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Abstract

Estimating key aspects of transmission is crucial in infectious disease control. Serial in-

tervals – the time between symptom onset in an infector and infectee – are fundamental, and

help to define rates of transmission, estimates of reproductive numbers, and vaccination levels

needed to prevent transmission. However, estimating the serial interval requires knowledge of

individuals’ contacts and exposures (who infected whom), which is typically obtained through

resource-intensive contact tracing efforts. We develop an alternate framework that uses virus

sequences to inform who infected whom and thereby estimate serial intervals. The advantages

are many-fold: virus sequences are often routinely collected to support epidemiological in-

vestigations and to monitor viral evolution. The genomic approach offers high resolution and

cluster-specific estimates of the serial interval that are comparable with those obtained from

contact tracing data. Our approach does not require contact tracing data, and can be used in

large populations and over a range of time periods. We apply our techniques to SARS-CoV-2

sequence data from the first two waves of COVID-19 in Victoria, Australia. We find that serial

interval estimates vary between clusters, supporting the need to monitor this key parameter and

use updated estimates in onward applications. Compared to an early published serial interval

estimate, using cluster-specific serial intervals can cause estimates of the effective reproduc-

tion number Rt to vary by a factor of up to 2–3. We also find that serial intervals estimated

in settings such as schools and meat processing/packing plants tend to be shorter than those

estimated in healthcare facilities.

Keywords: COVID-19; Serial interval; Genomic epidemiology; Whole genome sequencing; Sta-

tistical model; Reproduction number;
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1 Introduction

Whole genome sequence (WGS) data is rapidly becoming a fundamental tool in public health

laboratories (PHL) around the world [1–3]. WGS data carry enormous benefits for outbreak in-

vestigations, providing finer discriminatory power than traditional sub-typing [4], and facilitating

surveillance of AMR [5] as well as easy sharing across jurisdictional boundaries [6]. However,

the information content of genomic data alone can be limited under certain conditions, as expe-

rienced during the SARS-CoV-2 pandemic [7, 8]. Such situations highlight the limited ability to

effectively integrate genomic and epidemiological data in public health. Often, genomic data is

combined with epidemiological data in an ad hoc fashion by plotting epidemiological data on the

tips of phylogenetic trees (derived from genomic data). The results are then interpreted by PHL

genomic epidemiology personnel. This approach relies heavily on the interpretation experience of

the person generating the report, and thus does not lend itself readily to the desired reproducibil-

ity and repeatability standards under PHLs standard operations. In addition, the lack of a more

systematic framework for integrating genomic and epidemiological data is leading to significant

under-utilization of the information available to PHLs to help inform public health action.

In this work, we develop a framework for the integration of genomic data, in the form of whole-

genome virus sequences, into epidemiological investigations, particularly when detailed epidemi-

ological data from contact tracing is unavailable. Pathogen sequence data collected from infected

individuals do not directly reveal who infected whom, but nonetheless can offer a high-resolution

view of transmission. We focus on cluster-specific estimation of the serial interval, a key mea-

sure describing the spread of an infectious disease, which is defined as the length of time between

the onset of symptoms in a primary and secondary case. This is informative of both the speed of

transmission, as well as when in the infection process transmission is likely to occur.

Serial intervals are typically inferred from small clusters of individuals with known contact and

times of symptom onset [9, 10], but collection of such data can be resource intensive, and privacy
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and reporting considerations limit wide reporting and utilization. As a result, estimates of the se-

rial interval applied in practice (underpinning estimation of other epidemiological quantities such

as the time-dependent reproduction number Rt) are often taken from small studies, not necessar-

ily from the same population or time as the population in question. Methods that do not require

knowledge of who infected whom have been developed, but these assume that the population is

fully sampled [11,12]. When contact tracing data is available, common approaches are to consider

the distribution of observed serial intervals between contact-traced pairs assumed to represent di-

rect transmission [13], or to monitor the population for index cases who are infected with the

pathogen of interest, and then follow up with close contacts such as members of their household to

find secondary cases [14]. Such approaches were extended by Vink et al. [9] to allow for unsam-

pled intermediate cases, using ‘index case-to-case (ICC) intervals’, defined as the lengths of time

between symptom onset of all secondary cases and the index case in a small population such as a

household, boarding school or closed workplace. By allowing for up to two unsampled cases be-

tween the index case and a secondary case, Vink et al. take potential under-reporting into account.

However, the limitation on the number of unsampled intermediates and the onus on identification

of the index case mean that this approach is most suited to small and closed populations. In this

work we present a framework that uses virus sequences in place of direct knowledge of infection

pairs. It does not restrict the number of unsampled intermediate cases and it incorporates uncer-

tainty in who infected whom. We explore how estimates of the serial interval can vary between

outbreak clusters, even within the same population, and demonstrate that virus sequences offer a

practical approach for inference of cluster-specific estimates, even where detailed contact tracing

data are not available and whilst taking under-reporting into account.

We investigate the use of virus sequences for estimation of cluster-specific serial intervals using

SARS-CoV-2 whole-genome sequences and recorded symptom onset times from Victoria, Aus-

tralia. We identify a number of genomically- and epidemiologically-defined SARS-CoV-2 clusters

from the first and second ‘waves’ of the COVID-19 pandemic in Victoria: with samples collected

6 January–14 April 2020 and 1 June–28 October 2020. We estimate the serial interval in each clus-
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ter, allowing for comparison both within and between waves. We additionally compare estimates

of the serial interval arising from different types of clusters: healthcare facilities, workplaces and

so on. Our approach incorporates uncertainty in who infected whom by sampling a set of feasible

transmission networks given the virus sequences and the known times of symptom onset, but re-

quires no knowledge of contact between individuals in the clusters. We then use a mixture model

for estimation of the serial interval, which takes into account that the outbreak may not have been

fully sampled and so inferred transmission pairs may not represent direct transmission. We explore

the impact that using these cluster-specific serial interval estimates has on downstream estimates

of the time-dependent reproduction number Rt. We compare our sequence-based approach with

an equivalent method which uses the same model but detailed contact-tracing information in place

of virus sequences.

2 Materials and Methods

2.1 SARS-CoV-2 whole genome sequencing and clustering, Victoria, Aus-

tralia

For full details on the sequencing procedure, see [7]. In short, whole RNA was extracted from sam-

ples obtained from nasopharyngeal swabs, and positive samples for SARS-CoV-2 were identified

by RT-qPCR. Postive samples underwent tiled amplicon sequencing using ARTIC primers [15,16].

Amplicons were prepared for sequencing on an Illumina sequencer using the NexteraXT library

prep protocol following the manufacturer’s instructions. Sequencing reads were mapped to the

Wuhan-Hu-1 reference sequence (Genbank MN908947.3) and consensus sequences generated us-

ing the iVar pipeline [17]. Consensus sequences were kept for downstream analyses if they met

the following criteria: ≥95% genome recovered,≤25 SNPs from the reference genome, and≤300

ambiguous bases.
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Wave 1 clustering:

1242 samples from 1075 patients were sequenced during the wave 1 study period: 6 January–14

April 2020. This corresponds to 80.7% of identified COVID-19 cases in Victoria during that time

period. The data comprise genomic sequence, sequence sampling date and symptom onset date for

each sampled case.

The wave 1 genomic clustering procedure is as described in [7]. Of 903/1242 samples passing

initial quality control and de-duplication, 737 were identified as belonging to a genomic cluster,

for a total of 76 clusters with at least 2 cases. Clustering of the samples was based on a maximum

likelihood phylogenetic tree containing a single sequence per patient built using IQtree [18] ap-

plying a GTR+Γ4 substitution model. Using the ClusterPicker tool [19], clusters were defined as

having at least two samples with the inferred ancestral node having at least 95% bootstrap support

and the maximum distance within the cluster of 0.0004 expected substitutions/site. We focus on all

genomic clusters with at least 15 cases for the serial interval analysis. After removing sequences

with <95% genome recovered or with missing symptom onset time (3 cases), the wave 1 data

comprise a total of 10 wave 1 clusters containing a total 312 cases. These clusters are summarized

in Table 1.

Wave 2 clustering:

Even when pathogen samples are routinely collected and sequenced, genomic clustering can have

computational challenges and lead to large, uncertain clusters, particularly when transmission is

ongoing and widespread in a community and many cases are sampled. In this context, the concept

of what constitutes a cluster is less clearly defined, and tree- or sequence-based clustering can

lead to infeasibly large clusters. Public health experts may also be interested in transmission not

simply among genetically linked isolates, but within particular locations or groups of people, for

example schools and hospitals. Driven by these factors, for the wave 2 analysis we derive clusters

epidemiologically rather than genomically: choosing all cases associated with particular exposure
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sites of interest to public health.

15665 samples from 14075 patients were sequenced during the wave 2 study period: 1 June–

28 October 2020. This corresponds to 83.9% of identified COVID-19 cases in Victoria during

that time period. As in wave 1, the data consist of the virus sequence, sequence sampling date

and symptom onset date for each sampled case. Epidemiological data, including detailed demo-

graphic, risk factor, and contact tracing data were additionally collected for each case through an

interview conducted by the Victorian Department of Health, and these data were used to determine

locations of possible transmission, known as exposure sites. In our primary analyses, we use only

the exposure site information (which cases attended which sites) to define the wave 2 clusters, we

do not use any demographic or contact data. As a validation of our overall approach, we perform

a supplementary analysis in which we re-estimate the serial intervals without the viral sequences

but given full knowledge of the contact data.

Of the 10642/15665 samples passing quality control and de-duplication, 7116 were identified as

associated with at least one exposure site. Of these samples, we remove 1371 cases with missing

symptom onset time. This provides a total 623 clusters with at least 2 cases. Note that cases

may be associated with more than one exposure site, in which case they will be included in more

than one cluster. For our primary analysis we focus on 10 key exposure site clusters - we select

the largest 2 clusters associated with each of: aged care facilities, healthcare facilities, housing,

schools, and meat packing/meat processing plants. These clusters are summarized in Table 1. We

perform additional analysis on all wave 2 clusters with at least 15 cases. We remove a further

2 clusters which contain more than 15 cases but have limited signal of transmission (5 or fewer

inferred plausible infector-infectee pairs, see Section 2.2). This results in a total of 94 wave 2

clusters comprised of a total 3875 cases.

Phylogenetic trees for both wave 1 and wave 2 data are shown in Figure 1. Phylogenies were

produced from the entire set of sequences in each wave, using a custom workflow for building fast

SARS-CoV-2 trees available at github.com/MDU-PHL/kovid-trees-nf. Briefly, sequences were
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cleaned to remove sites with > 5% missing calls and de-duplicated with GOALIGN [20]. An ap-

proximate maximum-likelihood tree was built using FastTree [21] and the branch lengths optimised

with RAxML-NG [22]. Finally, GOTREE [20] was used to repopulate the tree with duplicate se-

quences. Symptom onset curves for the 20 primary clusters are shown in Figure 2.
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Figure 1: Phylogeny of wave 1 (left) and wave 2 (right) Victorian SARS-CoV-2 data. Primary
clusters selected for serial interval analysis are coloured and labelled.
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Table 1: Details of the primary Victoria SARS-CoV-2 clusters. *Note: wave 2 cases may appear
in multiple clusters.

Wave 1 Cases Onset date range
Cluster A1 29 2020/02/18 – 2020/04/01
Cluster A2 61 2020/02/28 – 2020/04/02
Cluster A3 21 2020/02/28 – 2020/04/05
Cluster A4 28 2020/02/29 – 2020/03/29
Cluster A5 19 2020/03/08 – 2020/03/31
Cluster A6 24 2020/03/10 – 2020/04/09
Cluster A7 59 2020/03/10 – 2020/04/06
Cluster A8 29 2020/03/10 – 2020/03/28
Cluster A9 30 2020/03/10 – 2020/04/06
Cluster A10 18 2020/03/15 – 2020/04/05
Total 318 2020/02/18 – 2020/04/09
Wave 2 Cases Dates
Cluster B6 20 2020/06/14 - 2020/07/26
Cluster B7 59 2020/06/14 - 2020/07/28
Cluster B13 115 2020/06/18 - 2020/08/27
Cluster B17 142 2020/06/27 - 2020/08/19
Cluster B24 59 2020/07/04 - 2020/08/20
Cluster B33 117 2020/07/07 - 2020/08/19
Cluster B43 111 2020/07/12 - 2020/08/02
Cluster B47 157 2020/07/13 - 2020/09/26
Cluster B53 19 2020/07/15 - 2020/07/28
Cluster B54 44 2020/07/15 - 2020/08/29
Total 818* 2020/06/14 - 2020/09/26
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Figure 2: Symptom onset curves of primary wave 1 (left) and wave 2 (right) clusters.
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2.2 Sampling transmission networks

In order to estimate cluster-specific serial intervals from viral sequences and symptom onset times

in a cluster (i.e. in the absence of contact tracing data), we require an approach for obtaining pu-

tative transmission pairs. Given that there will usually be considerable uncertainty in who infected

whom, we sample a set of plausible transmission networks, accounting for indirect transmission,

and perform parameter estimation across the entire set.

We build a pairwise genetic distance matrix between all aligned sequences in a cluster using the

ape package in R and the TN93 model of evolution. We then create a ‘transmission cloud’, that

is, a set of all plausible transmission pairs in the cluster. We define a plausible (possibly indirect)

transmission pair as 2 cases in the same cluster who:

1. have observed interval between symptom onsets 0 < T ≤ 35 days

2. have pairwise genomic distance G < 1.1/29903 (where 29903 is the alignment length).

Note that this approach may result in a case having multiple plausible infectors, or no plausible

infectors: in the second scenario the case would be considered as an importation to the cluster from

an unsampled case.

From the transmission cloud, we sample a plausible transmission network by sampling an infector

for each infectee from among their list of plausible infectors. For infectee j, a plausible infector i

is selected with higher probability if the genomic distance and/or the difference in symptom onset

time between i and j is lower. The sample weighting s(i, j) is given by

s(i, j) =
|Gi,j −Gmax|

Gmax
+
|Ti,j − Tmax|

Tmax
,

where Gi,j is the genomic distance between i and j, and Ti,j is the difference in symptom onset

time between i and j. Gmax and Tmax are the maximum genomic and time distance, respectively,

among all plausible pairs in the cluster; their inclusion causes distances Gi,j and Ti,j close to zero
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to result in smaller sampling probability si,j . The weighting is normalized to sum to 1 for each

infectee j. We repeat this process N times to obtain a set of N plausible transmission networks

per cluster. When i is a “plausible infector” of j, we incorporate the possibility that infection was

indirect, through an unknown number of unsampled intermediate cases, or that i and j were both

infected by the same unsampled individual (see below).

As we do not assume that all cases have a sampled ancestor within their cluster, a sampled trans-

mission network is not required to be comprised of a single transmission tree; there can be several

distinct sub-trees each spawned by an unsampled case. The result is that we only perform serial

interval estimation on those inferred transmission pairs with sufficient confidence.

2.3 Serial interval estimation

After sampling a set of plausible transmission networks per cluster, we proceed to estimate the se-

rial interval in each network, and finally combine these for a single cluster estimate. Our approach

seeks to estimate the parameters of the true underlying serial interval distribution, that is, the serial

interval arising from direct transmission between a pair of individuals. However, we account for

the fact that observed serial intervals in data with incomplete sampling may comprise a mixture of

direct transmission (i → j), indirect transmission (i → x → j, for any number of unsampled x)

and coprimary transmission (x→ i, x→ j, for unsampled x).

We assume that the serial interval follows a Gamma distribution with mean µ and standard devi-

ation σ. We further assume that any sampled infector i and sampled infectee j will be separated

by some m unsampled individuals, 0 ≤ m < ∞, where m follows a geometric distribution with

parameter π. Then, π can be thought of as a sampling probability within an identified transmission

chain, m = 0 corresponds to direct transmission and m > 0 corresponds to indirect transmission.

The distribution of the observed time interval between i and j in the case of direct or indirect trans-

mission therefore follows a Compound Geometric Gamma distribution, CGG(µ, σ, π): it is the sum
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of m+ 1 i.i.d. Γ(µ, σ) random variables. We assume that a proportion w of observed serials are of

this type.

We assume that the remaining proportion (1− w) of the observed time intervals represent “copri-

mary” transmission: i and j were infected by the same unsampled individual. Here, the observed

time interval between i and j can be thought of as the (strictly non-negative) difference between

two i.i.d. Γ(µ, σ) random variables. It therefore follows a Folded Gamma Difference distribution,

FGD(µ, σ).

For a sampled transmission network τ in cluster c with n infector-infectee pairs, the log likelihood

of the model parameters given the set of observed time intervals in the network, Dc,τ = {Tik,jk , for

k = 1, 3, . . . , n}, can be calculated as a sum over all infector-infectee pairs independently, and is

given by,

lc,τ (µ, σ, π, w|Dc,τ ) =
n∑
k=1

log
(
w × fCGG(Tik,jk |µ, σ, π) + (1− w)× fFGD(Tik,jk |σ)

)
, (1)

where fCGG and fFGD are the PDFs of the Compound Geometric Gamma and Folded Gamma

Difference distributions, respectively.

We combine the likelihood in Equation (1) with log prior distributions for π and w, and then find

maximum a posteriori (MAP) estimates of the model parameters (µ, σ, π, w). The MAP approach

allows us to refine the estimation using prior knowledge of the fraction of cases with isolates that

are sequenced. We assume a Beta distributed prior for both π and w, and calculate the associated

log posterior distribution. The log posterior is then numerically maximized, using the optim func-

tion in R, to obtain MAP estimates of the parameters for each sampled transmission network. We

lastly combine the MAPs across all sampled transmission networks τ in each cluster c, to obtain

a single estimate of the model parameters per cluster. Corresponding 95% confidence intervals

are calculated, given both the uncertainty within each sampled network MAP and the variation in

MAPs between sampled networks.
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A full description of the model, likelihood and estimation approach is provided in the Supplemental

Materials S1. A schematic diagram of the method is shown in Figure 3. We apply this methodology

to the Victorian SARS-CoV-2 data by estimating the serial interval in each of the 10 primary wave

1 and wave 2 clusters shown in Table 1, as well as the additional 84 wave 2 clusters. We sample

100 transmission networks per cluster, and perform an additional analysis in which we pool the

sampled networks in each wave, to obtain aggregated whole-wave serial interval estimates. Using

the available exposure site data for the wave 2 clusters, we compare the cluster-specific serial

interval estimates across exposure site types. We assume a Beta distributed prior Beta(12, 11)

for parameters π and w in all analyses, with mean 0.52 and standard deviation 0.1. This was

informed by the proportion of identified Victorian COVID-19 cases during the study period that

were sampled and sequenced with sufficient quality (57%), combined with a prior belief of a high

case finding rate. Sensitivity to the choice of prior distribution is explored in the Supplemental

Materials, Section S3.

The above described model is not limited to analyses using genomic data. We validate our genomic

approach with a supplemental analysis that applies the same serial interval estimation procedure to

epidemiologically-sampled transmission networks from epidemiologically-defined clusters. Here,

we define case clusters as the connected components of a network created from contact tracing data.

Rather than sampling transmission trees using viral sequences, we preferentially sample infector-

infectee pairs with known direct contact as indicated by contact tracing. Full details and results are

included in the Supplemental Materials, Section S4. We also compare our cluster-specific serial

intervals for COVID-19 to several published estimates.

2.4 Estimation of effective reproduction number Rt

To contextualize the effects of using cluster-specific serial intervals in downstream analyses, we

compare estimates of the effective reproduction number Rt (also known as the time-varying re-
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Figure 3: Model schematic.

production number) using cluster-specific serial intervals and literature-based serial intervals. Rt

can be interpreted as the expected number of secondary cases caused by an index case at time

t. Calculating it relies on the assumption of an underlying serial interval distribution. We use

the R package EpiEstim to estimate Rt on a weekly sliding window in each cluster, using both

the cluster-specific serial interval distribution estimated in this work and a Γ(µ = 6.3, σ = 4.2)

distribution as estimated for SARS-CoV-2 by Bi et al. [23]. We compare the estimated Rt values.

2.5 Code availability

Analyses in sections 2.2–2.4 are performed using R version 4.1.0. Code is available at

github.com/jessicastockdale/genomicSIs.
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3 Results

We estimate the parameters of the serial interval distribution independently for each cluster identi-

fied in Table 1, as well as across two combined sets of all wave 1 and all wave 2 clusters. Figure 4

shows the cluster-specific mean and 95% confidence interval estimates of the serial interval mean

µ and standard deviation σ, the sampling probability within identified transmission chains π, and

the proportion of non-coprimary transmission w. We find varying estimates of the serial interval by

cluster, with means ranging from 2.64 days (B47) to 6.74 (B43) in the primary clusters. The over-

all mean across all wave 1 clusters is 4.65 days, and across all wave 2 clusters is 5.17 days, though

there is considerable variation between clusters, causing considerable uncertainty when combining

across them. Although most of the cluster confidence intervals overlap, we do find some clusters

with significantly different means or standard deviations. For example, the confidence intervals

in the aforementioned clusters B47 and B43 are completely disjoint. Figure 5 shows the full se-

rial interval distribution estimated in each cluster: in wave 2 we find a larger difference between

clusters, with some clusters (B47 in particular) showing strong signal of a shorter serial interval.

Full results are included in Table S3 in the Supplemental Materials, presented alongside several

published estimates of the COVID-19 serial interval in Table S2 for comparison. Our estimates

are in general agreement with others from wild-type SARS-CoV-2, though with wider uncertainty

(Figure S7). However, the majority of these published estimates did not take uncertainty in who

infected whom, co-primary or indirect transmission into account. Estimates of the parameters con-

cerning sampling rate, π and w, are controlled relatively strongly by their prior distributions (prior

mean 0.52, overall posterior mean 0.59 for π and 0.55 for w, Figure 4), but we do observe some

clusters pushing against this, most notably cluster B53, in which the data suggest a lower sam-

pling rate (π = 0.47). A sensitivity analysis to these assumed prior distributions, included in the

supplemental materials Section S3, reveals that our results are robust to moderate changes in the

sampling rate parameter (π and w) priors.

We compare estimates of the effective reproduction number Rt in which the underlying serial

16

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 3, 2022. ; https://doi.org/10.1101/2022.02.23.22271355doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.23.22271355
http://creativecommons.org/licenses/by-nc/4.0/


interval distribution is (i) our cluster-specific estimate and (ii) a published estimate for COVID-

19, Γ(µ = 6.3, σ = 4.2), from Bi et al. [23], in Figure 6. Any difference in Rt in these figures

arises solely from difference in the underlying serial interval distribution. Although some clusters

remain largely unaffected, for some clusters the estimate of Rt can differ by up to a factor of 2 or

3. This occurs primarily in early cluster estimates of Rt, highlighting how even small amounts of

uncertainty in the underlying transmission model should be treated carefully when obtaining initial

estimates. But even towards the middle or end of cluster outbreaks, the choice of serial interval

can be the difference between an estimate of Rt < 1 and Rt > 1 (e.g. A10), which has clear

implications for epidemic control.

We perform additional analysis on the entire set of 94 wave 2 clusters categorized by exposure site

type, shown in Figure 7. Estimates of the mean serial interval range from 1.97 to 9.54, though

many of the largest estimates have considerable uncertainty. The results suggest some patterns by

exposure type: with meat packing/meat processing plants and schools among the shorter serial in-

tervals and healthcare facilities and housing among the longer. As in the primary clusters, sampling

proportion π and proportion non-coprimary w do not greatly diverge from their prior distributions.

There are several exceptions, such as clusters B53, B71, and B82, all with π ≤ 0.5, suggesting a

lower rate of case acquisition. Among the set of all wave 2 clusters, we find significant correla-

tion (PCC (Pearson correlation coefficient) 0.35, p-value 0.0007) between sampling proportion π

and cluster size, suggesting that larger clusters had higher inferred sampling rates (or conversely

that better-sampled clusters had more cases; we note the correlation but do not speculate on the

cause). We also find a significant negative correlation (PCC -0.28, p-value 0.006) between mean

serial interval µ and the initial symptom onset date in the cluster, suggesting that later clusters were

associated with shorter serial intervals (Supplementary Figure S1). We do not find any significant

association between mean serial interval and cluster size or sampling rate and initial onset date,

and our conclusions are the same when calculating Spearman’s correlation on the ranks.

In order to validate our genomic approach, we perform a supplementary analysis in which we use
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the same serial interval model, but define the clusters and transmission networks epidemiologically

(from contact-tracing data) instead of genomically. The 13 epidemiologically-defined clusters for

wave 1 are shown in Figure S4; they are of a comparative size to the genomic clusters. Cluster-

specific estimates of the mean serial interval range from 3.02 days (cluster C4) to 7.71 days (cluster

C40), with an ’all clusters’ estimate of 5.04 days (Figure S5). These estimates are similar to those

obtained from using viral sequences.

4 Discussion

Estimates of the serial interval are key to understanding disease spread, and underlie estimation

of other quantities such as the time-dependent reproduction number. Current methods for serial

interval estimation are best suited to small, contained populations with high sampling, and require

detailed contact studies which can be resource intensive. However, there is growing demand for

wide-scale epidemiological analyses across populations, and as such these are often undertaken

using estimates of the serial interval from small, early outbreaks in a different location or time than

the population under study. Serial intervals are known to contract during disease outbreaks [24], but

they may also be changed under different pathogen strains, population mixing or control strategies.

In this work, we sought to explore cluster-specific estimates of the serial interval within two waves

of the COVID-19 pandemic in Victoria, Australia, through the introduction of a new approach

using viral sequences in place of detailed contact data.

We found modest differences between clusters, despite all cases occurring within one population

over a 7 month period. Within the second wave, there was an overall signal of serial intervals

shortening over time. We also found that clusters occurring in sites associated with longer-term

contact, such as healthcare centers and housing, tended to have longer serial intervals than sites

attended for shorter lengths of time, such as meat packing or meat processing plants and schools.

Although the parameters concerning sampling rate were relatively strongly controlled by a prior
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Figure 4: Cluster-specific estimates of model parameters. Wave 1 (top) and wave 2 (bottom).
Mean estimates shown as points and 95% confidence intervals as bars. Clusters are labelled
chronologically by date of earliest symptom onset. ‘All’ result in wave 2 is calculated from the full
set of 94 clusters.
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Figure 6: Estimates ofRt using cluster-specific serial intervals (in colour), for wave 1 (top) and
wave 2 (bottom). In grey, we compare Rt as estimated using a fixed serial interval distribution,
Γ(µ = 6.3, σ = 4.2), from Bi et al. [23]. Insets show daily incident case counts in each cluster.
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Figure 7: Model parameter estimates for all wave 2 clusters, categorized by exposure site
type. Mean estimates shown as points and 95% confidence intervals as bars. Clusters are ordered
by increasing mean serial interval.
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distribution, some clusters suggested higher/lower amounts of sampling: such findings could be

used to monitor developing outbreaks, especially if the approach was integrated in routine genomic

surveillance in real time. We found that using cluster-specific serial intervals in estimation of the

time-dependent reproduction number as compared to a literature-based estimate changed Rt by

up to a factor of 2-3, particularly early in outbreaks. This highlights how variable estimates of the

reproduction number can be, particularly when calculated from small outbreaks in specific settings,

and suggests caution should be taken when applying existing parameter estimates to analyses of

new outbreaks.

There are several limitations of our methodology. Due to the assumption of gamma distributed

serial intervals (required for the construction of the mixture model), we assume serial intervals are

strictly positive. There is evidence of negative serial intervals for COVID-19 [13] and in other dis-

eases, and an extension of this model could allow for this. We perform transmission tree sampling

from a cloud of plausible infector-infectee pairs, allowing for indirect and coprimary transmission,

in order to take into account uncertainty in who infected whom from the genomic data. Although

we do this in a probabilistic way which aims to approximate the judgement applied in public health

(that cases closer in pathogen sequence and in time are more likely to infect one another), the tree

sampling could be improved by incorporating additional epidemiological data e.g. known pairs

from contact tracing or relative Ct values, if this were available. It may also be possible to in-

corporate existing methodologies for sampling of transmission trees, such as the outbreaker or

TransPhylo platforms [25,26], but these are not well positioned to estimate serial intervals. Lastly,

our approach requires prior knowledge of the population sampling rate. This is really an innate

identifiability problem with estimation of serial intervals using any model, in that short serial inter-

vals with low sampling would be indistinguishable from long serial intervals with high sampling.

However, the sensitivity analysis of our prior assumptions revealed that our results are robust to

moderate deviations from the sampling rate priors.

Our genomic approach was able to obtain estimates of the model parameters with relatively high
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certainty; confidence intervals were comparable to those from the supplemental analysis using

contact data. Our results show wider uncertainty than many published estimates, but the majority

of these estimates focused on small populations with known contact pairs and did not take potential

under-reporting into account. This further highlights a need for repeated estimation of parameters

concerning infection and transmission, both to obtain a consensus and to track whether values are

changing in time.

A major benefit of the methodology we have presented here is that genomic data can offer a high

resolution view of transmission at a large scale, where collection of contact-tracing data may be

expensive or infeasible. Particularly during the COVID-19 pandemic, many public health labs have

begun routine sample collection and sequencing from a high proportion of identified COVID-19

cases, whereas contact tracing teams can be overwhelmed by high case loads, and data collection

and sharing is challenging. Our approach could be used beyond serial interval estimation, for ex-

ample to compare differences in transmission of COVID-19 Variants of Concern (VOC), between

settings, or between times under particular non-pharmaceutical interventions (NPI). If used in real

time, it could suggest clusters to focus resources upon, for example those which suggest a lower

sampling rate, more rapid transmission, or substantially different/uncertain serial intervals. Al-

though reconstruction of the true transmission chain is not our primary aim, rather we consider

the space of plausible chains, there is also opportunity to further explore the genomically-defined

sampled transmission networks: for example, to consider patterns of transmission by age, vaccine

status or other factors, and whether these change over time. As indicated by the supplementary

contact-based analysis, the estimation model presented here, which is novel in and of itself, is not

limited to genomic analyses. We explored how either genomic or contact data alone can teach us

about transmission, but in practice a combination of data sources may result in the best estimates.

More widely, this research enhances the contributions that virus sequences can make to understand-

ing transmission dynamics. To date, phylodynamics has typically operated at the large scale of

global phylogeography [27,28] and estimation of the past population dynamics of pathogens at the
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whole-population scale [29, 30]. Genomic epidemiology has, in contrast, had a high level of focus

on establishing who infected whom or otherwise analyzing person-to-person transmission [25,26].

Our work establishes an intermediate regime for genomic epidemiology: transmission analysis

at the level of small to intermediate groups, in settings where there is insufficient information to

identify individual transmission events with high confidence. In order to fully harness this infor-

mation, linkage to epidemiological data is helpful – here, times of symptom onset make the link

to serial intervals, and exposure sites help to refine clusters. Particularly when this linkage is done

at early stages rather than in a post hoc manner, analysis can be automated, relies less on human

interpretation, and therefore can be incorporated into routine public health monitoring, in real-time

if desired.
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Stevens, Susan Ballard, Anders Gonçalves da Silva, Torsten Seemann, Claire L Gorrie, Tim-

othy P Stinear, Deborah A Williamson, Judith Brett, Annaliese van Diemen, Marion Easton,

and Benjamin P Howden. Genomics for molecular epidemiology and detecting transmission

of Carbapenemase-Producing Enterobacterales in Victoria, Australia, 2012 to 2016. J. Clin.

Microbiol., 57(9), September 2019.

[6] Jason C Kwong, Russell Stafford, Errol Strain, Timothy P Stinear, Torsten Seemann, and

Benjamin P Howden. Sharing is caring: International sharing of data enhances genomic

surveillance of Listeria monocytogenes. Clin. Infect. Dis., 63(6):846–848, September 2016.

[7] Torsten Seemann, Courtney R Lane, Norelle L Sherry, Sebastian Duchene, Anders Gonçalves
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