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Abstract 1 

Functional magnetic resonance imaging (fMRI) has been widely used to identify brain 2 

regions linked to critical functions, such as language and vision, and to detect tumors, 3 

strokes, brain injuries, and diseases. It is now known that large sample sizes are necessary 4 

for fMRI studies to detect small effect sizes and produce reproducible results. Here we 5 

report a systematic association analysis of 647 traits with imaging features extracted from 6 

resting-state and task-evoked fMRI data of more than 40,000 UK Biobank participants. 7 

We used a parcellation-based approach to generate 64,620 functional connectivity 8 

measures to reveal fine-grained details about cerebral cortex functional architectures. 9 

The difference between functional organizations at rest and during task has been 10 

quantified, and we have prioritized important brain regions and networks associated with 11 

a variety of human traits and clinical outcomes. For example, depression was most 12 

strongly associated with decreased connectivity in the somatomotor network. We have 13 

made our results publicly available and developed a browser framework to facilitate 14 

exploration of brain function-trait association results (http://165.227.92.206/). 15 

 16 
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fMRI; Task fMRI; UK Biobank. 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 



 3 

Functional magnetic resonance imaging (fMRI) is a noninvasive and comprehensive 1 

method of assessing functional architectures of the human brain. By measuring blood 2 

oxygen level dependent (BOLD) signal changes, fMRI can map complex brain functions 3 

and estimate neural correlations between different brain regions1. When the subject is 4 

performing a specific task, fMRI can detect brain signals and regions that link to the task2, 5 

which is known as task-evoked fMRI. As an alternative, resting-state fMRI can observe 6 

brain signals during rest and measure intrinsic functional organization without performing 7 

any tasks3. Both task-evoked and resting-state fMRIs have been widely used in clinical and 8 

epidemiological neuroscience research to explore the relationship between inter-9 

individual variations in brain function and human traits. For example, resting-state 10 

functional abnormalities are frequently observed in neurological and psychiatric 11 

disorders, such as Alzheimer's disease4, attention-deficit/hyperactivity disorder (ADHD)5, 12 

schizophrenia6, and major depressive disorder (MDD)7. fMRI has also been used to 13 

identify the influence of multi-system diseases and complex traits, such as diabetes8, 14 

alcohol consumption9, and dietary behaviors10, on brain functions.  15 

 16 

A major limitation of most fMRI association studies has been their small sample size, 17 

which is usually less than one hundred or a few hundred. Comparatively to structural 18 

magnetic resonance imaging (sMRI) measures, functional connectivity measures are 19 

generally noisier and show larger intra-subject variations11. Consequently, it may be 20 

difficult to replicate fMRI-trait associations found in small studies12. This problem can be 21 

resolved statistically by increasing the sample size of fMRI studies, which can detect   22 

weaker signals and reduce the uncertainty of the results. For example, Marek, et al. 12 23 

showed that when the sample size is larger than 2,000, brain-behavioral phenotype 24 

associations can become more reproducible. However, the high assessment costs of fMRI 25 

may make it difficult to increase sample sizes sufficiently to collect the necessary data in 26 

every study. In the last few years, several large-scale fMRI datasets involving over 10,000 27 

subjects have become publicly available, including the Adolescent Brain Cognitive 28 

Development13 (ABCD), the Chinese Imaging Genetics (CHIMGEN)14, and the UK Biobank15 29 

(UKB). Particularly, the UKB study collected a rich variety of human traits and disease 30 

variables16, providing the opportunity to discover and validate fMRI-trait associations in 31 

a large-scale cohort. 32 



 4 

 1 

Based on fMRI data from more than 40,000 subjects in the UKB study, we investigated 2 

resting-state and task-evoked functional architectures and their associations with human 3 

traits and health outcomes. By processing raw fMRI images from the UKB study, we 4 

represented the brain as a functional network containing 360 brain areas in a 5 

parcellation17 developed using the Human Connectome Project18 (HCP) data (referred to 6 

as the Glasser360 atlas, Fig. 1, Fig. S1, and Table S1). The Glasser360 atlas contained 7 

64,620 full correlation measures to represent the functional connections among brain 8 

areas, providing fine-grained details of functional architecture over 12 functional 9 

networks19: the primary visual, secondary visual, auditory, somatomotor, cingulo-10 

opercular, default mode, dorsal attention, frontoparietal, language, posterior 11 

multimodal, ventral multimodal, and orbito-affective networks. We performed a 12 

systematic analysis with 647 traits and diseases (selected to represent a wide range of 13 

traits and health conditions) using a discovery-validation design. Functional brain regions 14 

and networks were found to be strongly associated with a range of disorders and complex 15 

traits, including depression, risk-taking, cognitive traits, the use of electronic devices, 16 

physical activity, and atrial fibrillation. We also explored the differences between resting-17 

state and task-evoked functional architectures, as well as age and sex-related effects. In 18 

order to evaluate how the choice of parcellation may impact our results, we additionally 19 

applied another parcellation20 on the same datasets, which divided the brain into 200 20 

regions, referred to as the Schaefer200 atlas (Fig. S2 and Table S2). We found that the 21 

two parcellations can yield similar conclusions and patterns, whereas the Glasser360 atlas 22 

can provide more biological insights due to its finer partitioning. The results of our trait-23 

fMRI association studies have been made publicly available, and a browser tool has been 24 

developed to facilitate exploring the data (http://165.227.92.206/).   25 

 26 

RESULTS 27 

Consistency and reproducibility of the cerebral cortex functional organizations  28 

First, we examined the consistency and reproducibility of functional connectivity using 29 

annotations from the Glasser360 atlas in the UKB study. As in Glasser, et al. 17, we first 30 

compared the group means of two independent sets of UKB subjects: the UKB phases 1 31 

and 2 data (imaging data released up through 201821, n = 17,374 for resting and 15,891 32 
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for task) and the UKB phase 3 data (data released in early 2020, n = 16,852 for resting and 1 

13,232 for task, removing the relatives of subjects in early released data). Figures S3-S4 2 

illustrate the consistent spatial patterns of functional connectivity across the two 3 

independent groups. Similar to previous studies of other datasets13,17,22, the group mean 4 

maps in the two independent datasets of the UKB study were highly similar, with the 5 

correlation across the 64,620 (360 × 359/2) functional connectivity being 0.996 in resting 6 

fMRI and 0.994 in task fMRI. These results may suggest that the HCP-trained Glasser360 7 

atlas can provide a set of well-defined and biologically meaningful brain functional traits 8 

that are generalizable across datasets.  9 

 10 

Next, we evaluated the intra-subject reproducibility of the Glasser360 atlas using the 11 

repeat scans from the UKB repeat imaging visit (n = 2,771 for resting and 2,014 for task, 12 

average time between visits = 2 years). We performed two analyses. The first analysis is 13 

to compare the group mean maps of the original imaging visit to those of the repeat visit. 14 

Group means were highly consistent between the two visits, with correlation of 0.997 and 15 

0.994 for resting and task fMRIs, respectively (ranges across different networks were 16 

[0.995, 0.999] for resting and [0.987, 0.998] for task, Figs. S5-S6). The second analysis 17 

quantified individual-level differences between the two visits. Specifically, we evaluated 18 

the reproducibility of each functional connectivity by calculating the correlation between 19 

two observations from all revisited individuals. Overall, the average reproducibility was 20 

0.37 (standard error = 0.11) for resting fMRI and 0.31 (standard error = 0.08) for task fMRI 21 

(Figs. 2A-B). The reproducibility of within-network connectivity was generally high in 22 

resting fMRI (Fig. 2C, mean = 0.46). During task fMRI, the overall reproducibility was 23 

decreased (mean = 0.32) and the secondary visual and posterior multimodal networks 24 

exhibited higher functional connectivity on average than others. In addition, the 25 

connectivity within activated functional areas (defined by group-level Z-statistic maps, 26 

Supplementary Note) showed higher reproducibility than that within nonactivated areas 27 

(Fig. 2D and Fig. S7A, mean = 0.40 vs. 0.30, P < 2.2 × 10-16). The majority of the above-28 

defined activations occurred in the secondary visual, dorsal attention, and somatomotor 29 

networks (Fig. S8). Furthermore, we examined the reproducibility of amplitude measures 30 

of fMRI23,24, which quantified the functional activity within each of the 360 brain areas. 31 

The average amplitude reproducibility was 0.60 (standard error = 0.08) for resting fMRI 32 
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and 0.45 (standard error = 0.07) for task fMRI (Fig. 2E). In accordance with the findings in 1 

functional connectivity, the reproducibility of amplitude measurements of activated areas 2 

in task fMRI was higher than that of nonactivated areas (Fig. 2F, mean = 0.49 vs. 0.43, P = 3 

1.1 × 10-12). 4 

 5 

Finally, we compared the spatial patterns of UKB and HCP studies. The correlation 6 

between UKB and HCP was 0.90 for resting fMRI and 0.78 for task fMRI in the group mean 7 

analysis (Fig. S9). These results demonstrate a substantial level of overall consistency 8 

between the typical subjects in a healthy young adult cohort and those of middle age and 9 

older age. Next, we examined the reproducibility of functional connectivity in the 10 

Glasser360 atlas using the repeated scans in HCP study (n = 1075, average time between 11 

two scans = 1 day). The average reproducibility was 0.40 (standard error = 0.09) for resting 12 

fMRI and 0.22 (standard error = 0.11) for task fMRI (the emotion task) (Fig. S7B). These 13 

results show that the two studies have similar reproducibility, suggesting that the quality 14 

of fMRI traits in the biobank-scale UKB study is comparable to that of the HCP project. 15 

Similar to the UKB study, the connectivity among activated functional areas (defined by 16 

group-level Z-statistic maps, Supplementary Note) had higher reproducibility than the 17 

nonactivated connectivity in HCP task fMRI (Fig. S7C, mean = 0.382 vs. 0.225, P < 2.2 × 10-18 
16). In general, the excellent group mean map consistency, as well as the similar 19 

reproducibility between the UKB and the HCP studies, provides confidence that the 20 

Glasser360 atlas will be able to consistently annotate the functional organization of 21 

typical subjects in a healthy population. On the other hand, the relatively low intra-subject 22 

reproducibility of fMRI matches previous findings11, may suggest that a large sample size 23 

is needed to produce reproducible association results in downstream analyses12.     24 

 25 

Comparison of resting-state and task-evoked functional architectures  26 

Understanding how the brain changes its functionality in response to tasks/stimuli is of 27 

great interest and has a wide range of clinical applications25. For example, fMRI studies 28 

with an emotional task consistently showed abnormalities in the prefrontal cortex-limbic 29 

area in patients with anxiety disorders, who tend to overreact to emotional stimuli26. 30 

Based on relatively small sample sizes, previous literature has found that intrinsic and 31 

extrinsic functional architectures are highly similar, with small but consistent differences 32 
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across a range of tasks27-33. Using parcellation-based data from the large-scale UKB study, 1 

we uncover more details about resting-task functional connectivity differences. 2 

 3 

The correlation between resting fMRI and task fMRI group mean maps was 0.754 in the 4 

UKB study and 0.782 in the HCP study, indicating the high degree of similarity between 5 

intrinsic and extrinsic functional architectures (Fig. S9). We found that the auditory and 6 

default mode networks exhibited the greatest resting-task differences. In the auditory 7 

network, task fMRI revealed stronger intra-hemispheric connections than resting fMRI, 8 

while the inter-hemispheric connections in task fMRI generally weakened or remained 9 

unchanged (Fig. S10). Task-related changes were more complex in the default mode 10 

network. To summarize the patterns, we grouped the 77 areas in the default mode 11 

network into seven clusters, mainly based on their physical locations (Fig. S11). We found 12 

that functional connectivity within the frontal, visual, and hippocampal clusters was 13 

stronger in task fMRI than in resting fMRI, while the connectivity between the frontal and 14 

the other two clusters decreased (Fig. S12). Moreover, the frontal cluster of default mode 15 

network can be further divided into two subclusters, the first subcluster consisted of 16 

left/right 9a, 9m, 9p, 8BL, 8Ad, and 8Av areas, mainly in the dorsolateral superior frontal 17 

gyrus (referred to as the dorsolateral superior subcluster); and the second one included 18 

left/right 10v, 10r, p32, a24, and 10d areas in the medial orbital superior frontal gyrus and 19 

pregenual anterior cingulate cortex (referred to as the medial orbital superior subcluster). 20 

The dorsolateral superior subcluster had decreased connectivity with the areas in other 21 

clusters of the default mode network in task fMRI, especially those in the temporal 22 

cluster. On the other hand, the medial orbital superior subcluster had a greater level of 23 

connectivity with a few other areas of the default mode network when performing the 24 

task, especially with the orbitofrontal complex (OFC) cluster and the neighboring 10pp 25 

area. Furthermore, the visual cluster maintained strong intra-cluster connectivity during 26 

the task, whereas its connectivity with the angular, frontal, and temporal clusters 27 

decreased. Although the default mode network has been originally recognized as brain 28 

areas with greater connectivity in resting fMRI than task fMRI34, recent studies have found 29 

that the default mode network also had positive functional contributions to tasks, which 30 

may result in increased activity in task fMRI35. Our results provided further insight into 31 
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the complicated task-positive and task-negative functional connectivity change patterns 1 

in this network.  2 

 3 

Several areas of the secondary visual network were less connected to other visual areas 4 

when the task was performed, including the left/right V6A (in the superior occipital), V6 5 

(in the cuneus), VMV1 (in the lingual gyrus), and VMV2 (in the lingual and fusiform gyrus) 6 

(Fig. S13). Interestingly, some of these visual areas, such as the left/right V6，  had 7 

increased functional connectivity with the default mode network (Fig. S14). There was 8 

also an increase in connections between the default mode network and other major 9 

cognitive networks, such as the cingulo-opercular and frontoparietal (Fig. S15). For the 10 

somatomotor network, the insula-related areas (including left/right Ig, FOP2, OP2-3, and 11 

right RI) had reduced connections with other somatomotor areas in task fMRI (Fig. S16). 12 

Similar to the auditory network, the inter-hemispheric connectivity in the cingulo-13 

opercular network decreased in task fMRI (Fig. S17). Additionally, we found that the 14 

dorsal attention, frontoparietal, and language networks had similar functional 15 

connectivity patterns in resting and task fMRI (Figs. S18-S20). In summary, our results 16 

confirm the similarity of functional structures between resting and task fMRI, while also 17 

identifying specific patterns of differences. 18 

 19 

Age effects and sex differences in functional architectures  20 

By using the large-scale fMRI data, we quantified the age and sex effect patterns on 21 

resting and task functional organizations (Methods). Several studies have examined the 22 

effects of age and differences between males and females on brain structures and 23 

functions, but the locations and patterns of the reported differences may vary across 24 

studies36,37. We used unrelated white British subjects in UKB phases 1-3 data release (until 25 

early 2020) as our discovery sample (n = 33,795 for resting and 28, 907 for task) and 26 

validated the results in an independent hold-out dataset, which included non-British 27 

subjects in UKB phases 1-3 data release and all subjects in UKB phase 4 data release (early 28 

2021 release, removed the relatives of our discovery sample, n = 5, 961 for resting and 4, 29 

884 for task). The full list of the adjusted covariates can be found in the Methods section. 30 

We reported the results passing the Bonferroni significance level (7.73 × 10-7 = 31 



 9 

0.05/64,620) in the discovery dataset and being significant at the nominal significance 1 

level (0.05) in the validation dataset.  2 

 3 

There were widespread age effects on functional connectivity of resting and task fMRI, 4 

and network and area-specific details were revealed (Figs. 3A-B). For example, as age 5 

increased, the connections within the auditory, secondary visual, somatomotor, 6 

language, and cingulo-opercular networks were generally weaker (Figs. S21A-E). Some 7 

areas had particularly large age-effects, such as the left/right PoI2 (the posterior insular 8 

area 2) areas in the cingulo-opercular network. However, both positive and negative age 9 

effects were observed in the frontoparietal and default mode networks (Figs. S21F and 10 

S22). Some areas had a greater degree of aging effects, such as the left/right POS2 (the 11 

parieto-occipital sulcus area 2) areas in the frontoparietal network and left/right POS1 12 

(the parieto-occipital sulcus area 1) areas in the default mode network. Negative age 13 

effects in the default mode network were strongest in the hippocampal cluster, such as 14 

the left/right PHA1 (the parahippocampal area 1) areas.  15 

 16 

In task fMRI, age effects were different from those in resting fMRI. We highlighted a few 17 

patterns. First, the age effects in the auditory network were mainly on the inter-18 

hemispheric connections, where the connectivity between the left and right hemispheres 19 

decreased with aging (Fig. S23A). Similarly, the inter-hemispheric connectivity between 20 

the auditory and cingulo-opercular networks declined as we aged. The age effects on 21 

intra-hemispheric connections were much weaker. Except for a few areas (such as the 22 

right 8Ad and right PEF), most areas in the cingulo-opercular and default mode networks 23 

had reduced functional connectivity with aging (Fig. S23B and S24). On the other hand, 24 

most of the functional connectivity in the secondary visual network increased with aging, 25 

especially the left/right V3A and V6A areas in the superior occipital gyrus (Fig. S23C). 26 

There were both positive and negative effects of aging on other networks, such as the 27 

somatomotor, frontoparietal, and dorsal attention (Figs. S23D-F). Overall, these results 28 

describe the detailed age effect pattern for functional organizations at rest and during 29 

task performance. 30 

 31 

 32 
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We also examined the age effects on amplitude measures. In resting fMRI, age-related 1 

decreases in brain activity were observed in most brain areas, with the strongest effects 2 

in left and right PreS areas (the presubiculum, a subarea of the parahippocampal region, 3 

b < -0.222, P < 5.01 × 10-193, Fig. 3C). In task fMRI, however, both strong positive and 4 

negative effects on brain activity were widely observed (Fig. 3D). Because widespread age 5 

effects were detected on both functional connectivity and amplitude traits, we examined 6 

the conditional age effects on functional connectivity traits after additionally including 7 

amplitude traits as covariates. After adjusting for amplitude traits, most of the age effects 8 

on functional connectivity traits became much smaller and were not significant at the 9 

Bonferroni significance level, especially in the resting fMRI (Fig. S25). For example, 10 

although a few of the strongest amplitude-adjusted age effects remained significant, 11 

most of the other moderate amplitude-adjusted age effects failed to pass the Bonferroni 12 

significance level in the default mode network (Fig. S26). Overall, these results for 13 

amplitude traits indicate that age has a significant effect on the variation of amplitude 14 

traits across subjects, which may also be carried over to functional connectivity traits23.  15 

 16 

Functional connectivity patterns differed between males and females. We found 17 

widespread sex differences across different resting fMRI networks, with the strongest 18 

differences occurring in the somatomotor network (Fig. 3E). Males had stronger 19 

functional connectivity in the somatomotor and auditory networks as well as a few 20 

specific areas, including the left/right VIP (in the superior parietal gyrus), LIPv (in the 21 

superior parietal gyrus), PH (in the inferior temporal gyrus), and V6A (in the superior 22 

occipital gyrus) of the secondary visual network, the left/right PFcm (in the superior 23 

temporal gyrus) and 43 (in the rolandic operculum) of the cingulo-opercular network, the 24 

left/right a9-46v and p9-46v (both in the middle frontal gyrus) of the frontoparietal 25 

network, and the left/right PGp (in the middle occipital gyrus) of the dorsal attention 26 

network (Figs. S27A-F). In the default mode network, the sex difference had a 27 

complicated pattern. Specifically, males had stronger connectivity in the hippocampal and 28 

OFC clusters, especially in the left 47m area of the posterior orbital gyrus. On the other 29 

hand, females had stronger connectivity in many other areas of the default mode network 30 

(Fig. S28).  31 

 32 
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The sex differences in task fMRI were more specific to particular brain areas, including the 1 

right V6A (in the superior occipital gyrus) and left VMV2 (in the lingual and fusiform gyrus) 2 

of the secondary visual network, left/right PHA3 (in the fusiform gyrus) of the dorsal 3 

attention network, and left/right RSC (in the middle cingulate cortex) of the frontoparietal 4 

network (Fig. 3F and S29A-C). Males had stronger functional connectivity than females in 5 

most areas of the language, auditory, and somatomotor networks (Figs. S29D-F). 6 

Additionally, males had stronger connectivity in the hippocampal and frontal areas of the 7 

default mode network, whereas females had stronger connectivity between the visual 8 

cluster and the frontal cluster (Fig. S30). As for the amplitude measures, females had 9 

stronger brain activity in many areas of the default mode network, whereas males had 10 

stronger brain activity in most other networks in resting fMRI (Fig. 3G). Sex differences 11 

were generally reduced in task fMRI amplitude measurements (Fig. 3H). Lastly, we 12 

estimated the amplitude-adjusted sex effects on functional connectivity traits by 13 

additionally controlling for the amplitude traits as covariates. Similar to the findings of the 14 

age effects, the majority of amplitude-adjusted sex effects on functional connectivity 15 

traits can be explained by amplitude traits, such as in the somatomotor and default mode 16 

networks (Fig. S31-S32). In summary, as the fMRI traits of the brain is strongly associated 17 

with cognitive impairment and functional abnormalities, our area- and network-specific 18 

sex effect maps can be useful for understanding sex differences in brain disorders, such 19 

as Alzheimer's Disease38 and depression39.  20 

 21 

An atlas of trait associations with cerebral cortex functional areas  22 

In this section, a total of 647 phenotypes (selected to cover a wide range of traits and 23 

diseases) were examined for their associations with resting and task-functional 24 

organizations (Methods). Similar to the age and sex analyses, we used unrelated white 25 

British subjects in UKB phases 1-3 data release as the discovery sample (n = 33,795 for 26 

resting and 28, 907 for task) and validated the results in an independent hold-out dataset 27 

(n = 5, 961 for resting and 4, 884 for task). Detailed information on the adjusted covariates 28 

can be found in the Methods section. We prioritized significant associations that survived 29 

at the false discovery rate (FDR) level of 5% (by the Benjamini-Hochberg procedure) in the 30 

discovery sample and remained significant at the nominal significance level (0.05) in the 31 

validation sample. Among the 647 traits, 120 had at least one significant association with 32 
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resting fMRI functional connectivity measures, among which 82 further survived the 1 

Bonferroni significance level (7.73 × 10-7, 0.05/64,620) (Table S3). We highlighted below 2 

the association patterns with mental health, cognitive function, physical activity, lifestyle, 3 

biomarkers, and disease status.  4 

 5 

We observed strong associations between resting fMRI and multiple mental health traits, 6 

including risk-taking, depression, MDD, and neuroticism. Enrichments in specific 7 

networks and brain areas were observed. For example, risk-taking (Data field 2040) was 8 

strongly positively associated with the somatomotor network and the connections 9 

between the somatomotor and visual networks (Fig. 4A). Risk-taking was also negatively 10 

associated with the functional connections of the default mode network. Functional 11 

connectivity of sensory/motor areas was recently found to be positively associated with 12 

risk-taking40 and our findings were consistent with the “sensory-motor-cognitive” mode 13 

of brain functional amplitude changes related to aging41. In addition, depression was 14 

mostly associated with reduced connectivity in the somatomotor and cingulo-opercular 15 

networks (curated disease phenotype based on ICD-10 codes, Fig. 4B). Consistent 16 

patterns were also observed in MDD (ICD-10 code F329, Fig. S33A), nervous feelings (Data 17 

field 1970, Fig. S33B), seen doctor for nerves anxiety tension or depression (Data field 18 

2090, Fig. S33C), neuroticism score (Data field 20127, Fig. S33D), and suffer from nerves 19 

(Data field 2010, Fig. S33E). Depression and depressive mood disorders have been linked 20 

to the abnormal brain connectivity in various intrinsic networks42-44, our results 21 

highlighted the specific patterns of the decreased resting functional connectivity, 22 

particularly in the somatomotor network.   23 

 24 

A wide range of cognitive traits were associated with functional connectivity in fMRI, such 25 

as the fluid intelligence (Data field 20016), the number of puzzles correctly solved (Data 26 

field 6373), duration to complete alphanumeric path (Data field 6350), and maximum 27 

digits remembered correctly (Data field 4282). These cognitive traits showed different 28 

association patterns. Fluid intelligence, for example, was associated with functional 29 

connectivity in the auditory, language, cingulo-opercular, dorsal attention, and default 30 

mode networks, most of the associations were positive (Fig. 5A). The duration to 31 

complete alphanumeric path was mainly negatively associated with functional 32 
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connectivity in the secondary visual network (Fig. S34A), the number of puzzles correctly 1 

solved was mostly related to the functional connectivity within the default mode, 2 

somatomotor, and secondary visual networks (Fig. S34B), and the maximum digits 3 

remembered correctly was positively related to the auditory and language networks (Fig. 4 

S34C). We also uncovered the association pattern for other brain-related complex traits, 5 

such as the strong connections between handedness (Data field 1707) and the cingulo-6 

opercular network (Fig. S34D).  7 

 8 

Resting functional connectivity was widely associated with lifestyle and environmental 9 

traits, including physical activity, electronic device use, smoking, diet, alcohol, and sun 10 

exposure. Similar to risk-taking, mobile phone usage-related traits (Data fields 1120, 11 

1140, and 1110) were consistently positively associated with the somatomotor network 12 

and connections between the somatomotor and visual networks (Figs. S35A-C). Watching 13 

television (TV) for longer periods of time (Data field 1070) may weaken functional 14 

connectivity in the somatomotor and visual networks as well as strengthen functional 15 

connectivity in the default mode network (Fig. 5B). TV viewing has been found to be 16 

associated with brain structural variations in visual cortex and sensorimotor areas45. 17 

Moreover, longer time spent outdoors in summer (Data field 1050) was associated with 18 

increased functional connectivity in the default mode network (Fig. S35D). These results 19 

may indicate that the default mode network is related to outdoor exploration and sunlight 20 

exposure. 21 

 22 

We found associations between resting fMRI and multiple biomarkers, such as the basal 23 

metabolic rate (Data field 23105), albumin (Data field 30600), total protein (Data field 24 

30860), and vitamin D (Data field 30890). For example, the basal metabolic rate was 25 

associated with increased functional connectivity in the somatomotor network and 26 

reduced functional connectivity in the default mode network (Fig. S36A). Higher levels of 27 

albumin and total protein were mainly associated with reduced functional connectivity in 28 

the somatomotor and visual networks (Figs. S36B-C). Human albumin is the most 29 

abundant protein, and low serum albumin may increase the risk of Alzheimer's disease46. 30 

In addition, vitamin D was associated with increased functional connectivity, especially in 31 

the cingulo-opercular and somatomotor networks (Fig. S36D). Vitamin D is important for 32 
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maintaining brain health, and vitamin D deficiency has been associated with the 1 

development of dementia, depression, and other mental illnesses47.    2 

 3 

Strong associations between increased functional connectivity and cardiovascular 4 

diseases were identified, including the atrial fibrillation (curated disease phenotype and 5 

ICD-10 code I48), vascular/heart problems diagnosed by doctor (Data field 6150), and 6 

hypertension (curated disease phenotype and ICD-10 code I10). Atrial fibrillation is the 7 

most common clinically significant arrhythmia, and increasing evidence suggests it is 8 

associated with cognitive decline and dementia48. We found that atrial fibrillation was 9 

widely associated with functional connectivity across different networks (Figs. S37A-B). 10 

Hypertension and vascular/heart problems were associated with reduced functional 11 

connectivity in the auditory, somatomotor, secondary visual, and cingulo-opercular 12 

networks (Figs. S37C-D). Hypertension is a major risk factor of vascular dementia and 13 

Alzheimer’s Disease and altered functional connections may reflect the early effects of 14 

vascular risk factors on brain functions49.  15 

 16 

In task fMRI, 96 traits had at least one significant association at the FDR 5% level (and 17 

significant at the nominal level in the validation dataset), and 59 further survived the 18 

Bonferroni significance level (7.73 × 10-7 = 0.05/64,620) (Table S3). Of the 96 traits, 69 19 

were also significantly associated with resting fMRI at the 5% FDR level. The association 20 

patterns in task and resting fMRI were very similar for a few traits, such as the atrial 21 

fibrillation (Fig. S38). For many traits, however, we observed different patterns in resting 22 

and task fMRI, including fluid intelligence (Figs. S39A-B), the number of puzzles correctly 23 

solved (Figs. S39C-D), time spent outdoors in summer (Figs. S40A-B), time spent watching 24 

TV (Figs. S40C-D), and basal metabolic rate (Figs. S41A-B). For example, both fluid 25 

intelligence and the number of solved puzzles were positively associated with intra-26 

hemispheric connections of the auditory network in task fMRI, whereas no or negative 27 

associations were observed with inter-hemispheric connections. There were similar intra- 28 

and inter-hemispheric connection differences in the cingulo-opercular network. Overall, 29 

the results indicate differences between resting and task-related functional associations 30 

with complex traits, especially for cognitive functions.  31 

 32 
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Task fMRI also revealed new insights into the brain function associations with more traits, 1 

such as early life factors. Specifically, we found strong associations between task fMRI 2 

and the place of birth in UK (the north co-ordinate and east co-ordinate, Data fields 129 3 

and 130) in the auditory, somatomotor, and cingulo-opercular networks (Fig. S42A-B). 4 

These results may shed light on the impact of the environment on brain development 5 

related to the emotion processing task. Additionally, we observed stronger associations 6 

with multiple biomarkers than in resting fMRI, such as the triglycerides (Data field 30870, 7 

Fig. S42C) and urate (Data field 30880, Fig. S42D). In contrast, task fMRI was not 8 

associated with a few traits that were strongly related to resting fMRI, including mental 9 

health traits (such as risk-taking and depression) and electronic device use (such as usage 10 

of mobile phone).  11 

 12 

We also quantified the association patterns with amplitude traits and prioritized brain 13 

areas whose functional activity was related to traits and diseases. We observed similar 14 

patterns to the functional connectivity results. For example, risk-taking has the strongest 15 

associations with brain activity of the postcentral gyrus in the somatomotor network, 16 

especially the primary somatosensory cortex40 (Fig. 4C, b > 0.033, P < 8.14 × 10-6). The 17 

postcentral gyrus, insula, and Rolandic operculum areas of the somatomotor network 18 

were most negatively related to depression (Fig. 4D, b < -0.036, P < 7.10 × 10-7). All 19 

significant associations with fluid intelligence were positive, with the top three areas 20 

being the middle cingulate, anterior cingulate, and orbital part of the inferior frontal gyrus 21 

(IFG pars orbitalis) in the default mode network (Fig. 5C, b > 0.053, P < 1.31 × 10-12). Time 22 

spent watching TV was strongly negatively associated with the postcentral gyrus, 23 

precentral gyrus, paracentral lobule, and the supplementary motor area in the 24 

somatomotor network (Fig. 5D, b < -0.050, P < 2.03 × 10-12). In summary, this section 25 

analyzes fMRI data with a variety of complex traits in a discovery-validation design. We 26 

provide new insights into the association maps with human brain resting and task 27 

functional organizations, which could assist in building better disease prediction models 28 

and selecting clinically useful neuroimaging biomarkers. The full set of results can be 29 

browsed at http://165.227.92.206/traitList.html.  30 

 31 

Alternative analyses using the Schaefer200 atlas 32 



 16 

The brain parcellation may play a crucial role in the definition of the brain functional 1 

network and affect the results of downstream analysis50. To explore the impact of 2 

parcellation choice on the large-scale UKB study, we additionally applied another 3 

parcellation (the Schaefer200 atlas20) and repeated our analysis of on the same set of 4 

subjects. Briefly, the Schaefer200 atlas partitioned the brain into 200 regions, resulting in 5 

19,900 pairwise functional full correlation measures (200 × 199/2). We mapped the 200 6 

regions onto the same 12 networks used in the Glasser360 atlas (Table S2, Methods).   7 

 8 

The average reproducibility in the Schaefer200 atlas was 0.387 (standard error = 0.10) for 9 

resting fMRI and 0.312 (standard error = 0.07) for task fMRI, which was in the same range 10 

as the Glasser360 atlas. Figure S43 compares the reproducibility of the two parcellations. 11 

Glasser360 and Schaefer200 atlases showed similar patterns across a variety of networks, 12 

with the largest differences being observed in the secondary visual network, where the 13 

Glasser360 atlas was more reproducible. In addition, consistent spatial patterns of 14 

functional connectivity were observed in the two parcellations, although the strength of 15 

connectivity was slightly higher in the Schaefer200 atlas, which may partly be explained 16 

by the smaller number of brain areas (Fig. S44). These results demonstrate the good 17 

generalizability of functional organizations modeled by the Glasser360 atlas.  18 

 19 

We evaluated the age and sex effects in the Schaefer200 atlas. Figure S45 compares the 20 

age effect patterns in the Schaefer200 and Glasser360 atlases. In both atlases, decreasing 21 

resting functional connectivity was consistently associated with aging, especially in the 22 

auditory, cingulo-opercular, and somatomotor networks. The main difference was in the 23 

secondary visual network, where the age effects in the Glasser360 atlas were stronger 24 

than those in the Schaefer200 atlas (Fig. S45A). This finding may be attributed to the 25 

lower reproducibility of the Schaefer200 atlas in the secondary visual network, suggesting 26 

that the Glasser360 atlas may be more suitable for studying the brain connectivity of the 27 

visual cortex. In addition, consistent intra- and inter-hemispheric association differences 28 

in task fMRI were observed (Fig. S45B). The Schaefer200 and Glasser360 atlases also 29 

showed similar sex effect patterns, in which the strongest effects were both detected in 30 

the somatomotor and auditory networks (Fig. S46).  31 

 32 
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Next, we repeated the association analysis with the 647 traits. In resting fMRI, 131 traits 1 

had at least one significant association at the FDR 5% level and 83 further passed the 2 

Bonferroni significance level (2.51 × 10-6 = 0.05/19,900, also passing the nominal 3 

significance level (0.05) in the independent validation dataset, Table S3). Of the 120 traits 4 

with significant associations in the Glasser360 atlas analysis, 109 (90.83%) were also 5 

significant in the Schaefer200 atlas analysis. Additionally, the association maps were 6 

largely consistent in the two atlases. For example, time spent watching TV was 7 

consistently associated with decreased functional connections of the somatomotor and 8 

visual networks, as well as increased functional connectivity in the default mode network 9 

(Fig. S47A). Moreover, fluid intelligence was consistently linked to increased functional 10 

connectivity, particularly in the language and auditory networks (Fig. S47B). In both 11 

atlases, depression was associated with reduced functional connectivity in the 12 

somatomotor and cingulo-opercular networks (Fig. S48). At the FDR 5% level, 90 traits 13 

showed significant associations with task fMRI, including 76 of the 96 (79.2%) traits that 14 

were significant in the Glasser360 atlas analysis (Table S3). All these results are available 15 

on our website. In summary, the Schaefer200 atlas results agree well with those of the 16 

Glasser360 atlas, indicating that the patterns observed in our Glasser360 analysis are not 17 

parcellation-specific. 18 

 19 

Finally, we examined the trait associations with 1,701 functional connectivity traits based 20 

on the whole brain spatial independent component analysis (ICA)24,51,52 approach in 21 

resting fMRI. These ICA functional connectivity traits were available from the UK Biobank 22 

data release (https://www.fmrib.ox.ac.uk/ukbiobank/index.html, Data fields 25752 and 23 

25753), which were partial correlations and the timeseries were estimated from group 24 

ICA maps via the dual-regression24. Of the 647 traits, 76 demonstrated at least one 25 

significant association at the FDR 5% level and 58 remained significant at the Bonferroni 26 

significance level (2.94 × 10-5 = 0.05/1,701, also passing the nominal significance level in 27 

the independent validation dataset, Table S3). Among the 76 ICA-significant traits, 65 28 

(85.53%) were also significant in the above Glasser360 atlas analysis. Compared to the 29 

ICA-derived traits, parcellation-based traits from the Glasser360 atlas (which identified 30 

significant associations with 120 complex traits at the FDR 5% level and 82 at the 31 

Bonferroni significance level) were able to detect associations with more traits.  32 



 18 

 1 

In addition, we ranked the 58 ICA-significant complex traits (at the Bonferroni significance 2 

level) by the number of their significant associations with ICA-derived traits. Then we 3 

compared the association strengths of the top ten traits with ICA-derived traits and those 4 

with Glasser360 traits. On these ten traits, ICA-derived traits and Glasser360 traits 5 

showed similar levels of association strength (Fig. S49). For example, many ICA-derived 6 

and Glasser360 traits were found to be significantly associated with systolic blood 7 

pressure (Data field 4080), and most of these associations were in a similar range of effect 8 

size and P value (Figs. S50-51). Furthermore, the results of Glasser360 traits indicate that 9 

the auditory and somatomotor networks may be more strongly associated with systolic 10 

blood pressure than other networks. In summary, parcellation-based traits may reveal 11 

more network and area-level details with comparable association strength to ICA-derived 12 

traits. 13 

 14 

Fluid intelligence prediction by integrating multiple data types.  15 

Our association analyses demonstrate the potential value of large-scale fMRI data for a 16 

variety of complex traits and disorders in clinical and epidemiological research. For 17 

example, it is of great interest to construct prediction models by integrating fMRI data 18 

and other data types53-55. Fluid intelligence is a key indicator of cognitive ability and is 19 

associated with multiple neurological and neuropsychiatric disorders56. In this section, we 20 

performed prediction for fluid intelligence using neuroimaging traits from multiple 21 

modalities, including resting fMRI, task fMRI, diffusion MRI (dMRI)21, and structural MRI 22 

(sMRI)57. We further integrated these neuroimaging data with a wide range of other data 23 

types, including common genetic variants, biomarkers, local environments, early life 24 

factors, diet, and behavioral traits. The relative contributions and joint performance of 25 

these data types were assessed in a training, validation, and testing design (Methods). All 26 

model parameters were tuned using the validation data and we evaluated the prediction 27 

performance on the independent testing data by calculating the correlation between the 28 

predicted values and the observed intelligence, while adjusting for the covariates listed 29 

in the Methods section.  30 

 31 



 19 

The prediction performance of multi-modality neuroimaging traits was summarized in 1 

Figure 6A. The prediction correlation of resting fMRI was 0.272 (standard error = 0.012), 2 

suggesting that about 7.4% variation in fluid intelligence can be predicted by resting fMRI 3 

connectivity. The prediction correlation was similar in task fMRI (correlation = 0.279) and 4 

was improved to 0.333 by jointly using resting and task fMRI, which suggests that resting 5 

and task fMRI had unique contributions to intelligence prediction. This improvement 6 

matched our association results where both resting and task fMRI showed strong 7 

associations with fluid intelligence with different spatial patterns. In addition, the dMRI 8 

and sMRI traits had much lower prediction accuracy than fMRI traits. Specifically, the 9 

prediction correlation was 0.09 for diffusion tensor imaging (DTI) parameters of dMRI and 10 

0.08 for regional brain volumes of sMRI. Moreover, adding these structural traits in 11 

addition to fMRI traits did not substantially improve the prediction performance 12 

(correlation = 0.342), indicating the prediction power of brain structural traits for 13 

intelligence can be largely captured by the functional traits.  14 

 15 

Next, we examined the prediction performance of non-neuroimaging data types (Fig. 6B).  16 

The prediction correlation of intelligence genetic polygenic risk score (PRS) was 0.232 17 

(standard error = 0.013), which was slightly lower than the performance of resting fMRI. 18 

Several categories of lifestyle and environmental traits had strong predictive power, 19 

including physical activity (correlation = 0.205), sun exposure (correlation = 0.193), and 20 

diet (correlation = 0.153). Moreover, biomarkers, disease records, and early life factors 21 

all had significant predictive performance, with prediction correlations being 0.067, 22 

0.087, and 0.156, respectively. By combining all these non-neuroimaging data types, the 23 

prediction correlation increased to 0.381. The performance was further improved to 24 

0.440 by including neuroimaging data, which was much higher than when using only one 25 

type of data. 26 

 27 

To explore whether the predictive power of non-neuroimaging traits (such as physical 28 

activity) is mediated by brain structure and function, we evaluated their conditional 29 

predictive performance on fluid intelligence after controlling for neuroimaging traits. 30 

There was a reduction of performance on multiple categories of non-neuroimaging 31 

predictors, suggesting their effects on intelligence may be indirect and partially mediated 32 



 20 

by brain structure and function (Fig. 6C and Table S4). For example, the prediction 1 

performance of genetic PRS decreased from 0.232 to 0.186, indicating that 19.8% of the 2 

genetic predictive power on intelligence can be captured by brain structural and 3 

functional variations measured by brain MRI. The proportion was 28.3% for physical 4 

activity, 23.1% for diet, and 28.6% for early life factors. Overall, these results illustrate the 5 

neuroimaging traits, especially the ones from resting and task fMRI, are powerful 6 

predictors of cognitive function. Future studies can integrate genetic, biomarker, 7 

behavioral/environmental factors, and multi-modality MRI data for better prediction of 8 

brain-related complex traits and disorders.   9 

 10 

DISCUSSION 11 

Inter-individual variations in brain function and their relationship to human health and 12 

behavior are of great interest. The intra-individual reproducibility of brain fMRI traits is 13 

generally lower than that of structural MRI traits, although the group-level consistency is 14 

high11,13,22,58. Then it has been suggested that a large sample size is needed for fMRI 15 

studies to detect trait associations with small effect sizes59,60. The UKB study provided an 16 

extensive biobank-scale data resource for quantifying fMRI associations with many 17 

phenotypes. The present study conducted a systematic analysis of intrinsic and extrinsic 18 

functional architectures with a parcellation-based approach using fMRI data collected 19 

from over 40,000 individuals. We measured the differences between resting and task 20 

fMRI, investigated age and sex effects on brain function, and examined the cross-21 

parcellation variability of our findings. We evaluated the fMRI associations with 647 traits 22 

chosen from a variety of trait domains. In comparison to the prior literature15, which 23 

applied data-driven spatial independent component analysis24,51,52 to about 5000 24 

subjects, the parcellation-based approach and much larger sample size allowed us to 25 

quantify functional organizations in fine-grained details. We found distinct brain 26 

functional areas and networks that were strongly related to traits from various categories, 27 

such as mental health, physical activity, cognitive performance, and biomarkers. We 28 

developed integrative prediction models for fluid intelligence, suggesting that integrating 29 

fMRI traits with multiple data types can improve prediction performance for brain-related 30 

complex traits and diseases.  31 

 32 



 21 

We found that the strongest sex difference in resting fMRI was in the somatomotor 1 

network, where females had weaker functional connectivity than males (Fig. 3E). 2 

Additionally, depression was strongly associated with decreased connectivity in the 3 

somatomotor network (Fig. 4B). Considering the fact that depression is two times more 4 

prevalent in females than in males, our results may help understand the brain function-5 

related sex differences in depression39. In addition, we found that a wide variety of 6 

complex traits were strongly associated with the functional connectivity between the 7 

visual and somatomotor networks, including risk-taking, time spent watching TV, usage 8 

of mobile phone, albumin, and total protein (Figs. 4A, 5B, S31A, S32B, and S32C). Future 9 

studies could investigate the biological mechanisms underlying these functional 10 

connectivity alterations as well as causal medication pathways among lifestyle, 11 

biomarker, brain function, and mental health61.  12 

 13 

Our results confirm that group-level intrinsic and extrinsic functional spatial patterns are 14 

largely similar (correlation = 0.754), as observed in previous fMRI datasets with smaller 15 

sample sizes27-32. The large-scale UKB data also revealed that resting and task fMRI may 16 

have different associations with complex traits, such as mental health and cognitive 17 

abilities. For example, depression was strongly associated with resting fMRI, but not with 18 

task fMRI. Moreover, in resting and task fMRI, the associations with fluid intelligence had 19 

different spatial distributions. Our prediction analysis further suggests that task fMRI has 20 

additional predictive power on intelligence on top of resting fMRI. These results 21 

demonstrate the differences between resting and task-evoked brain functions in terms of 22 

their connections with brain health and cognition. 23 

 24 

The UKB task fMRI data used in this study were from a single emotion processing task62,63. 25 

Previous studies have shown that the functional architectures of different tasks were 26 

highly similar27,29,30. Hence, our findings from this specific task might be generalizable to 27 

other tasks. More insights might be revealed in future studies by integrating multiple 28 

neuroimaging data resources. For example, joint analysis with other large-scale 29 

neuroimaging studies, such as the ABCD study, may help understand the age-related 30 

interaction with complex traits across the lifespan. In addition, further investigations are 31 

needed to examine the effects of topographical misalignments on trait-fMRI associations 32 
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and sex differences. There has been an observation in the HCP study that the cross-1 

subject variability can be explained by the misalignment in topography between 2 

individual subjects' true connectivity topography and group-average ICA maps used by 3 

the ICA dual regression64,65. This residual functional misalignment can mean that 4 

between-subject spatial variability appears as variability in network connectivity; the 5 

extent of this problem of misinterpretation may vary across different analysis methods 6 

(e.g., group-ICA with dual-regression vs hard parcellation). It would be interesting to 7 

quantify the effects of spatial misalignment on both parcellation-based and whole-brain 8 

ICA-based fMRI traits in the large-scale UKB dataset. Finally, our main analyses were 9 

based on parcellation-based full correlations. Although the FMRIB's ICA-based X-noiseifier 10 

(FIX) has been applied to the UKB dataset to remove scanner artifacts and motion effects, 11 

full correlation measures can be more sensitive to the remaining global artifacts and 12 

noises than partial correlations66,67. It is possible to further remove global artifacts by 13 

measuring the partial functional connectivity between paired brain regions after 14 

removing the dependency of other brain regions68. Future studies need to explore 15 

parcellation-based partial correlation traits for a large number of parcels (such as the 360 16 

regions in the Glasser360 atlas) with a limited number of time points in the UKB study. 17 

 18 

METHODS 19 

Methods are available in the Methods section. 20 

Note: One supplementary information pdf file, one supplementary figure pdf file, and one 21 

supplementary table zip file are available. 22 

 23 

ACKNOWLEDGEMENTS 24 

This research was partially supported by U.S. NIH grants MH086633 (H.Z.) and MH116527 25 

(TF.L.). We thank the individuals represented in the UKB and HCP studies for their 26 

participation and the research teams for their work in collecting, processing and 27 

disseminating these datasets for analysis. We would like to thank the University of North 28 

Carolina at Chapel Hill and Purdue University and their Research Computing groups for 29 

providing computational resources and support that have contributed to these research 30 

results. This research has been conducted using the UK Biobank resource (application 31 

number 22783), subject to a data transfer agreement.  32 



 23 

 1 

AUTHOR CONTRIBUTIONS 2 

B.Z., H.Z., and S.M.S designed the study. B.Z., T.L., Z.F., D.X., X.W., and M.G. processed 3 

and analyzed the data. Y.L. and B.Z. designed the website and developed online resources. 4 

B.Z. wrote the manuscript with feedback from all authors. 5 

 6 

CORRESPINDENCE AND REQUESTS FOR MATERIALS should be addressed to H.Z. 7 

 8 

COMPETETING FINANCIAL INTERESTS 9 

The authors declare no competing financial interests. 10 

 11 

REFERENCES 12 

1 Power, J. D. et al. Functional network organization of the human brain. Neuron 13 

72, 665-678 (2011). 14 

2 Ogawa, S., Lee, T.-M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging 15 

with contrast dependent on blood oxygenation. proceedings of the National 16 

Academy of Sciences 87, 9868-9872 (1990). 17 

3 Biswal, B., Zerrin Yetkin, F., Haughton, V. M. & Hyde, J. S. Functional connectivity 18 

in the motor cortex of resting human brain using echo-planar MRI. Magnetic 19 

resonance in medicine 34, 537-541 (1995). 20 

4 Agosta, F. et al. Resting state fMRI in Alzheimer's disease: beyond the default 21 

mode network. Neurobiology of aging 33, 1564-1578 (2012). 22 

5 Posner, J., Park, C. & Wang, Z. Connecting the dots: a review of resting 23 

connectivity MRI studies in attention-deficit/hyperactivity disorder. 24 

Neuropsychology review 24, 3-15 (2014). 25 

6 Hu, M.-L. et al. A review of the functional and anatomical default mode network 26 

in schizophrenia. Neuroscience bulletin 33, 73-84 (2017). 27 

7 Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, 28 

I. Resting-state functional connectivity in major depressive disorder: a review. 29 

Neuroscience & Biobehavioral Reviews 56, 330-344 (2015). 30 



 24 

8 Macpherson, H., Formica, M., Harris, E. & Daly, R. M. Brain functional alterations 1 

in Type 2 Diabetes–A systematic review of fMRI studies. Frontiers in 2 

neuroendocrinology 47, 34-46 (2017). 3 

9 Ewing, S. W. F., Sakhardande, A. & Blakemore, S.-J. The effect of alcohol 4 

consumption on the adolescent brain: A systematic review of MRI and fMRI 5 

studies of alcohol-using youth. NeuroImage: Clinical 5, 420-437 (2014). 6 

10 Zhao, J. et al. Intrinsic brain subsystem associated with dietary restraint, 7 

disinhibition and hunger: an fMRI study. Brain imaging and behavior 11, 264 8 

(2017). 9 

11 Elliott, M. L. et al. What is the test-retest reliability of common task-functional 10 

MRI measures? New empirical evidence and a meta-analysis. Psychological 11 

Science 31, 792-806 (2020). 12 

12 Marek, S. et al. Towards reproducible brain-wide association studies. BioRxiv 13 

(2020). 14 

13 Chaarani, B. et al. Baseline brain function in the preadolescents of the ABCD 15 

Study. Nature Neuroscience, 1-11 (2021). 16 

14 Xu, Q. et al. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-17 

ethnic and cross-geographic brain research. Molecular psychiatry 25, 517-529 18 

(2020). 19 

15 Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank 20 

prospective epidemiological study. Nature Neuroscience 19, 1523-1536 (2016). 21 

16 Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic 22 

data. Nature 562, 203-209, doi:10.1038/s41586-018-0579-z (2018). 23 

17 Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 24 

536, 171-178 (2016). 25 

18 Van Essen, D. C. et al. The WU-Minn human connectome project: an overview. 26 

Neuroimage 80, 62-79 (2013). 27 

19 Ji, J. L. et al. Mapping the human brain's cortical-subcortical functional network 28 

organization. Neuroimage 185, 35-57 (2019). 29 

20 Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from 30 

intrinsic functional connectivity MRI. Cerebral cortex 28, 3095-3114 (2018). 31 



 25 

21 Zhao, B. et al. Common genetic variation influencing human white matter 1 

microstructure. Science 372 (2021). 2 

22 Herting, M. M., Gautam, P., Chen, Z., Mezher, A. & Vetter, N. C. Test-retest 3 

reliability of longitudinal task-based fMRI: Implications for developmental 4 

studies. Developmental cognitive neuroscience 33, 17-26 (2018). 5 

23 Bijsterbosch, J. et al. Investigations into within-and between-subject resting-6 

state amplitude variations. Neuroimage 159, 57-69 (2017). 7 

24 Alfaro-Almagro, F. et al. Image processing and Quality Control for the first 10,000 8 

brain imaging datasets from UK Biobank. NeuroImage 166, 400-424 (2018). 9 

25 Zheng, Y.-Q. et al. Accurate predictions of individual differences in task-evoked 10 

brain activity from resting-state fMRI using a sparse ensemble learner. bioRxiv 11 

(2021). 12 

26 Li, J. et al. Emotion reactivity-related brain network analysis in generalized 13 

anxiety disorder: a task fMRI study. BMC psychiatry 20, 1-13 (2020). 14 

27 Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic 15 

and task-evoked network architectures of the human brain. Neuron 83, 238-251 16 

(2014). 17 

28 Tavor, I. et al. Task-free MRI predicts individual differences in brain activity 18 

during task performance. Science 352, 216-220 (2016). 19 

29 Cole, M. W., Ito, T., Cocuzza, C. & Sanchez-Romero, R. The functional relevance 20 

of task-state functional connectivity. Journal of Neuroscience 41, 2684-2702 21 

(2021). 22 

30 Gonzalez-Castillo, J. & Bandettini, P. A. Task-based dynamic functional 23 

connectivity: Recent findings and open questions. Neuroimage 180, 526-533 24 

(2018). 25 

31 Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B. & Petersen, S. E. 26 

Evidence for two independent factors that modify brain networks to meet task 27 

goals. Cell reports 17, 1276-1288 (2016). 28 

32 Gratton, C. et al. Functional brain networks are dominated by stable group and 29 

individual factors, not cognitive or daily variation. Neuron 98, 439-452. e435 30 

(2018). 31 



 26 

33 Smith, S. M. et al. Correspondence of the brain's functional architecture during 1 

activation and rest. Proceedings of the national academy of sciences 106, 13040-2 

13045 (2009). 3 

34 Raichle, M. E. et al. A default mode of brain function. Proceedings of the National 4 

Academy of Sciences 98, 676-682 (2001). 5 

35 Elton, A. & Gao, W. Task-positive functional connectivity of the default mode 6 

network transcends task domain. Journal of Cognitive Neuroscience 27, 2369-7 

2381 (2015). 8 

36 Scheinost, D. et al. Sex differences in normal age trajectories of functional brain 9 

networks. Human brain mapping 36, 1524-1535 (2015). 10 

37 Ritchie, S. J. et al. Sex differences in the adult human brain: evidence from 5216 11 

UK biobank participants. Cerebral cortex 28, 2959-2975 (2018). 12 

38 Mazure, C. M. & Swendsen, J. Sex differences in Alzheimer’s disease and other 13 

dementias. The Lancet. Neurology 15, 451 (2016). 14 

39 Labaka, A., Goñi-Balentziaga, O., Lebeña, A. & Pérez-Tejada, J. Biological sex 15 

differences in depression: a systematic review. Biological research for nursing 20, 16 

383-392 (2018). 17 

40 Rolls, E. T., Wan, Z., Cheng, W. & Feng, J. Risk-taking in humans and the medial 18 

orbitofrontal cortex reward system. NeuroImage, 118893 (2022). 19 

41 Smith, S. M. et al. Brain aging comprises many modes of structural and 20 

functional change with distinct genetic and biophysical associations. Elife 9, 21 

e52677 (2020). 22 

42 Gudayol-Ferré, E., Peró-Cebollero, M., González-Garrido, A. A. & Guàrdia-Olmos, 23 

J. Changes in brain connectivity related to the treatment of depression measured 24 

through fMRI: a systematic review. Frontiers in human neuroscience 9, 582 25 

(2015). 26 

43 Brakowski, J. et al. Resting state brain network function in major depression–27 

depression symptomatology, antidepressant treatment effects, future research. 28 

Journal of Psychiatric Research 92, 147-159 (2017). 29 

44 Korgaonkar, M. S., Goldstein-Piekarski, A. N., Fornito, A. & Williams, L. M. 30 

Intrinsic connectomes are a predictive biomarker of remission in major 31 

depressive disorder. Molecular psychiatry 25, 1537-1549 (2020). 32 



 27 

45 Takeuchi, H. et al. The impact of television viewing on brain structures: cross-1 

sectional and longitudinal analyses. Cerebral Cortex 25, 1188-1197 (2015). 2 

46 Kim, J. W. et al. Serum albumin and beta-amyloid deposition in the human brain. 3 

Neurology 95, e815-e826 (2020). 4 

47 Anjum, I., Jaffery, S. S., Fayyaz, M., Samoo, Z. & Anjum, S. The role of vitamin D in 5 

brain health: a mini literature review. Cureus 10 (2018). 6 

48 Alonso, A. & de Larriva, A. P. A. Atrial fibrillation, cognitive decline and dementia. 7 

European Cardiology Review 11, 49 (2016). 8 

49 Carnevale, L. et al. Brain Functional Magnetic Resonance Imaging Highlights 9 

Altered Connections and Functional Networks in Patients With Hypertension. 10 

Hypertension, HYPERTENSIONAHA. 120.15296 (2020). 11 

50 Popovych, O. V. et al. Inter-subject and inter-parcellation variability of resting-12 

state whole-brain dynamical modeling. NeuroImage, 118201 (2021). 13 

51 Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for 14 

functional magnetic resonance imaging. IEEE transactions on medical imaging 15 

23, 137-152 (2004). 16 

52 Hyvarinen, A. Fast and robust fixed-point algorithms for independent component 17 

analysis. IEEE transactions on Neural Networks 10, 626-634 (1999). 18 

53 Pervaiz, U., Vidaurre, D., Woolrich, M. W. & Smith, S. M. Optimising network 19 

modelling methods for fMRI. Neuroimage 211, 116604 (2020). 20 

54 He, T. et al. Deep neural networks and kernel regression achieve comparable 21 

accuracies for functional connectivity prediction of behavior and demographics. 22 

NeuroImage 206, 116276 (2020). 23 

55 Shen, L. & Thompson, P. M. Brain imaging genomics: integrated analysis and 24 

machine learning. Proceedings of the IEEE 108, 125-162 (2019). 25 

56 Keyes, K. M., Platt, J., Kaufman, A. S. & McLaughlin, K. A. Association of fluid 26 

intelligence and psychiatric disorders in a population-representative sample of 27 

US adolescents. JAMA psychiatry 74, 179-188 (2017). 28 

57 Zhao, B. et al. Genome-wide association analysis of 19,629 individuals identifies 29 

variants influencing regional brain volumes and refines their genetic co-30 

architecture with cognitive and mental health traits. Nature genetics 51, 1637-31 

1644 (2019). 32 



 28 

58 Noble, S., Scheinost, D. & Constable, R. T. A guide to the measurement and 1 

interpretation of fMRI test-retest reliability. Current Opinion in Behavioral 2 

Sciences 40, 27-32 (2021). 3 

59 Kennedy, J. T. et al. Reliability and Stability Challenges in ABCD Task fMRI Data. 4 

bioRxiv (2021). 5 

60 Smith, S. M. & Nichols, T. E. Statistical challenges in “big data” human 6 

neuroimaging. Neuron 97, 263-268 (2018). 7 

61 Zhao, Y. & Castellanos, F. X. Annual research review: discovery science strategies 8 

in studies of the pathophysiology of child and adolescent psychiatric disorders-9 

promises and limitations. Journal of Child Psychology and Psychiatry 57, 421-439 10 

(2016). 11 

62 Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F. & Weinberger, D. R. The 12 

amygdala response to emotional stimuli: a comparison of faces and scenes. 13 

Neuroimage 17, 317-323 (2002). 14 

63 Barch, D. M. et al. Function in the human connectome: task-fMRI and individual 15 

differences in behavior. Neuroimage 80, 169-189 (2013). 16 

64 Bijsterbosch, J. D. et al. The relationship between spatial configuration and 17 

functional connectivity of brain regions. Elife 7, e32992 (2018). 18 

65 Bijsterbosch, J. D., Beckmann, C. F., Woolrich, M. W., Smith, S. M. & Harrison, S. 19 

J. The relationship between spatial configuration and functional connectivity of 20 

brain regions revisited. Elife 8, e44890 (2019). 21 

66 Feis, R. A. et al. ICA-based artifact removal diminishes scan site differences in 22 

multi-center resting-state fMRI. Frontiers in neuroscience 9, 395 (2015). 23 

67 Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition 24 

for improved resting state network imaging. Neuroimage 95, 232-247 (2014). 25 

68 Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes 26 

in UK Biobank. Nature 562, 210-216 (2018). 27 

69 Dickie, E. W. et al. Ciftify: A framework for surface-based analysis of legacy MR 28 

acquisitions. Neuroimage 197, 818-826 (2019). 29 

70 Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 30 

participants: rationale, data collection, management and future directions. 31 

Nature communications 11, 1-12 (2020). 32 



 29 

71 Dey, R. et al. An efficient and accurate frailty model approach for genome-wide 1 

survival association analysis controlling for population structure and relatedness 2 

in large-scale biobanks. bioRxiv (2020). 3 

72 Jiang, L. et al. A resource-efficient tool for mixed model association analysis of 4 

large-scale data. Nature genetics 51, 1749 (2019). 5 

73 Mak, T. S. H., Porsch, R. M., Choi, S. W., Zhou, X. & Sham, P. C. Polygenic scores 6 

via penalized regression on summary statistics. Genetic epidemiology 41, 469-7 

480 (2017). 8 

74 Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear 9 

models via coordinate descent. Journal of statistical software 33, 1 (2010). 10 

 11 

METHODS 12 

Brain imaging data. We generated functional connectivity measures from the raw resting 13 

and task fMRI data downloaded from the UKB data category 111 and 106, respectively. 14 

Details of image acquisition and preprocessing procedures were summarized in the 15 

Supplementary Note. We mapped the preprocessed images onto the Glasser360 atlas17, 16 

which projected the fMRI data onto a brain parcellation with 360 areas, resulting in a 360 17 

× 360 functional full correlation matrix for each subject (full correlation). The Glasser360 18 

atlas was originally a surface-based parcellation69, and has been converted into a 19 

volumetric atlas that is compatible with UKB data (Supplementary Note). The 360 brain 20 

functional areas were grouped into 12 functional networks19, including the primary visual, 21 

secondary visual, auditory, somatomotor, cingulo-opercular, default mode, dorsal 22 

attention, frontoparietal, language, posterior multimodal, ventral multimodal, and 23 

orbito-affective (Table S1). The 64,620 (360 × 359/2) functional connectivity measures 24 

were studied in our main analyses. These high-resolution fMRI traits provided fine details 25 

on cerebral cortex functional organization and allowed us to compare the resting and 26 

task-evoked functional architectures. To investigate the potential cross-parcellation 27 

variability, we also projected the fMRI data onto the Schaefer200 atlas20 and obtained the 28 

200 × 200 functional connectivity matrices (full correlation, Table S2). The resting and task 29 

fMRI data from the HCP study were also used in our analysis (Supplementary Note). In 30 

addition to functional connectivity measures, we generated amplitude measures for the 31 

brain functional areas in the Glasser360 atlas, which quantified the brain functional 32 



 30 

activity23,24. The UKB study has obtained ethics approval from the North West Multi-1 

Centre Research Ethics Committee (MREC, approval number: 11/NW/0382), and 2 

obtained written informed consent from all participants prior to the study. All 3 

experimental procedures in the HCP study were approved by the institutional review 4 

boards at Washington University (approval number: 201204036). 5 

 6 

Age effects and sex differences analysis.  7 

Between 2006 and 2010, approximately half a million participants aged 40 to 69 were 8 

recruited for the UKB study. The UKB imaging study is an ongoing project to re-invite 9 

100,000 UKB participants to collect multi-modal brain and body imaging data70. We used 10 

the UKB phases 1 to 4 data (released up through early 2021, n = 40,880 for resting fMRI 11 

and 34,671 for task fMRI) in our analysis. The age (at imaging) range of subjects was 44 to 12 

82 (mean age = 64.15, standard error = 7.74) and the proportion of female was 51.6%. In 13 

the age and sex analysis, we fitted the following model for each fMRI trait: 𝑦 = 𝑥𝛽! +14 

𝑧𝛽" + 𝑥𝑧𝛼 + 	𝑤𝜂 + 𝜖, where 𝑦 is the standardized fMRI trait, 𝑥  is the standardized 15 

age, 𝑧 is the sex factor (0 for female and 1 for male), 𝑤 is the set of adjusted covariates, 16 

𝛽! is the main effect of 𝑥 on 𝑦, 𝛽" is the main effect of 𝑧 on 𝑦, 𝛼 is the effect of 17 

age-sex interaction term 𝑥𝑧 on 𝑦, 𝜂 represents effects of covariates, and 𝜖 is random 18 

error variable. We adjusted the following covariates: imaging site, head motion, head 19 

motion-squared, brain position, brain position-squared, volumetric scaling, height, 20 

weight, body mass index, heel bone mineral density, the top 10 genetic principal 21 

components. For each continuous trait or covariate variable, we removed values greater 22 

than five times the median absolute deviation from the median. These removed values 23 

will be treated as missing entries in the dataset. We performed the analysis in a discovery-24 

validation design and only reported the results that were significant in both discovery and 25 

validation datasets (at different significance levels). Specifically, we used the UKB white 26 

British subjects in phases 1 to 3 data (n = 33,795 for resting and 28, 907 for task) as our 27 

discovery sample. The assignment of ancestry in UKB was based on self-reported ethnicity 28 

and has been verified in Bycroft, et al. 16. The UKB non-British subjects in phases 1 to 3 29 

data and the individuals in newly released UKB phase 4 data (n = 5,961 for resting and 30 

4,884 for task, removed relatives of the discovery sample) were treated as the validation 31 

sample. We reported P values from the two-sided t test and focused on the results that 32 



 31 

were significant at Bonferroni significance level (7.73 × 10-7, 0.05/64,620 for the 1 

Glasser360 atlas; and 2.51 × 10-6, 0.05/19,900 for the Schaefer200 atlas) in the discovery 2 

dataset and were also significant at nominal significance level (0.05) in the validation 3 

dataset.  4 

 5 

Trait-fMRI association analysis.  6 

For each fMRI trait, we performed linear regression with 647 phenotypes, which were 7 

selected to reflect a variety of traits and diseases across different domains (Table S3). 8 

Specifically, there were 24 mental health traits (Category 100060), 10 cognitive traits 9 

(Category 100026), 12 physical activity traits (Category 100054), 6 electronic device use 10 

traits (Category 100053), 8 sun exposure traits (Category 100055), 3 sexual factor traits 11 

(Category 100056), 3 social support traits (Category 100061), 12 family history of diseases 12 

(Category 100034), 21 diet traits (Category 100052), 9 alcohol drinking traits (Category 13 

100051), 6 smoking traits (Category 100058), 34 blood biochemistry biomarkers 14 

(Category 17518), 3 blood pressure traits (Category 100011), 3 spirometry traits (Category 15 

100020), 20 early life factors (Categories 135, 100033, 100034, and 100072), 9 greenspace 16 

and coastal proximity (Category 151), 2 hand grip strength (Category 100019), 13 17 

residential air pollution traits (Category 114), 5 residential noise pollution traits (Category 18 

115), 2 body composition traits by impedance (Category 100009), 4 health and medical 19 

history traits (Category 100036), 3 female specific factors (Category 100069), 1 education 20 

trait (Category 100063), 48 curated disease phenotypes based on Dey, et al. 71, and 386 21 

disease diagnosis coded according to International Classification of Diseases (ICD-10, 22 

Category 2002). We selected all diseases in Category 2002 that had at least 100 patients 23 

in our resting fMRI imaging cohort.  24 

 25 

For all traits, we adjusted for the effects of age (at imaging), age-squared, sex, age-sex 26 

interaction, age-squared-sex interaction, imaging site, head motion, head motion-27 

squared, brain position, brain position-squared, volumetric scaling, height, weight, body 28 

mass index, heel bone mineral density, and the top 10 genetic principal components. 29 

Similar to the age and sex analysis, we used the UKB white British subjects in phases 1 to 30 

3 data (n = 33,795 for resting and 28, 907 for task) as our discovery sample and validated 31 

our results in the hold-out independent validation dataset (n = 5,961 for resting and 4,884 32 



 32 

for task, removed relatives of the discovery sample). We reported P values from the two-1 

sided t test and prioritized on the results that were significant at FDR 5% level in the 2 

discovery dataset and were also significant at nominal significance level (0.05) in the 3 

validation dataset.  4 

 5 

Prediction models with multiple data types.  6 

We built prediction models for fluid intelligence using multi-modality neuroimaging traits, 7 

including 64,620 resting fMRI traits, 64,620 task fMRI traits, 215 DTI parameters from 8 

dMRI21, and 101 regional brain volumes from sMRI57. After removing relatives according 9 

to Bycroft, et al. 16, we randomly partitioned the white British imaging subjects into three 10 

independent datasets: training (n = 20,270), validation (n = 6,764), and testing (n = 6,761). 11 

The effect sizes of imaging predictors were estimated from the training data (n = 20,270). 12 

We removed the effects of age, age-squared, sex, age-sex interaction, age-squared-sex 13 

interaction, imaging site, head motion, head motion-squared, brain position, brain 14 

position-squared, volumetric scaling, height, weight, body mass index, heel bone mineral 15 

density, and the top 10 genetic principal components.  16 

 17 

We also integrated other data types into our prediction model, including genetic variants 18 

and several categories of traits studied in our trait-fMRI association analysis (Table S4). 19 

For non-neuroimaging traits, the effect sizes were estimated from all UKB white British 20 

subjects except for the ones in validation and testing data (after removing relatives). We 21 

adjusted for all the covariates listed above for neuroimaging traits, except for the imaging-22 

specific variables including imaging site, head motion, volumetric scaling, and brain 23 

position. The genetic effects were estimated by fastGWA72 and were aggregated using 24 

polygenic risk scores via lassosum73. We downloaded imputed genotyping data (Category 25 

100319) and performed the following quality controls57: 1) excluded subjects with more 26 

than 10% missing genotypes; 2) excluded variants with minor allele frequency less than 27 

0.01; 3) excluded variants with missing genotype rate larger than 10%; 4) excluded 28 

variants that failed the Hardy-Weinberg test at 1 × 10-7 level; and 5) removed variants 29 

with imputation INFO score less than 0.8. All non-genetic predictors (including 30 

neuroimaging traits) were modeled using ridge regression via glmnet74 (R version 3.6.0). 31 

All model parameters were tuned in the validation dataset, and we evaluated the 32 



 33 

prediction performance on the testing data by calculating the correlation between the 1 

predicted values and the observed ones.  2 

 3 

Code availability  4 

We made use of publicly available software and tools. The codes used to generate fMRI 5 

traits are publicly available on Zenodo (https://doi.org/10.5281/zenodo.5784010).  6 

 7 

Data availability  8 

Our results and summary-level data can be downloaded and browsed at 9 

http://165.227.92.206/. The individual-level UK Biobank data can be obtained from 10 

https://www.ukbiobank.ac.uk/.  11 

 12 

Figure legends  13 

Fig. 1 Illustration of functional areas and networks in the Glasser360 atlas.  14 

(A) Functional areas defined in the Glasser360 atlas (left hemisphere). See Table S1 for 15 

information of these areas and Figure S1 for maps of the whole brain (both hemispheres). 16 

Visual1, the primary visual network; Visual2, the secondary visual network. (B) 17 

Annotation of the 12 functional networks in the human brain. The default mode network 18 

(bottom right) is further divided into seven clusters, mainly based on their physical 19 

locations. See Figure S11 for more information of the seven clusters.  20 

 21 

Fig. 2 Distribution of reproducibility across brain functional areas and networks. 22 

We illustrate the spatial maps of reproducibility of functional connectivity for resting fMRI 23 

in (A) and task fMRI in (B). (C) Comparison of reproducibility of functional connectivity 24 

across 12 brain functional networks in resting (left panel) and task (right panel) fMRI. (D) 25 

Comparison of reproducibility of functional connectivity between the activated areas 26 

(within activation) and the nonactivated areas (out of activation) in task fMRI. (E) 27 

Comparison of reproducibility of amplitude measures in resting (left panel) and task (right 28 

panel) fMRI. See Table S1 for information of the labeled brain areas. (F) Comparison of 29 

reproducibility of amplitude measures between the activated areas (within activation) 30 



 34 

and the nonactivated areas (out of activation) in task fMRI. The activation map can be 1 

found in Figure S8.  2 

 3 

Fig. 3 Spatial pattern of age and sex effects on brain functional organizations.  4 

We illustrate the spatial pattern of age effects (after adjusting for covariates) on 5 

functional connectivity for resting fMRI in (A) and for task fMRI in (B). (C) and (D) display 6 

the spatial pattern of age effects on amplitude measures of resting and task fMRI, 7 

respectively. See Table S1 for information of the labeled brain areas. We illustrate the 8 

spatial pattern of sex effects (after adjusting for covariates) on functional connectivity for 9 

resting fMRI in (E) and for task fMRI in (F). (G) and (H) display the spatial pattern of sex 10 

effects on amplitude measures of resting and task fMRI, respectively. We labeled the 11 

brain areas with the strongest age and sex effects in amplitude measures. For functional 12 

connectivity, we illustrated the effects passing the Bonferroni significance level (7.73 × 13 

10-7, 0.05/64,620) in the discovery dataset (n = 33,795 for resting and 28, 907 for task) 14 

and being significant at the nominal significance level (0.05) in the validation dataset (n = 15 

5, 961 for resting and 4, 884 for task).  16 

 17 

Fig. 4 Selected complex traits that were associated with brain functional organizations. 18 

(A) Associations between risk-taking (Data field 2040) and functional connectivity of 19 

resting fMRI. This figure and the top-ranked brain areas can be viewed in an interactive 20 

version at http://165.227.92.206/trait/trait85.html. (B) Associations between depression 21 

(curated disease phenotype) and functional connectivity of resting fMRI. This figure and 22 

the top-ranked brain areas can be viewed in an interactive version at 23 

http://165.227.92.206/trait/trait230.html. We illustrated the estimated correlation 24 

coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) and 25 

were also significant at the nominal significance level (0.05) in the validation dataset (n = 26 

5, 961). (C) and (D) display the spatial pattern of associations with amplitude measures of 27 

resting fMRI for risk-taking and depression, respectively. Brain areas with the strongest 28 

associations were labeled. See Table S1 for information of these areas.   29 

 30 



 35 

Fig. 5 Selected complex traits that were associated with brain functional organizations. 1 

(A) Associations between fluid intelligence (Data field 20016) and functional connectivity 2 

of resting fMRI. This figure and the top-ranked brain areas can be viewed in an interactive 3 

version at http://165.227.92.206/trait/trait158.html. (B) Associations between time 4 

spent watching TV (Data field 1070) and functional connectivity of resting fMRI. This 5 

figure and the top-ranked brain areas can be viewed in an interactive version at 6 

http://165.227.92.206/trait/trait101.html. We illustrated the estimated correlation 7 

coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) and 8 

were also significant at the nominal significance level (0.05) in the validation dataset (n = 9 

5, 961). (C) and (D) display the spatial pattern of associations with amplitude measures of 10 

resting fMRI for fluid intelligence and time spent watching TV, respectively. Brain areas 11 

with the strongest associations were labeled. See Table S1 for information of these areas.   12 

 13 

Fig. 6 Integrative prediction model for fluid intelligence.  14 

(A) Prediction accuracy of neuroimaging traits for fluid intelligence. Volume, region brain 15 

volumes from brain structural MRI (sMRI); DTI parameters, diffusion tensor imaging 16 

parameters to measure brain white matter microstructures; All MRI traits, including brain 17 

volume, DTI parameters, resting fMRI, and task fMRI. (B) Prediction accuracy of non-18 

neuroimaging traits from different trait categories and their joint performance. PRS, 19 

polygenic risk scores of genetic variants. (C) Comparison of predictive power of non-20 

neuroimaging traits before (“marginal”) and after controlling for the neuroimaging traits 21 

(“conditional on brain imaging”).  22 
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