 

extraction, relation extraction, semantic textual similarity, natural language inference, and 

medical question answering.  We used 6 public benchmark datasets in the clinical domain. 

Training environment 

We used a total number of 992 Nvidia DGX A100 GPUs from 124 superPOD nodes at UF’s 

HiperGator-AI cluster to train GatorTron models by leveraging both data-level and model-level 
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parallelisms implemented by the Megatron-LM package46.  We monitored the training progress 

by training loss and validation loss and stopped the training when there was no further 

improvement (i.e., the loss plot became flat). 

GatorTron Model Configuration 

We developed GatorTron models with three configurations and determined the number of layers, 

hidden sizes, and number of attention heads according to the guidelines for optimal depth-to-

width parameter allocation proposed by Levin et al47 as well as our previous experience in 

developing BioMegatron.  Table 3 provides detailed information for the three settings.  The 

GatorTron-base model has 24 layers of transformer blocks, which is similar to the architecture of 

BERT large model.  For each layer, we set the number of hidden units as 1024 and attention 

heads as 16.  The GatorTron-medium model scaled up to 3.9 billion parameters (~10 times of the 

base setting) and the GatorTron-large model scaled up to 8.9 billion parameters, which is similar 

to BioMegatron46 ( with 8.3 billion parameters). 

Table 3.  

Model # Layers # Hidden Size # Attention Heads # Parameters 
GatorTron-base 24 1024 16 345 million 
GatorTron-medium 48 2560 40 3.9 billion 
GatorTron-large 56 3584 56 8.9 billion 

 

Existing transformer models for comparison 

BioBERT.12 The BioBERT model was developed by further training the original BERT-large 

model (345 million parameters, 24 layers, 1024 hidden units, and 16 attention heads) using 

biomedical literature from PubMed Abstracts (4.5 billion words) and PMC Full-text articles 

(13.5 billion words).  In this study, we used version 1.1.   
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ClinicalBERT.38 The ClinicalBERT model was developed by further training the BioBERT 

(base version; 110 million parameters with 12 layers, 768 hidden units, and 12 attention heads) 

using clinical text from the MIMIC-III39 corpus. 

BioMegatron.37 The BioMegatron models adopted the BERT architecture with a different 

number of parameters from 345 million to 1.2 billion.  Different from BioBERT and 

ClinicalBERT, the BioMegatron was trained from scratch without leveraging the original BERT 

model.   

Clinical NLP tasks, evaluation matrices, and benchmark datasets 

We evaluated GatorTron models using five clinical NLP tasks at different linguistic levels. 

Clinical concept extraction.  This is a task to recognize phrases with important clinical 

meanings (e.g., medications, treatments, adverse drug events).  The NLP system has to determine 

the boundaries of a concept and classify it into predefined semantic categories.  Early systems for 

clinical concept extract are often rule-based, yet, most recent systems are based on machine 

learning models such as conditional random fields (CRFs)48,49, convolutional neural networks 

(CNN)10,50, and recurrent neural networks (RNN) implemented with long short-term memory 

strategy (LSTM)11,51.  Current state-of-the-art models are based on transformers such as the 

ClinicalBERT. We used three benchmark datasets developed by the 2010 i2b2 challenge, 2012 

i2b2 challenge, and 2018 n2c2 challenge to evaluate GatorTron models focusing on identifying 

important medical concepts (e.g., medications, adverse drug events, treatments) from clinical 

text.  We used standard precision, recall, and F1-score for evaluation. 

Medical Relation extraction.  MRE is to establish medical-related relations (e.g., induce 

relation) among clinical concepts (e.g., drugs, adverse events), which is a crucial task for high-
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level clinical NLP applications.  MRE is usually approached as a classification problem – 

identify and classify pairs of concepts with valid relations.  Various machine learning-based 

classifiers such as support vector machines (SVMs), random forests (RF), and gradient boosting 

trees (GBT)42 have been applied. With the emergence of deep learning models, researchers have 

explored the long-short term memory (LSTM) architecture for RE in both general and clinical 

domains52,53.  Most recently, several studies adopted the BERT architecture and demonstrated 

superior performance for MRE on various datasets54–59.  In this study, we used the dataset 

developed by the 2018 n2c2 challenge with a focus on relations between medications and 

adverse drug events. The standard precision, recall, and F1-score were used for evaluation. 

Semantic textual similarity.  The STS task is to quantitatively assess the semantic similarity 

between two text snippets (e.g., sentences), which is usually approached as a regression task 

where a real-value score was used to quantify the similarity between two text snippets.  In the 

general domain, the STS benchmark (STS-B) dataset curated by the Semantic evaluation 

(SemEval) challenges between 2012 and 201760 is widely used for evaluating STS systems14.  

Various machine learning methods have been examined61–63 but transformer-based systems such 

as RoBERTa26, T528, and ALBERT29 are leading the state-of-the-art models for STS.  In the 

clinical domain, the MedSTS dataset64 that consists of over 1000 annotated sentence pairs from 

clinical notes at Mayo Clinic was widely used as the benchmark.  MedSTS was used as the gold 

standard in two clinical NLP open challenges including the 2018 BioCreative/Open Health NLP 

(OHNLP) challenge65 and 2019 n2c2/OHNLP ClinicalSTS shared task43.  Similar to the general 

domain, pretrained transformer-based models using clinical text and biomedical literature, 

including ClinicalBERT and BioBERT66, are state-of-the-art solutions.  In this study, we used 
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the dataset developed by the 2019 n2c2/OHNLP challenge on clinical semantic textural 

similarity43.  We used the Pearson correlation score for evaluation. 

Natural language inference.  NLI is also known as recognizing textual entailment (RTE) - a 

directional relation between text fragments (e.g., sentences)67.  The goal of NLI is to determine if 

a given hypothesis can be inferred from a given premise.  In the general domain, two benchmark 

datasets - the MultiNLI68 and the Stanford NLI69 are widely used.  On both datasets, pretrained 

transformer models achieved state-of-the-art performances28,30.  There are limited resources for 

NLI in the clinical domain.  Until recently, the MedNLI – a dataset annotated by doctors based 

on the medical history of patients44 was developed as a benchmark dataset in the clinical domain.  

A previous study38 showed that a pretrained clinical BERT model achieved the state-of-the-art 

performance and outperformed the baseline (InferSent70) by ~9% accuracy.  In this study, we 

evaluated the Gatortron models on NLI using the MedNLI dataset and used accuracy for 

comparison. 

Medical question answering.  The MQA task is to build NLP systems that automatically 

answer medical questions in a natural language, which is the most complex challenge among the 

5 tasks.  Unlike other tasks focusing on phrases and sentences, MQA is a document-level task 

that requires information from the whole document to generate answers according to questions.  

In the general domain, the Stanford Question Answering Datasets (SQuAD 1.1 and 2.0)71,72 have 

been widely used as benchmarks.  Transformer-based models are the state-of-the-art for both 

SQuAD1.119 and SQuAD2.032.  There are several MQA datasets developed in the past few years 

such as the MESHQA73, MedQuAD74, and emrQA45.  In this study, we used the emrQA dataset, 

which is widely used as a benchmark dataset for MQA.  We particularly focused on medications 
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and relations-related questions as Yue et al.75 found that the two subsets are more consistent.  We 

utilized both F1-score and exact match score for evaluation. 
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Data availability: The benchmark datasets that support the findings of this study are available 
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Computer code: The computer codes to train GatroTron models are available from: 

https://github.com/NVIDIA/Megatron-LM and https://github.com/NVIDIA/NeMo. 
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