
	

1	
	

Who Is Hospitalized With Whom? Inpatient Contact Networks and Mixing Patterns 

 

Kaniz Fatema Madhobi BSc1, Ananth Kalyanaraman PhD1, Deverick J. Anderson 

MD MPH2, Elizabeth Dodds-Ashley PharmD MHS2, Rebekah W. Moehring MD 

MPH2, Eric T. Lofgren MSPH PhD3 

 

1 School of Electrical Engineering and Computer Science, Washington State 
University, Pullman, Washington 
2 Duke Center for Antimicrobial Stewardship and Infection Prevention, Duke 
University School of Medicine, Durham, North Carolina 
3 Paul G. Allen School for Global Health, Washington State University, Pullman, 
Washington 
 

Eric T. Lofgren 
Paul G. Allen School for Global Health 
Washington State University 
240 SE Ott Road, Room 311 
Pullman, WA 99164-7090 
 
Email: Eric.Lofgren@wsu.edu  
Phone: (509) 335-4022 
Fax: (509) 335-6328 
 

Word Count: 3024 

 
 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.22.22271374doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.02.22.22271374
http://creativecommons.org/licenses/by/4.0/


	

2	
	

Key	Points 

Question: What are the mixing patterns among hospitalized patients who could be 

susceptible to infection? 

Finding:  

In this study of 299 hospital units from 24 hospitals, we analyzed the mixing patterns 

between patients based on a number of variables namely Age, Antibiotic Ranks (4-

point scale based on priority for antibiotic stewardships programs) and Elixhauser 

Comorbidity Score. While some units showed highly similar patterns across hospitals, 

variation has also been observed in concentration of mixing on different age groups 

and antibiotic usage among the patients who are coming into contact. 

Meaning: How patients mix, can impact their risk of acquiring an infection. While 

patterns followed what was expected heuristically, there is considerable between-

hospital heterogeneity, which can help in risk assessments and modeling approaches. 
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Abstract 

Importance: Person-to-person contact is important for the transmission of healthcare-

associated pathogens. Quantifying these contact patterns is crucial for modeling 

disease transmission and understanding routes of potential transmission. 

Objective: Generate and analyze the mixing matrices of hospital patients based on 

their contacts within hospital units.  

Design, Setting, and Participants: The study was conducted in 24 hospitals in the 

Southeastern United States that were part of the Duke Antimicrobial Stewardship 

Outreach Network (DASON) between January 2015 and December 2017. There were 

a total of 1,569,413 patients and 299 hospital units.  

Main Outcome and Measures: The mixing matrices of patients for each hospital 

unit using age, Elixhauser Score, and a measure of antibiotic exposure.  

Results: Mixing matrices were calculated from a database of 24 hospitals, which 

included 2.9 million admission records for nearly 1.6 million patients. Some units had 

highly similar patterns across multiple hospitals although the number of patients 

might vary to a great extent. Within a period of 26 months (October 2015 and 

December 2017), the highest daily average is 765 patients in the ED of Hospital-12 

and lowest daily average is only 2 patients in some of the smaller hospital units. For 

most of the adult inpatient units, frequent mixing was observed for older adult groups 

while outpatient units e.g. ED and Behavioral Health etc. units showed mixing 

between different age groups. From the mixing matrices by Elixhauser Score, we 

observed mixing between patients with relatively higher comorbidity index on the 

ICUs. Mixing matrices by Antibiotic Rank, a 4-point scale based on priority for 

antibiotic stewardship programs, resulted in six major distinct patterns due to the 

variation of the type of antibiotics used in different units. 
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Conclusions and Relevance: The mixing patterns of patients both within and 

between hospitals followed broadly expected patterns, though with a considerable 

amount of heterogeneity. These patterns can be used to evaluate the appropriateness 

of policies and guidelines for smaller community hospitals, as well as improve the 

design of interventions that rely on altering patient contact patterns. 
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Introduction	

An individual’s risk of acquiring an infectious disease is inherently a function 

of whom they contact, with currently infected individuals representing the exposure 

source for those individuals infected in the future, a phenomenon known as 

“dependent happenings”1. Therefore, understanding whom an individual contacts 

becomes critical for understanding their risk. One way of representing and studying 

this information is the development of a contact network represented by a population 

of individuals (nodes) and the contacts between them (edges), and studying the 

properties of this network (i.e. are particular types/classes of people more likely to 

come into contact with one another than others). 

Contact patterns in infectious diseases have been extensively studied in HIV 

and other sexually transmitted diseases2–5, and are being increasingly studied in 

infectious diseases more broadly6–9. Hospitalized patients represent a particularly 

challenging population for contact network analyses due to the complexity of the 

hospital environment. Patients may or may not be contacting each other directly 

(depending on whether they are mobile and can interact with one another), but they 

may be exposed to pathogens through contamination on the hands and clothes of 

healthcare workers, on shared instruments, or persisting in the hospital environment 

as fomites. Several studies have collected hospital contact networks using a variety of 

methods10–13. Many, however, were limited to a single hospital or a single study site. 

Long-term and multi-site studies of these networks may be important for 

understanding how hospitals adjust to shifting demands for patient care (e.g. during a 

pandemic), the evolution of antibiotic stewardship programs, or other shifts to the 

flow of hospitalized patients, and how this in turn impacts infection control. 
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The focus of this study was to better describe the contact networks of 

hospitalized patients using a large, multi-hospital sample. By forming these contact 

networks, we aimed to visualize contact patterns of variables that affect susceptibility 

to hospital acquired infections and multidrug resistant organisms (MDRO): age, 

comorbidity, hospital unit type, and antibiotic exposure. We examine age because it is 

a known risk factor for infectious diseases such as COVID-1914 as well as a number 

of healthcare-associated infections15–17. We also examine Elixhauser score18  for 

comorbidity as a proxy for overall vulnerability to infection, and antibiotic usage as a 

measure for potential multidrug resistant organism (MDRO) colonization pressure 

from other patients within the unit19. 

Methods	

Patient	Data	

To estimate the patient contact networks, we used data from the Duke 

Antimicrobial Stewardship Outreach Network (DASON)20 and Duke Health System 

which contained curated hospital encounter records using uniform definitions for 24 

community hospitals and one academic medical center in the Southeastern United 

States between October 2015 and December 2017. This data is made up of 299 total 

units across all the hospitals, ranging from 4 units at the smallest hospital to 30 units at 

the largest. Table 1 shows the basic statistics of the DASON data and corresponding 

demographics. The Duke University Health System IRB determined this research was 

exempt from human subjects approval. 
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Network	Estimation	

Within the DASON data there are records for a patient’s movement between 

units, as well as arrival and discharge times. Using this information, we estimated a 

colocation contact network - i.e., if two patients were recorded as being in the same 

hospital unit during a period of one day, they were counted as being in contact for that 

day. If there are k patients in a unit in a specific day, the number of contacts would be 

kC2. For example, four patients {A, B, C, D} located in the same unit on a specific day 

will imply six (i.e., 4C2) pairwise contacts: (A, B), (A, C), (A, D), (B,C), (B, D), (C, 

D). It is important to note that the type of unit is based on its NHSN classification. This 

classification provides a useful, but ultimately imperfect, approximation of patient case 

mix, as patients may be placed in a unit for other reasons such as bed availability and 

hospital volume, a unit’s definition may be shifting over time, etc. 

Computation	of	Mixing	Matrices	

Using the pairwise contact information, we computed three types of mixing 

matrices, based on patient age, Elixhauser score, and antibiotic agent exposure. These 

mixing matrices record the frequency of contacts between patients belonging to 

different classes of that category. 

 For analysis of mixing by age, we construct a two-dimensional  table where the 

patient age(e.g., [0, 90]) is represented by the rows and columns; and cell (i,j) 

corresponds to the number of patient contacts between a patient of age i with a patient 

of age j.  

Elixhauser Score or Elixhauser Comorbidity Index is a measure of patients 

comorbidity, developed in 199818. In DASON data, the Elixhauser Score is ranged from 

[0, 16] where a higher score indicates a greater degree of comorbid conditions in a 

patient. The mixing matrices in this case are 16x16 tables where the value in a cell [i, 
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j] corresponds to the frequency of contact between a patient having comorbidity score 

i with a patient having comorbidity score j. 

For mixing matrices by antibiotic agents, we followed a ranking scheme 

proposed by RW Moehring et. al.21 According to this scheme, antibiotic agents are 

categorized on a 4-point scale based on their spectrum of activity against bacterial 

pathogens and priority for antibiotic stewardship program which is as follows: Narrow-

spectrum (Rank 1), Broad-spectrum (Rank 2), Extended-spectrum (Rank 3) and 

Protected (Rank 4).  The resulting mixing matrices become 4 x 4 tables where cell [i, j] 

represents the number of contacts occurring between patient pairs exposed to agent 

ranks i and j respectively. 

Note that the mixing matrices differed for different units within a hospital or for 

different hospitals. To help with comparisons between different hospital sizes, we also 

computed a normalized representation for the mixing matrices. 

Software	Implementation	and	Code	Availability	

Data preparation and network extraction was performed using Python 3.6.9, 

including the Pandas library for data preparation, and the Bokeh22 library for 

visualization and the creation of interactive plots. These interactive plots allow for 

comparing and contrasting the mixing matrices across different units, and across 

different hospitals, and are available at http://go.wsu.edu/hospitalmatrix. Further 

visualization was conducted in R 3.6.323 using the networkD3 library. The extracted 

patient contact networks, as well as the source code used for the analysis, are available 

on at https://github.com/epimodels/mixing_pattern. 
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Results	

Patient	Contact	Networks	

In Figure 1, we added a snapshot of the patient contact networks that was 

generated using the records of one month (January 2017) for each of the hospitals 

included in this study. The nodes represent patients, and edges represent a pairwise 

contact between the corresponding two patients in the time interval considered. As 

expected, most networks were dense, particularly for hospitals with large unit capacities 

(e.g., Hospital-24, Hospital-14). However, networks were relatively sparse (e.g., 

Hospital-7, Hospital-16)  in smaller hospitals. The largest network in this collection (for 

Hospital-24) has 9,778 nodes and average degree (the number of edges connecting to 

that node - in this case the number of co-located patients) of 329; while the smallest 

network (for Hospital-16) has 572 nodes and an average degree of 35.  

 

Mixing	Matrix	by	Age	

There is considerable inter-hospital variability in the age-mixing patterns of 

patients as shown in Figure 2, owing to the type of hospital, catchment population, etc. 

There are primarily three major patterns visible: a) hospitals showing uniform mixing 

across all adult ages (e.g., Hospital-23); b) hospitals serving primarily younger age 

groups (e.g., Hospital-11); and c) hospitals, especially smaller ones, dominated by 

mixing between elderly patients (e.g., Hospital-5). These mixing patterns of hospitals 

were consistent with their respective age distributions (eFigure 1). 

However, within a hospital, the patterns varied from unit to unit as different 

units cater to different types of patients. Figure 3A to 3F show a selected subset of six 

mixing matrices drawn from different hospital units. A darker color shade denotes 

lower mixing and a brighter color shade denotes heavier mixing. 
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Most of the adult inpatient units (e.g. Medical/Surgical - Figure 3A) follows 

what one might expect - a larger number of patients aged 40 and up, with a high density 

of patients around 65 years of age, with relatively few young patients. Labor and 

Delivery wards similarly showed robust patterns between hospitals, concentrated 

among patients 20 to 35, tapering off toward the limits of maternal age (Figure 3B). 

The mixing patterns for some other units, such as Operating Room Suites and 24-Hour 

Observation, showed wide variation between hospitals, representing differing 

catchment populations and patient mixes. Outpatient units, such as Emergency 

Departments (Figure 3C) and Behavioral Health (Figure 3D) units had mixing between 

broager age ranges, with a larger proportion of the mixing between patients in the 

[20,50] age range. In addition, the ED also showed mixing between adult and child age 

groups. Pediatric units (Figure 3E) showed broad mixing of young patients under 20, 

though concentrated in infants. Neonatal units (Figure 3F) are dominated by mixing 

between infants and young adults of childbearing age. 
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Mixing	Matrix	by	Elixhauser	Score	

Thet Elixhauser Score in DASON data is ranged from 0 to 16, with a median 

and IQR of 0 due to most patients having lacked known comorbidities. Figure 4 shows 

the mixing matrices by Elixhauser Score for a selected subset of six different units taken 

from different hospitals. Patients in adult medical wards generally had mixing between 

patients with low to moderate Elixhauser scores, with the highest density being patients 

with a score of four mixing with other patients with a score of four; scores above ten 

are exceedingly rare (Figure 4A). Adult critical care units (Figure 4B) shifted this 

distribution up and to the right. Both non-critical (Figure 4C) and critical (Figure 4D) 

pediatric wards had distributions much more skewed toward patients with zero 

comorbid conditions, albeit with a broader range of possible values in critical care units. 

Neonatal units were primarily concentrated in the [0,0] cell. Labor and Delivery Wards 

(Figure 4E) and Emergency Departments (Figure 4F) had characteristically low rates 

of comorbid conditions, but the latter demonstrated a wider potential range. 

Mixing	Matrix	by	Antibiotic	Category	

From the medication information of DASON data, we found that there were 

many (and often a large majority) of patients who were not on any form of antibiotic. 

The ratio of contacts where neither patient in a connected pair were on antibiotics 

compared to pairs where one patient or both patients were on antibiotics varied widely 

by unit, shown in eFigure 2 for four selected units. 

We observed six distinct patterns on the antibiotic mixing matrices based on the 

four-point ranking scheme as shown in Figure 5. Across all hospitals, Gynecology, 

Labor and Delivery and Postpartum units predominantly involved patients on narrow-

spectrum agents (Figure 5A). This pattern also occurred in some, but not all, Operating 
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Room Suites and Orthopedic Wards, driven by prophylactic and post-operative 

cefazolin respectively. Broad-spectrum heavy patterns appeared primarily in Pediatric 

Medical Surgical Wards (Figure 5B). Wards heavily using extended-spectrum agents 

(Figure 5C) were most often Adult Critical Care units of all types. This pattern was also 

observed in some hospitals in Post Critical Care units, Endoscopy Suites, and 24-hour 

Observation areas. Figure 5D shows a distinctive Narrow-Extended spectrum heavy 

mixing pattern that appeared predominantly in pediatrics-focused units, including Well 

Baby Nurseries, Step Down Neonatal Nurseries, and Neonatal Critical Care units and 

also in a subset of Cardiac Catheterization units, Surgical Cardiothoracic Critical Care 

units, and Neurological Critical Care units. Broad-Extended spectrum dominated 

pattern (Figure 5E) was most often seen in Emergency Departments, as well as 

occasionally in some Telemetry Wards and 24-hour Observation Areas. A final pattern, 

involving the relatively frequent use of Narrow, Broad and Extended spectrum 

antibiotics (Figure 5F) was only observed in the Pediatric units of the large academic 

medical center, discordant with the Pediatric units of the community hospitals. 

Discussion	

Mixing	Matrix	by	Age 

Mixing matrices by age mostly conform to the expected patterns one would 

expect heuristically with a few exceptions. Especially Emergency Departments and 

Behavioral Units showed areas with broader age-related mixing patterns. These units 

require special consideration when considering pathogens with markedly different age-

related risks, transmission potentials, or vaccination status. 	
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Mixing	Matrix	by	Elixhauser	Score	

In comparison to general units, the dense area in the critical care units shifted 

up and to the right, indicating -- not unexpectedly -- an increase in patients with more 

prevalent comorbid conditions, though the peak for this distribution was more diffuse.  

Patients in the pediatric and neonatal units are not likely to have developed comorbid 

conditions which explains the dense region on the [0,0] cell although pediatric critical 

care has a broader range of possible values reflecting their more complex patient 

mixture. The Emergency Department, although concentrated on the zero comorbid 

zone, demonstrated mixing between a wide potential range reflecting its central role as 

a possible place for patients with vastly different underlying characteristics to encounter 

one another.	

Mixing	Matrix	by	Antibiotic	Category	

 Mixing matrices that showed dense mixing on one rank is an indicator of 

substantial use of a specific kind of antibiotic in a unit. On the other hand, the bimodal 

inter-spectrum mixing can arise from one of two possible mechanisms -- two distinct 

groups of patients, one on one type of antibiotic, the other on another type of antibiotic, 

who happened to be co-located in the same unit. The second is that the same patients 

are prescribed drugs of two different ranks. To examine these two possibilities, we 

considered one ward with both a large number of patients as well as the distinctive 

Narrow-Extended spectrum pattern, a neonatal intensive care unit in a large academic 

medical center. The distribution of antibiotic exposures are shown in eTable 1. It is 

apparent that the vast majority of patients are exposed to both classes of antibiotics 

during their hospitalization, though the result was not statistically significant (Fisher’s 

Exact Test p = 0.056). This pattern seems likely to arise from a commonly used 

combination of ampicillin and gentamicin for empiric coverage of neonatal sepsis24. 
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This, in turn, suggests that a patient’s individual antibiotic exposure profile likely 

represents their primary exposure at any given time. 

In contrast, the analysis of a unit (Emergency Department in Hospital-15) 

having a Broad-Extended pattern, reveals a different picture as can be seen from the 

distribution in eTable 2. This unit served a large elderly population with several Skilled 

Nursing Facilities, and among them 77.6% of patients were prescribed either broad- or 

extended-spectrum agents (33.2% and 44.4% respectively) (Chi-squared p > 0.001). 

These findings once again highlight the importance of Emergency Departments as areas 

with far broader mixing patterns than the rest of the hospital environment, as well as 

the likelihood of the units discussed above being central points of empiric therapy 

within many hospitals. 

The inter spectrum mixing of Narrow, Broad and Extended spectrum antibiotics 

was only observed in the Pediatric units of the large academic medical center. The 

academic medical center is notable for having both Cystic Fibrosis patients as well as 

a pediatric transplant program, which resulted in a markedly different patient profile to 

community hospital Pediatric units, and likely drove these different patterns. 

Conclusions	

 This study presents several aspects of how hospitalized patients come into 

contact with each other. Understanding these contact patterns can provide vital 

information on infection transmission risk - for example, where patients with high 

potential susceptibility to acquiring multidrug resistant organisms might be in contact, 

directly or indirectly, with those at serious risk for adverse outcomes from infection. 

While some of these patterns may be inferred heuristically, it is nevertheless beneficial 

to quantify these patterns. This enables their use in modeling studies of hospital-
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acquired pathogens. Further, it could provide a means to quantitatively track shifts in 

antibiotic use or patient case mix patterns. For example, a unit shifted away from its 

NHSN unit-type designation to deal with surges of COVID-19 patients, and the 

population characteristics changed. As another example, the matrices might change as 

stewardship programs intervened on how antibiotics were used. Finally, quantifying the 

variability between hospitals can help assess the generalizability of effect estimates and 

the ensuring intervention and policy recommendations between the academic medical 

centers where these estimates are often obtained and rural and community hospitals, for 

any situation where patient-to-patient interaction is potentially at play. 

 There are important limitations to this study, arising from the use of an existing 

data source to reach multiple hospitals and a large number of patients. This study 

implicitly assumes that patients visiting a unit the same day had contact - primarily via 

indirect contact mediated by either healthcare workers or the environment. While age, 

underlying comorbidities and antibiotic exposure are certainly important risk factors 

for healthcare associated infections, they are far from an exhaustive list, and there are 

a number of risk factors that are beyond the reach of a single study of this type, or 

impractical to collect on an ongoing and continual basis in a broad network of hospitals 

of varying resource levels. Besides, patients that occupy the same unit for multiple days 

have repeated contacts, which we assume linearly add to the amount of mixing. Finally, 

we assume that an NHSN unit designation is an adequate proxy for the type of 

procedures and patients present in a given unit, which may result in a degree of 

misclassification. 

 Additionally, a number of contact patterns were either more diffuse (in the case 

of age and Elixhauser score) or unique (in the case of some antibiotic prescribing 

patterns in pediatric units) to the academic medical center present in the data set. This 
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highlights the need for data and parameter estimates from both academic medical 

centers and community hospitals to better inform mathematical modeling studies, 

estimates of intervention effectiveness, and other studies that rely on the 

generalizability of estimates from studies that often take place in large academic or 

tertiary-care hospitals. This study provides a wealth of estimates from hospitals of 

diverse sizes, catchment areas and patient populations, albeit within a limited 

geographic area. This should serve to help improve the quality of future studies in this 

arena. 
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Table 1. Basic statistics of the DASON database used in our study and corresponding 
demographic information. 

Attribute Value 

Units 

Total Number (across 24 hospitals) 299 

Median (by hospital) 11 

Interquartile Range (Q1 - Q3) (by hospitals) 9 - 15 

Patients 

Total Number (across 24 hospitals) 1,569,413 

Median (by hospital) 62,992 

Interquartile Range (Q1 - Q3) (by hospital) 36,078 - 86,482 

Admissions 

Total Number (across 24 hospitals) 2,903,357 

Median (by hospital) 128,291 

Interquartile Range (Q1 - Q3) (by hospital) 70,633 - 162,441 

Age (in years) 

Range 0 - 90 

Median 44 

Interquartile Range (Q1 - Q3) 26 - 63 

Elixhauser Score 

Range 0 - 16 

Median 0 

Gender (%) 

Female 56.3 

Male 39.8 

Race (%) 

White/Caucasian 51.2 

Black/African American 35.8 

American Indian/Alaskan Native 2.2 

Asian 0.9 

Hispanic/Latino 0.8 

Native Hawaiian/Other 0.4 
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Figure 1: A snapshot of patient contact networks constructed for the DASON data 
for the month January 2017. Each node is a patient, and each edge represents a 
contact between the two corresponding patients in that hospital during that month. 
One hospital is omitted due to a very sparse connectivity over the chosen month. 
 

 

Figure 2: Mixing matrices by age measured by the number of pairwise contacts (shown 
by the color bar) for each of 24 community hospitals in the DASON network. Brighter 
areas of color represent denser numbers of patient-to-patient connections based on 
occupation in the same unit. Each hospital is represented on its own scale. 
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Figure 3: Mixing matrices by age measured by the number of pairwise contacts (shown 
by the color bar) for selected units in DASON network. Panel A shows a typical adult 
inpatient unit. Panel B shows a representative pattern of a Labor and Delivery Ward. 
Panel C is drawn from an Emergency Department. Panel D is from a Behavioral Ward. 
Panels E and F show the representative patterns in Pediatric and Neonatal units, 
respectively. Small numbers of incongruous patients (i.e. Labor and Delivery patients 
60 years of age or higher) represent small amounts of misclassification, either in patient 
demographics or the NHSN unit type as a proxy for what a ward is being used for, but 
are retained for completeness. 
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Figure 4: Mixing matrices by Elixhauser Score measured by the number of pairwise 
contacts (shown by the color bar) for selected units in DASON network. Panels A to D 
depicts different units within the same hospital, showing an adult medical ward (A), 
adult ICU (B), pediatric medical ward (C) and pediatric ICU (D). Panel E and F show 
the patterns for a typical Labor and Delivery Ward, and an Emergency Department 
respectively. 
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Figure 5: Mixing matrices by antibiotic rank measured by the number of pairwise 
contacts (shown by the color bar) for selected units in DASON network. Panel A 
represents a unit where the patients who came in contact were mostly exposed to one 
type of antibiotic namely Narrow spectrum antibiotics. Panels B and C show Broad and 
Extended spectrum heavy contact patterns. Panels D and E show highlighted inter-
spectrum mixing patterns, e.g. Narrow-Extended and Broad-Extended. Panel F 
highlights a wide region encompassing Narrow-Broad-Extended spectrum antibiotics. 
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