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Abstract 
Diffusion-weighted imaging (DWI) is routinely used to aid in the detection and characterization 
of prostate cancer. Given imaging time constraints in a clinical setting, it is important to 
maximize the statistical efficiency of a DWI examination of the prostate. The objective is to 
maximize the accuracy with which microstructural information about the prostate can be 
obtained while minimizing diffusion scan time.  

In this study, we apply estimation theory to evaluate the statistical efficiency of different 
DWI acquisitions and methods. Specifically, we show that the variance of DWI parameters 
estimated using nonlinear multiexponential signal models is considerably higher than the 
variance observed using linear signal models. We then derive a simple analytical expression for 
the efficiency of a linear estimator and use it to optimize b-value sampling for DWI of the 
prostate.  
 
  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.26.22271561doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.02.26.22271561


Introduction 
Diffusion-weighted imaging (DWI) is routinely used to aid in the detection and characterization 
of prostate cancer (1). While conventional DWI remains largely limited to assessment of relative 
signal intensity and monoexponential apparent diffusion coefficient (ADC), sophisticated 
multicompartmental modeling techniques better quantify physiologically meaningful parameters 
from DWI data (2–6). Compared to conventional DWI, these multicompartmental approaches 
require more scan time per patient in order to obtain measurements at additional b-values 
and/or echo times (TEs). Given imaging time constraints in a clinical setting, it is important to 
maximize the statistical efficiency of a DWI examination of the prostate. The objective is to 
maximize the accuracy with which microstructural information about the prostate can be 
obtained while minimizing diffusion scan time.  
 
In this study, we apply estimation theory to evaluate the statistical efficiency of different DWI 
acquisitions and methods. Specifically, we show that the variance of DWI parameters estimated 
using nonlinear multiexponential signal models is considerably higher than the variance 
observed using linear signal models. We then derive a simple analytical expression for the 
efficiency of a linear estimator and use it to optimize b-value sampling for DWI of the prostate.  
 
 
Methods 
DWI signal modeling 
The DWI signal is generally modeled as the sum of individual signal contributions from distinct 
tissue compartments: 
 

𝑆(𝑏, 𝑇𝐸) = 𝐶1𝑒−𝑏𝐷1𝑒−𝑇𝐸 𝑇2,1⁄ + 𝐶2𝑒−𝑏𝐷2𝑒−𝑇𝐸 𝑇2,2⁄ + 𝐶3𝑒−𝑏𝐷3𝑒−𝑇𝐸 𝑇2,3⁄ + ⋯ + 𝐶𝐾𝑒−𝑏𝐷𝐾𝑒−𝑇𝐸 𝑇2,𝐾⁄ + 𝜀     (1) 

= ∑ 𝐶𝑖𝑒−𝑏𝐷𝑖𝑒−𝑇𝐸 𝑇2,𝑖⁄

𝐾

𝑖=1

+ 𝜀                                                                          (2) 

 
Each compartment is characterized by a linear weight (C), diffusion coefficient (D), and 
transverse relaxation time (T2). The linear weights indicate the relative contributions of each 
compartment to the overall observed signal. When the DWI signal is normalized, these weights 
sum to unity and are commonly referred to as the compartmental volume fractions (4,7). The 
diffusion coefficients and T2 values describe how compartmental signal decays with increasing 
b-value and TE, respectively. Additive measurement noise is represented by 𝜀. If the diffusion 
coefficients and T2 relaxation constants are assumed to be fixed for each compartment, the 
signal model becomes linear and can be expressed in matrix form as: 
 
𝑺 = 𝑿𝜷 + 𝜺                               (3) 
 
where 𝑿 is the experimental design matrix that incorporates the exponential decay terms for 

each compartment at each b-value and TE, and 𝜷 is the vector of linear weights C for each 
compartment. 
 
Computing estimator variance  
An estimator attempts to determine unknown parameters from measured empirical data (8). In 
the context of the general DWI model presented above, an estimator would aim to determine 
compartmental C, D, and T2 values from DWI signal measurements obtained at different b-
values and TEs. Estimator variance is an important metric for comparing unbiased estimators, 
with lower variance indicating a more optimal estimator with higher expected accuracy (9,10). 
The Cramer-Rao lower bound on the variance of an estimator is given by the inverse of the 
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Hessian matrix of the negative log-likelihood function (11,12). Assuming Gaussian noise, the 

observed DWI signal measurements may be considered a Gaussian random vector 𝑺(�̂�) with 
mean 𝑺∗(𝜷) and covariance 𝚺, where β is the concatenation of the various compartmental 
parameters (Ci, Di, T2,i) of the DWI model, and the hat symbol indicates an estimated value. For 
such a random vector, the joint probability density function (PDF) is given by: 
 

𝑝 (𝑺(�̂�)) = (2𝜋)−
𝑁
2 |𝚺|−

1
2exp [−

1

2
(𝑺(�̂�) − 𝑺∗(𝜷))

𝑇
𝚺−1 (𝑺(�̂�) − 𝑺∗(𝜷))]                                       (4) 

 
Which yields the negative log likelihood function: 
 

𝑙 (𝑺(�̂�)) ≡ − ln [𝑝 (𝑺(�̂�))] =
𝑁

2
ln 2𝜋 +

1

2
ln|𝚺| +

1

2
(𝑺(�̂�) − 𝑺∗(𝜷))

𝑇
𝚺−1 (𝑺(�̂�) − 𝑺∗(𝜷))       (5) 

 
The Hessian matrix of this function describes its curvature in parameter space, and the inverse 

of the Hessian is the covariance matrix of the uncertain parameters �̂�. The diagonal elements of 
the covariance matrix are the variances of each DWI model parameter for a given estimator 
(11). 
 
Evaluating parameter variances for nonlinear and linear estimators 
Using this numerical approach, we computed parameter variances for a simulated DWI 
acquisition for one nonlinear and one linear estimator. For both estimators, a 4-compartment 
signal model was assumed (K = 4 in equation 2) (5). The true DWI model parameters were 
chosen to reflect values previously reported for prostate tissue (3–5) and are listed in Table 1. 
For the nonlinear estimator, the nonlinear parameters of the model (compartmental diffusion 
coefficients, Di, and T2,i values) were considered free parameters to be estimated from the DWI 
data, in addition to the linear parameters (compartmental linear weights, Ci). For the linear 
estimator, the nonlinear parameters were considered fixed for each compartment, and only the 
compartmental linear weights (Ci) were estimated from the DWI data. The simulated acquisition 
protocol was designed to emulate a rigorous examination of the prostate in a research setting, 
with relatively dense b-value and echo time (TE) sampling compared to routine clinical scans. 
This was done to allow exploration of possibilities, even some that are not presently practical in 
a clinical setting. Specifically, the simulation acquisition protocol consisted of 5 b-values (0, 50, 
800, 1500, 3000 s/mm2), repeated at 4 different TEs (40, 80, 100, 200 ms). The Hessian matrix 
of equation 5 was computed numerically, so the nonlinear parameters Di and T2,i were log-
transformed to improve the stability of numerical differentiation.   
 
Table 1: DWI signal model parameters used for simulating prostate tissue. 

 Linear weights Diffusion coefficients (mm2/s) T2 relaxation constants (ms) 

Model 
parameter 

C1 
(β1) 

C2 

(β2) 
C3 
(β3) 

C4 

(β4) 
D1 (β5) D2 (β6) D3 (β7) D4 (β8) T2,1 

(β9) 
T2,2 

(β10) 
T2,3 

(β11) 
T2,4 

(β12) 

True value 0.3 0.4 0.2 0.1 1.0e-4 1.8e-3 3.6e-3 1.0e-2 40 70 100 275 

 
 
Linear estimator efficiency 
The statistical efficiency of an unbiased estimator is defined as the reciprocal of the parameter 
variance per unit of scan time (9,10): 
 

𝐸 = 〈‖𝜷 − �̂�‖
2

〉−1 𝑇⁄                      (6)  
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where 〈∙〉 is the expectation operator, and 𝑇 is the time required for the acquisition. If the 
estimator under consideration is linear, the numerical Hessian-based approach can be replaced 
by a simple analytic expression for parameter variance (9,10). 
 
The ordinary least-squares (OLS) solution to equation 3 is given by: 
 

�̂� = (𝑿𝑇𝑿)−1𝑿𝑇𝑺                       (7) 
 
Substituting this OLS solution into equation 6 yields: 
 

𝐸 = 〈‖𝜷 − (𝑿𝑇𝑿)−1𝑿𝑇𝑺‖2〉−1 𝑇⁄                      (8) 
 
Which can be combined with the expression for DWI signal in equation 3 and simplified to 
obtain:  
 

𝐸 = 〈‖(𝑿𝑇𝑿)−1𝑿𝑇𝜺‖2〉−1 𝑇⁄                      (9) 
 
Since 𝜺 is a zero-mean Gaussian random variable, we arrive at the following analytical 
expression for estimator efficiency for the linear estimator: 
 

𝐸 =
1

〈(𝑿𝑇𝑿)−1〉𝑇
                    (10) 

 
Estimator efficiency 𝐸 provides an objective criterion for evaluating and optimizing the relative 
expected accuracy of parameter estimates from different DWI acquisition protocols. The 
(𝑿𝑇𝑿)−1 term in equation 10 is the covariance matrix of the parameters, identical to the inverse 
of the Hessian matrix of the negative log-likelihood function, but simpler to compute in general. 
 
Optimizing b-value sampling to maximize linear estimator efficiency 
Using equation 10, an optimal b-value sampling scheme was determined for estimating the 
compartmental diffusion coefficients (Di) of simulated prostate tissue modeled by the 
parameters listed in Table 1. For a range of maximum b-values (from 1000 to 6000 s/mm2), a 
bounded simplex search method (13) was used to compute optimal nonzero b-values that 
maximized the protocol efficiency 𝐸. Three nonzero b-values were assumed initially (along with 

a b=0 s/mm2 acquisition), to ensure that the rank of matrix 𝑿 is at least 4 (the number of 
parameters to be estimated) but the optimization process was also performed for higher 
numbers of nonzero b-values (up to 8 in total). Acquisition time 𝑇 was taken to be the minimum 
repetition time (TR) achievable for the maximum b-value on a Discovery MR750 MRI scanner 
(GE Healthcare, Waukesha, WI) multiplied by the total number of b-values. Relative 𝐸 values 

were computed by normalizing the 𝐸 value obtained for each maximum b-value by the 
maximum 𝐸 value obtained overall. For the protocol with three nonzero b-values, sensitivity 
analysis was performed to examine how varying each b-value away from its optimum decreases 
protocol efficiency. To examine how the value of the diffusion coefficient to be estimated affects 
the protocol efficiency, the protocol optimization procedure was repeated for three different 
values of D1: 1e-6, 1e-4, and 1e-3 mm2/s. 
 
 
Results 
The variance of each DWI model parameter is listed in Table 2 for the nonlinear and linear 
estimators.  
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Table 2: Parameter variances for a simulated DWI acquisition for one nonlinear and one linear 
estimator. The last row of the table lists the ratio of the nonlinear variance (VarNL) over the linear 
variance (VarLin) for the parameters common to both estimators (the linear weights). 
 Linear weights Diffusion coefficients Transverse relaxation times 

 C1 
(β1) 

C2 (β2) C3 (β3) C4 

(β4) 
log(D1) 
(β5) 

log(D2) 

(β6) 
log(D3) 

(β7) 
log(D4) 

(β8) 
log(T2,1) 

(β9) 
log(T2,2) 

(β10) 
log(T2,3) 

(β11) 
log(T2,4) 

(β12) 

Nonlinear 259 42,616 51,249 633 26,306 62,658 97,491 42,642 572 22,056 99,409 54,673 

Linear 8 169 179 11 N/A (fixed values) N/A (fixed values) 

VarNL / VarLin 34 252 286 55 N/A N/A 

 
 
Figure 1 plots the efficiency of the linear estimator across a range of maximum b-values. For the 
prostate tissue simulated by the parameters in Table 1, the most efficient acquisition protocol 
having 3 nonzero b-values was achieved using a maximum b-value of 2500 s/mm2, with optimal 
nonzero b-values of 100, 600, and 2500 s/mm2. The sensitivity analysis shown in Figure 2 
illustrates how protocol efficiency decreases as each of these optimal b-values is varied. 
Allowing for more b-values did not result in optimal protocols with additional unique b-values, 
but rather repeated sampling of these initial 3 values (Table 3). 
 

 
Figure 1: DWI protocol efficiency as a function of the maximum b-value acquired. For the 
simulated prostate tissue to be examined (described by the parameters in Table 1), linear 
parameter estimation was most efficient for an acquisition protocol with a maximum b-value of 
2500 s/mm2. Optimal nonzero b-values for this protocol were 100, 600, and 2500 s/mm2. 
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Figure 2: Sensitivity analysis showing how DWI protocol efficiency decreases as each of the 
three nonzero b-values are changed from their optimal values. Optimal nonzero b-values for 
this protocol were 100, 600, and 2500 s/mm2. 

 
 
Table 3: Optimal b-values for DWI protocols using different numbers of nonzero b-values. A b=0 
s/mm2 acquisition was assumed for each protocol. 

Number of nonzero 
b-values 

Optimal value of nonzero b-values (s/mm2) 
(number of repetitions) 

3 100 (1) 600 (1) 2500 (1) 

4 100 (1) 600 (1) 2500 (2) 

5 100 (1) 600 (2) 2500 (2) 

6 100 (1) 600 (2) 2500 (3) 

7 100 (2) 600 (2) 2500 (3) 

8 100 (2) 600 (3) 2500 (3) 

 
 
Figure 3 demonstrates how DWI estimator efficiency changes based on the underlying diffusion 
coefficients to be measured. Specifically, as the diffusion coefficient to be estimated decreases, 
the optimal maximum b-value increases. 
 

 
Figure 3: DWI protocol efficiency for different underlying diffusion coefficients. Lower diffusion 
coefficients are more optimally estimated using higher b-values.  
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Discussion 
Despite the simulated acquisition protocol employed in this study assuming many more 
measurements than would be realistic in a clinical setting (4 nonzero b-values repeated at 4 
different TEs), the nonlinear estimator variances were still too large for meaningful 
determination of the model parameters for the full nonlinear model (Table 2). Such large 
variances observed for the nonlinear estimator illustrate the inherent difficulty of obtaining 
accurate parameter estimates from multiexponential fitting of DWI data. Indeed, 
multiexponential fitting of MRI data in general is often an under-determined or ill-conditioned 
problem due to limitations on imaging time, leading to solutions that suffer from non-uniqueness, 
noise amplification, and instability (14,15).   
 
A number of approaches are commonly used to overcome this problem and obtain meaningful 
parameter estimates from multiexponential fitting of DWI data. Restriction spectrum imaging 
(RSI) addresses the problem by decoupling the estimation of the nonlinear model parameters 
(Di, T2,i) from the linear weights (Ci). The nonlinear parameters are determined via global fitting 
to measurements from a large number of voxels simultaneously, and are then fixed per 
compartment to the globally optimal values (as opposed to being free parameters that are fit 
voxel-by-voxel) (5). This global fitting process reduces the variance of the nonlinear parameters 
in proportion to the number of measurements, so they can be reliably estimated for a large 
enough sample size. In Conlin et al., for example, signal measurements from over 200,000 
voxels were used to optimize the diffusion coefficients of a 4-compartment DWI signal model of 
the prostate (5). Once the nonlinear parameters are fixed per compartment, the linear weights 
can be determined per voxel using linear estimation. As highlighted by Table 2, linear estimation 
of these parameters has many times lower variance than can be achieved with nonlinear 
estimation, making voxel-wise measurements of C much more accurate. Other DWI techniques 
like intravoxel incoherent motion (IVIM) imaging (17), Vascular, Extracellular, and Restricted 
Diffusion for Cytometry in Tumors (VERDICT) MRI (2), and Hybrid Multidimensional MRI (4) 
endeavor to fit the nonlinear model parameters on a voxel-wise basis. To overcome the large 
variances inherent in the estimation of these parameters, bounds are generally imposed on the 
range of possible values they can take during the nonlinear fitting process (2,4,18). This 
approach is analogous to the nonlinear parameter fixing in RSI, but permits limited variation in 
the parameter estimates between voxels. The nonlinear parameter estimates may also be 
analyzed after averaging across all voxels in a chosen region of interest (ROI) or tissue to 
further reduce estimation variance (19–21). 
 
Equation 10 provides an objective metric of linear estimator efficiency that can readily be used 
to optimize DWI acquisition protocols. For a 4-compartment model of prostate tissue with 
diffusion coefficients of 1.0e-4, 1.8e-3, 3.6e-3, and 1.0e-2 mm2/s, the optimal nonzero b-values 
which maximized estimator efficiency were calculated to be 100, 600, and 2500 s/mm2. As 
shown in Table 3, repeated measurements at these optimal b-values was more efficient than 
including additional unique b-values. This demonstrates that dense protocols with many evenly 
spaced b-values are not generally the optimal approach for DWI experiments. While tissues 
characterized by different diffusion coefficients will have different optimal b-values, the proposed 
strategy for protocol optimization still applies; the only change needed is to recompute the 
constant terms of the design matrix 𝑿 using the new diffusion coefficients. In general, smaller 
diffusion coefficients are more optimally estimated by higher b-values (Figure 3). This finding is 
particularly important in the context of prostate cancer imaging, where tumors are characterized 
by increased cellularity and more restricted diffusion (2,22,23). The optimal maximum b-value 
reported in this study (2500 s/mm2) is higher than what is typically prescribed for prostate DWI 
clinically (24), suggesting that reevaluation of current clinical guidelines may be warranted.   

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.26.22271561doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.26.22271561


 
References 
1.  Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate Imaging Reporting and Data System 

Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2. 
European Urology. 2019;76(3):340–351. doi: 10.1016/j.eururo.2019.02.033. 

2.  Panagiotaki E, Chan RW, Dikaios N, et al. Microstructural Characterization of Normal and 
Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for 
Cytometry in Tumours Magnetic Resonance Imaging. Investigative Radiology. 
2015;50(4):218. doi: 10.1097/RLI.0000000000000115. 

3.  Hectors SJ, Said D, Gnerre J, Tewari A, Taouli B. Luminal Water Imaging: Comparison With 
Diffusion-Weighted Imaging (DWI) and PI-RADS for Characterization of Prostate Cancer 
Aggressiveness. Journal of Magnetic Resonance Imaging. 2020;52(1):271–279. doi: 
10.1002/jmri.27050. 

4.  Chatterjee A, Bourne RM, Wang S, et al. Diagnosis of Prostate Cancer with Noninvasive 
Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A 
Feasibility Study. Radiology. 2018;287(3):864–873. doi: 10.1148/radiol.2018171130. 

5.  Conlin CC, Feng CH, Rodriguez‐Soto AE, et al. Improved Characterization of Diffusion in 
Normal and Cancerous Prostate Tissue Through Optimization of Multicompartmental Signal 
Models. Journal of Magnetic Resonance Imaging. 2021;53(2):628–639. doi: 
https://doi.org/10.1002/jmri.27393. 

6.  Feng CH, Conlin CC, Batra K, et al. Voxel-level Classification of Prostate Cancer on 
Magnetic Resonance Imaging: Improving Accuracy Using Four-Compartment Restriction 
Spectrum Imaging. Journal of Magnetic Resonance Imaging. 2021;54(3):975–984. doi: 
10.1002/jmri.27623. 

7.  Panagiotaki E, Schneider T, Siow B, Hall MG, Lythgoe MF, Alexander DC. Compartment 
models of the diffusion MR signal in brain white matter: A taxonomy and comparison. 
NeuroImage. 2012;59(3):2241–2254. doi: 10.1016/j.neuroimage.2011.09.081. 

8.  Walter E, Pronzato L. Identification of Parametric Models: From Experimental Data. 
Springer; 1997. 

9.  Dale AM. Optimal experimental design for event-related fMRI. Human Brain Mapping. 
1999;8(2–3):109–114. doi: 10.1002/(SICI)1097-0193(1999)8:2/3<109::AID-
HBM7>3.0.CO;2-W. 

10.  White NS, Dale AM. Optimal diffusion MRI acquisition for fiber orientation density 
estimation: An analytic approach. Human Brain Mapping. 2009;30(11):3696–3703. doi: 
10.1002/hbm.20799. 

11.  Appendix A: Relationship between the Hessian and Covariance Matrix for Gaussian 
Random Variables. Bayesian Methods for Structural Dynamics and Civil Engineering. John 
Wiley & Sons, Ltd; 2010. p. 257–262. doi: 10.1002/9780470824566.app1. 

12.  Kay SM. Chapter 3: Cramer-Rao Lower Bound. Fundamentals of Statistical Signal 
Processing, Volume I: Estimation Theory. 1st edition.  Pearson; 1993. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.26.22271561doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.26.22271561


13.  Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence Properties of the Nelder--
Mead Simplex Method in Low Dimensions. SIAM J Optim. 1998;9(1):112–147. doi: 
10.1137/S1052623496303470. 

14.  Raj A, Pandya S, Shen X, LoCastro E, Nguyen TD, Gauthier SA. Multi-Compartment T2 
Relaxometry Using a Spatially Constrained Multi-Gaussian Model. PLOS ONE. Public 
Library of Science; 2014;9(6):e98391. doi: 10.1371/journal.pone.0098391. 

15.  Graham SJ, Stanchev PL, Bronskill MJ. Criteria for analysis of multicomponent tissue T2 
relaxation data. Magnetic Resonance in Medicine. 1996;35(3):370–378. doi: 
10.1002/mrm.1910350315. 

16.  Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG. Regularization methods. In: 
Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG, editors. Numerical Methods for 
the Solution of Ill-Posed Problems. Dordrecht: Springer Netherlands; 1995. p. 7–63. doi: 
10.1007/978-94-015-8480-7_2. 

17.  Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of 
diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 
1988;168(2):497–505. doi: 10.1148/radiology.168.2.3393671. 

18.  Döpfert J, Lemke A, Weidner A, Schad LR. Investigation of prostate cancer using diffusion-
weighted intravoxel incoherent motion imaging. Magnetic Resonance Imaging. 
2011;29(8):1053–1058. doi: 10.1016/j.mri.2011.06.001. 

19.  Andreassen MMS, Rodríguez-Soto AE, Conlin CC, et al. Discrimination of Breast Cancer 
from Healthy Breast Tissue Using a Three-component Diffusion-weighted MRI Model. Clin 
Cancer Res. American Association for Cancer Research; 2021;27(4):1094–1104. doi: 
10.1158/1078-0432.CCR-20-2017. 

20.  Donati OF, Mazaheri Y, Afaq A, et al. Prostate Cancer Aggressiveness: Assessment with 
Whole-Lesion Histogram Analysis of the Apparent Diffusion Coefficient. Radiology. 
2013;271(1):143–152. doi: 10.1148/radiol.13130973. 

21.  Vargas HA, Akin O, Franiel T, et al. Diffusion-weighted Endorectal MR Imaging at 3 T for 
Prostate Cancer: Tumor Detection and Assessment of Aggressiveness. Radiology. 
2011;259(3):775–784. doi: 10.1148/radiol.11102066. 

22.  Liss MA, White NS, Parsons JK, et al. MRI-Derived Restriction Spectrum Imaging Cellularity 
Index is Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens. 
Front Oncol. 2015;5. doi: 10.3389/fonc.2015.00030. 

23.  Kuwano H, Miyazaki T, Tsutsumi S, et al. Cell Density Modulates the Metastatic 
Aggressiveness of a Mouse Colon Cancer Cell Line, Colon 26. OCL. 2004;67(5–6):441–
449. doi: 10.1159/000082929. 

24.  Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS Prostate Imaging – Reporting and 
Data System: 2015, Version 2. European Urology. 2016;69(1):16–40. doi: 
10.1016/j.eururo.2015.08.052. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.26.22271561doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.26.22271561

