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ABSTRACT 

 

Background. Genome-wide association studies (GWAS) of mood disorders in large 

case-control cohorts have identified numerous risk loci, yet pathophysiological 

mechanisms remain elusive, primarily due to the very small effects of common variants. 

 

Methods. We sought to discover risk variants with larger effects by conducting a 

genome-wide association study of mood disorders in a founder population, the Old 

Order Amish (OOA, n=1,672). 

 

Results. Our analysis revealed four genome-wide significant risk loci, all of which were 

associated with >2-fold relative risk. Quantitative behavioral and neurocognitive 

assessments (n=314) revealed effects of risk variants on sub-clinical depressive 

symptoms and information processing speed. Network analysis suggested that OOA-

specific risk loci harbor novel risk-associated genes that interact with known 

neuropsychiatry-associated genes via gene interaction networks. Annotation of the 

variants at these risk loci revealed population-enriched, non-synonymous variants in two 

genes encoding neurodevelopmental transcription factors, CUX1 and CNOT1. 

 

Conclusions. Our findings provide insight into the genetic architecture of mood 

disorders and a substrate for mechanistic and clinical studies. 
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INTRODUCTION 

 

Mood disorders, including major depressive disorder (MDD) and bipolar disorder 

(BD), affect more than 300 million people worldwide (1). Identifying genetic risk factors 

is a promising path toward pathophysiological mechanisms and novel therapeutic 

targets, with genetic factors estimated to account for 60-80% (2,3) and 30-50% (4,5) of 

risk in BD and MDD, respectively. Genome-wide association studies (GWAS) in large 

case-control cohorts have revealed 64 genome-wide significant risk loci for BD and 178 

for MDD, and have documented strong genetic correlations between BD and MDD (6–

11).  However, the effect sizes of individual risk variants are extremely small, collectively 

explaining at most 10 to 20% of the observed heritability (6–13). The causal 

mechanisms at most of these loci remain speculative, and few have been functionally 

characterized. Thus, the genetic causes and biological mechanisms of mood disorders 

remain poorly understood.  

Population bottlenecks in founder populations lead to the enrichment of many 

functional alleles that are rare in the broader population (14–16). Some of these alleles 

may have larger effects on disease risk than common variants typically identified 

through GWAS in the broader population. The Lancaster Old Order Amish (OOA) are 

conservative Anabaptists who comprise a closed founder population of ~40,000 

individuals living primarily in Lancaster County, Pennsylvania (17–20). Genetic studies 

in this population have led to the discovery of risk variants and pathophysiological 

mechanisms for numerous complex and Mendelian traits (14,21–23). Genetic studies of 

mood disorders in the OOA were initiated in the 1970s, primarily within the Amish Study 
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of Major Affective Disorders (ASMAD). Initial studies in this cohort identified suggestive 

linkage peaks, while more recent genome sequencing studies suggested polygenic 

effects of single-nucleotide variants and copy number variants (21,22,24–27). However, 

previous studies were limited by their small sample sizes (n < 400).  

Here, in an expanded OOA cohort (n = 1,672), we describe the first genome-wide 

significant risk loci for mood disorders in this population. We provide evidence that 

these associations are driven by population-enriched founder alleles with large effects. 

We further assessed effects of these variants on quantitative behavioral and cognitive 

sub-phenotypes, identified convergent effects on neuropsychiatry-related gene 

networks, and discovered functional variants at the risk loci that are predicted to impact 

neurodevelopmental genes. 

 

METHODS AND MATERIALS 

 

Cohorts and genotyping. We performed whole-genome genotyping of two newly 

collected OOA cohorts comprised of multiply-affected pedigrees with mood disorders: 

the Amish Connectome Project (ACP) and the Amish Mennonite Bipolar Genetics Study 

(AMBiGen). We integrated these data with existing genotyping data from a third OOA 

mood disorders cohort, the Amish Study of Major Affective Disorders (ASMAD) (22,26) 

and with whole-genome sequencing (WGS) of population controls from the Amish 

Cohort of the Trans-Omics for Precision Medicine program (Amish TOPMed) (28,29). 

Table S1 provides details of the cohorts and genotyping. 
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Data processing. Uniform processing, quality control, and imputation of the ACP, 

AMBiGen, and ASMAD genotypes was performed as previously described for ASMAD 

(22,26). Briefly, quality control within each cohort prior to imputation included removing 

SNPs missing from more than 2% of individuals, as well as those with a minor allele 

frequency less than 0.2% and HWE p-value less than 1 x 10-6 using the –geno, --maf, 

and –HWE commands in PLINK v1.9(30,31). Individuals missing more than 5% of SNPs 

or with heterozygosity greater than 3 standard deviations from the mean were removed 

(--missing and –het commands, respectively). Allele frequencies were checked against 

the Haplotype Reference Consortium and 1000 Genomes using perl commands 

provided by the Wellcome Sanger Institute (32). Imputation was performed on the 

Michigan Imputation Server(33) using the TOPMed Freeze5 reference panel, which 

includes WGS from the Amish TOPMed cohort among ~65,000 genomes. We used the 

GRC38/hg38 build with a European population, no r-square filtering, and Eagle v2.4 

phasing, using the quality control and imputation mode. We removed all non-

polymorphic sites from both the imputed and directly sequenced genomes, then 

renamed all remaining sites by chromosome, position, reference allele, and alternate 

allele using bcftools annotate(34). Finally, polymorphic-subsetted datasets were merged 

(PLINK v1.9(30,31)--merge-list). We filtered out all imputed SNPs with an imputation r2 

< 0.6. 

 

Assessment of population structure. We calculated principal components for the 

genomes using the –pca command in PLINK v1.9 (30,31), after removing SNPs missing 

from more than 5% of the entire sample and with a minor allele frequency less than 1% 
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(--geno and –maf). This analysis was performed using the imputed genomes for the 

ACP, AMBiGen, and ASMAD cohorts and the WGS from the TOPMed cohort as there 

were only 598 polymorphic SNPs in common among the four genotyping panels. PC1 

separated the Lancaster OOA from various non-OOA populations collected in the ACP 

and AMBiGen studies. We removed all individuals that did not belong to the Lancaster 

OOA population, then re-calculated PCA. Lancaster OOA-specific PCs were used as 

covariates in the GWA analysis.  

 

Assessment of sample overlap. We calculated identical-by-descent (IBD) allele sharing 

statistics on Lancaster OOA samples with the PLINK v1.9 –genome command (30,31). 

We used the proportion of IBD values to identify individuals who were enrolled in more 

than one cohort. Samples with a proportion value > 0.8 were assumed to be from the 

same individuals, and duplicate samples were removed. For each individual, the most 

recent, most-deeply-phenotyped sample was retained (ACP > AMBiGen > ASMAD > 

TOPMed; Table S1). 

 

Assessment of genotyping and imputation accuracy. Accuracy of imputed genotypes 

was confirmed through comparison to WGS performed for a subset of the individuals in 

each cohort. These validation datasets included Illumina WGS (~30x average coverage) 

for 214 of the individuals in the ACP cohort obtained as part of the Whole-Genome 

Sequencing of Psychiatric Disorders consortium (David Glahn and John Blangero, PIs); 

Complete Genomics WGS for 80 participants in ASMAD (22,26); and Illumina WGS 

(~30x) for 93 individuals enrolled in both the Amish TOPMed cohort and one of the 
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mood disorders cohorts. Details of sequencing, genome alignment, and variant calling 

for the ASMAD and TOPMed WGS have been described (22,27–29). For the ACP 

WGS, whole-genome sequencing was performed on an Illumina HiSeq-X at the Broad 

Institute of MIT and Harvard. Reads were aligned to the hg38 reference genome, and 

variant calling was performed jointly across all samples from this cohort using freebayes 

(35) (v1.3.1) with the following parameters: use-best-n-alleles 3, min-alternate-count 5, -

-min-alternate-fraction 0.2, --min-coverage 10, and --limit-coverage 500. We note that 

while the sequencing and genotyping-based variant calls for ACP and ASMAD are fully 

independent, the TOPMed WGS are not fully independent due to the inclusion of these 

93 individuals in the imputation panel. Treating the ACP and TOPMed WGS as a gold 

standard, we calculated the precision and recall for non-reference genotype calls across 

all alleles. In addition, in all cohorts we specifically verified the genotypes for the four 

lead SNPs at genome-wide significant risk loci: rs192622352, rs569742752, 

rs117752843, and rs7185072. 

 

Affection status models. The primary phenotype was diagnosis with a bipolar spectrum 

disorder, including individuals with primary diagnoses of Bipolar Disorder Type I (n=86), 

Bipolar Disorder Type II (n=17), Bipolar Disorder Not Otherwise Specified (n=10), or 

Recurrent Major Depressive Disorder (n=73). We did not include Single Episode Major 

Depressive Disorder in this phenotype because the heritability of this disorder is much 

lower than the heritability of Recurrent Major Depressive Disorder (36). Individuals from 

the AMBiGen, ASMAD, and ACP cohorts (the cohorts ascertained on mood disorders) 

were coded as unaffected if they had no Axis I or Axis II diagnosis (n=449). All 
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individuals from the TOPMed general population cohort were coded as unaffected 

(n=938). In the primary analysis, individuals with other Axis I or Axis II diagnoses were 

coded as unknown, and we considered these diagnoses in alternative affection status 

models, as follows. The cohort included ten individuals with a primary diagnosis of 

schizophrenia, all of whom were first- or second-degree relatives of mood disorder 

cases. While SCZ is not classically identified as a mood disorder, there is substantial 

genetic, clinical, and brain pathophysiological overlaps between SCZ and mood 

disorders, especially bipolar disorders (37,38). Therefore, we studied an alternative 

affection status model in which individuals with SCZ were coded as affected. In addition, 

we tested models in which Single-Episode Major Depressive Disorder and Persistent 

Depressive Disorder were coded as affected. Individuals from these cohorts with a 

psychiatric diagnosis other than the diagnoses above or who did not undergo a 

psychiatric evaluation were always coded as unknown (n=62). We also considered a 

model in which only individuals with recurrent MDD were coded as affected, as well as a 

model in which only individuals with a BD diagnosis were coded as affected. 

 

Genome-wide association analysis. We tested associations of genotyped and imputed 

variants with mood disorders, as defined above, in our sample of 1,672 Lancaster OOA 

individuals using a mixed-effect linear regression model implemented with EMMAX 

(39,40). Covariates included an empirical kinship matrix and twenty principal 

components, which account for family structure and more distant relatedness, 

respectively. 
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LD clumping. We identified linkage disequilibrium (LD)-independent lead SNPs and sets 

of genetically correlated SNPs in the Old Order Amish using the –clump command in 

PLINK v1.9 (30,31), setting the significance threshold for lead SNPs to 1x10-5 and the 

secondary significance threshold for clumped SNPs to 0.05. We set the LD threshold to 

0.6 and the physical distance threshold to 1000 kb. We also allowed for non-index 

SNPs to appear in multiple loci. After we generated the list of loci, we identified SNPs 

and indels in LD with each of the lead SNPs. For this purpose, we utilized WGS from 

OOA participants in the ACP study, so as to include unimputed, population-specific 

variants. We used D’ as our primary measure of linkage disequilibrium, enabling us to 

identify linked variants that differ in allele frequency from the lead SNPs (e.g., variants 

on sub-haplotypes). This analysis was performed with a call to PLINK v1.9 with the 

following flags: --r2 dprime with-freqs --ld-snp chr7:103511937:C:T --ld-window 100000 

--ld-window-kb 20000 --ld-window-r2 0.05. We note that in all of these analyses of LD, 

the physical distance thresholds were set to larger values than is typical of GWAS in the 

broader population due to the longer haplotypes in this founder population.  

 

Pseudo-replication. We performed pseudo-replication analyses using a leave-one-out 

strategy to verify that the results are not dependent on samples from a single cohort. 

We removed one cohort at a time (ACP, AMBiGen, ASMAD, or TOPMed) from the 

sample and reran EMMAX(39). We recalculated PCA coordinates for each pseudo-

replication dataset and used the first 20 recalculated coordinates as covariates in the 

model. We also re-ran the analysis on the ACP and ASMAD cohorts independently, 

again using 20 recalculated PCs as covariates. 
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Annotation of loci and variants. We assessed overlap of risk loci identified in the OOA 

with loci from published large-scale neuropsychiatric GWAS. We used the BEDtools 

v2.27.1(41) intersect command to calculate the overlap between the risk-associated loci 

(defined as SNPs with r2 > 0.6 to one of the 4 lead SNPs) and risk-associated SNPs 

identified in previous GWAS of mood disorders and related neuropsychiatric traits: 

MDD(7), BD(8,9), SCZ(42), and educational attainment(43). We used the authors’ 

definitions of risk loci for MDD, BD, and SCZ. For the educational attainment dataset, 

bounds of risk loci were not described in the original publication, so we set bounds 250 

kb upstream and downstream of the lead SNPs. We also tested whether the lead SNPs 

identified in the Lancaster OOA sample were in LD with risk-associated SNPs identified 

in previous neuropsychiatric GWAS using the PLINK’s –ld command and recorded the 

r2 value. 

We further annotated proximal candidate genes at risk loci using gene sets 

related to autism spectrum disorders (ASD), BD, and SCZ. Within the bounds of each 

risk locus, we annotated differentially expressed genes in the prefrontal cortex of ASD, 

BD, and SCZ cases vs. controls from PsychENCODE(44). We also annotated genes 

from exome sequencing studies, including genes with a gene burden p-value < 2.5 x 10-

6 from SCHEMA(45) (SCZ-associated genes), and ASD-associated genes from 

Satterstrom et al.(46) and SFARI Gene(47). 

We annotated the variants at each locus using the Ensembl Variant Effects 

Predictor (VEP, release 105, accessed online, January 31, 2022) with the following 

parameters: assembly GRCh38.p13, Ensembl/GENCODE transcripts, 1000 Genomes 
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global and continental allele frequencies, gnomAD exomes allele frequencies, and 

including CADD scores. 

 

Polygenic risk score (PRS) analysis. We calculated polygenic risk scores for each OOA 

individual, using results from large-scale GWAS of BD(8,9), SCZ(42), and MDD(7) using 

PRSice-2(48). SNPs with a minor allele frequency less than 0.05, Hardy-Weinberg 

equilibrium p-value less than 1 x 10-6, or missing in more than 10% of individuals were 

removed from the dataset before analysis, as well as individuals missing more than 

10% of SNPs. Any SNPs removed due to these filters were removed from the entire 

analysis, so every individual had the same number of SNPs used to calculate their 

score. We calculated PRS using the full Lancaster OOA dataset, as well as for each 

mood disorder cohort (ACP, AMBiGen, and ASMAD) dataset separately and used the 

PRS calculated at the program-estimated best threshold (BD: 0.02825; SCZ: 0.0392; 

MDD: 0.00015). We constructed logistic regression models with the glm() function in the 

R stats package(49) to test for additive and non-additive effects of these PRS and of 

OOA-specific risk alleles on affection status, including 20 PCs as covariates. We 

compared models with and without a PRS x lead SNP interaction term to evaluate non-

additive effects. 

 

Effects of risk variants on quantitative behavioral and neurocognitive phenotypes. We 

tested for the associations of the lead SNPs at genome-wide significant risk loci 

identified by the GWA analysis with quantitative behavioral and cognitive traits in 314 

OOA participants in the ACP study, including 84 individuals affected with a mood 
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disorder. We studied self-reports of current depression symptoms from the Beck 

Depression Inventory (50), lifetime depression symptoms from the Maryland Trait and 

State Depression scale (51), and lifetime history of bipolarity from the Bipolar Spectrum 

Diagnostic Scale (52). We also used scores from several cognitive tasks, including digit 

sequencing (verbal working memory), digit symbol coding (processing speed, 

visuospatial memory), spatial span (visuospatial working memory), and the Wechsler 

Abbreviated Scale of Intelligence(53) (WASI) matrix reasoning and vocabulary subtests 

(IQ and cognitive ability). We assessed normality, as well as associations of each trait 

with age and sex. The scores from Beck Depression Inventory, Bipolar Spectrum 

Diagnostic Scale, and spatial span were transformed using a square root transformation 

to improve normality. The other five traits displayed non-linear associations with age. 

For those traits, we applied a loess regression model (using the loess function in R v. 

3.6.2(49), span = 0.5) and performed genetic association tests on residuals. Covariates 

in the EMMAX model for these three traits included sex, age, and an empirically 

constructed kinship matrix. The heritability of each trait was calculated using SOLAR-

Eclipse(54). We constructed mixed-effect linear regression models for each genotype-

phenotype pair using EMMAX (39,40). 

 

Gene set enrichment analysis. Gene-based p-values were computed from GWAS 

summary statistics using MAGMA (55). SNPs were annotated to ENSEMBL genes, 

including a 10 kb window up- and downstream of each gene’s genomic coordinates. 

Gene p-values were computed using the lowest SNP p-value as the test statistic (snp-

wise=top,1), and gene-gene correlations were computed using our imputed OOA 
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genotype matrix. MAGMA gene set enrichment analyses were performed with default 

parameters. We studied 21 gene sets with prior evidence for association with 

neuropsychiatry, as described previously (56,57). Briefly, these gene sets were derived 

from the following sources: genes identified through GWAS of MDD(7), BD(8), SCZ(58), 

and neuroticism(59); genes identified through genetic association studies of rare 

variants, including exome and genome sequencing studies of SCZ(45), autism 

spectrum disorders (ASD) (46), or other developmental disorders(60), as well as genes 

intolerant to loss-of-function mutations(61); genes that are differentially expressed in the 

prefrontal cortex of individuals with BD, SCZ, or ASD (44); genes that have been 

identified as targets of the RNA binding proteins FMRP, RBFOX2, RBFOX1/3, and 

CELF4, of the chromatin remodeling genes CHD8, and of the microRNA miR-137 

(57,62); genes localized to synapses from SynaptomeDB (63). 

 

Gene interaction networks. Human protein-protein interactions were downloaded from 

the STRING database (64) (https://stringdb-

static.org/download/protein.links.detailed.v11.5/9606.protein.links.detailed.v11.5.txt.gz). 

We defined OOA risk genes as those with a MAGMA gene p-value < 0.01. We used the 

same 21 neuropsychiatry-related gene sets as in MAGMA gene set enrichment 

analysis. To assess interactions between established gene sets and OOA risk genes, 

we counted the number of protein-protein interactions that directly link OOA risk genes 

to genes in each of the 21 established neuropsychiatry gene sets. We tested whether 

the number of interactions was greater than expected by chance by two approaches. 

First, we computed Fisher’s exact tests. Second, we repeatedly permuted the edges of 
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the network, holding each node’s degree constant, and compared the number of OOA-

known edges in observed vs. permuted data. Edge permutations were used to confirm 

results from Fisher’s exact test (n=100 permutations). Odds ratios and p-values from 

Fisher’s exact test are reported in the manuscript, as they provide a more precise 

measure of the likelihood. 

 To prioritize specific OOA risk genes, we ranked them by their centrality within a 

gene interaction network centered on known neuropsychiatry risk genes. We defined a 

set of 684 core neuropsychiatry genes with evidence from at least three independent 

approaches from our 21 gene sets, as follows: Genes implicated by studies of rare 

variants, defined as the union of genes associated with disease in exome sequencing 

studies of SCZ and ASD. Genes implicated by gene expression profiling were defined 

as the union of genes that were significantly down- or up-regulated in prefrontal cortex 

of BD, SCZ, or ASD cases using data from psychENCODE. Genes implicated by gene 

network analyses were defined as the union of genes that are targets of CELF4, FMRP, 

RBFOX1/3, RBFOX2, CHD8, and miR-137. Synaptic genes were defined from the 

SynaptomeDB database. We excluded genes derived from GWAS, as these genes are 

potentially non-independent from association signals in our OOA dataset. We extracted 

all protein-protein interactions from the STRING database for which at least one node 

was one of these 684 genes. In practice, the large number of interactions in the 

STRING database means that nearly all genes are represented in this network, but only 

the subset of their interactions that involve neuropsychiatry-related genes. We used the 

eigen_centrality() function from the igraph R package (65) to calculate the centrality of 

each node, including OOA risk genes that have not previously been implicated in 
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neuropsychiatric disorders. We computed ranks for the OOA risk genes, separately, 

based on eigen-centrality, as well as based on their MAGMA p-values. The final ranking 

is the median rank from these two metrics. We tested for functional enrichments within 

the top 250 genes from this analysis using DAVID (66).  

 

Expression of CUX1 and CNOT1 in the human brain. We evaluated the expression of 

CUX1 and CNOT1 using RNA-seq of developing and adult brain regions (67), 

downloaded from the BrainSpan website 

(https://www.brainspan.org/static/download.html). Analyses of CNOT1 expression 

utilized normalized counts summarized to Gencode v10 gene models. Analyses of 

CUX1 expression utilized normalized counts summarized ton exons. We studied the 

expression of the following CUX1 exons (hg19 coordinates). chr7:101921219-

101921336, exon 17 of ENST00000425244.6, which contains rs118010189 and is 

expressed only in splice forms that encode CASP, and chr7:101891691-101901513, 

which spans the final exon and 3’ untranslated region of CUX1 transcription factor-

encoding transcripts. 

 

Data availability. Genotypic and phenotypic data from the Amish TOPMed study and 

from AMBiGen are available through the National Institute of Health Database of 

Genotypes and Phenotypes (phs000956.v1.p1, phs000899.v1.p1). Genotypic and 

phenotypic data from ACP are available through the NIMH Data Archive (Study #2902). 

Genotypic and phenotypic data from ASMAD are available through the Coriell Institute 

for Medical Research. 
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RESULTS 

 

Genome-wide association study of mood disorders in the Old Order Amish founder 

population 

 

We generated whole-genome genotyping data from two newly collected 

Anabaptist cohorts with mood disorders -- the Amish Connectome Project (ACP) and 

the Amish and Mennonite Bipolar Genetics study (AMBiGen) – and we integrated these 

with existing data from two additional cohorts -- ASMAD and the Trans-Omics for 

Precision Medicine cohort (TOPMed). Following uniform quality control and imputation, 

we studied 6.6 million polymorphic single-nucleotide polymorphisms (SNPs) in 1,672 

OOA individuals from this combined cohort, of whom 196 were affected with a major 

mood disorder (BD, recurrent MDD, or schizoaffective disorder; Tables S1-S2). Power 

analyses(68) suggest that this cohort is well-powered to detect population-enriched risk 

alleles with moderate to large effects, equivalent to those discovered in the OOA for 

non-psychiatric traits(14,23,69). Principal component analysis (PCA) indicated that 

these OOA individuals form a discrete population compared to other Anabaptist groups 

in our sample (Fig. S1A), with minimal stratification by study or genotyping platform (Fig. 

S1B). Whole-genome sequencing (WGS; n=214 from ACP and n=87 from TOPMed) 

confirmed >99.9% precision for imputed non-reference genotype calls, with >99.8% 

recall (Table S3).  

We conducted a genome-wide association study (GWAS) of mood disorder 

affection status in this OOA cohort using a linear mixed model implemented with 

EMMAX (39). Twenty-five SNPs were associated with affection status at a conventional 
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genome-wide significance threshold, P < 5 x 10-8 (Fig. 1A). The quantile-quantile plot of 

observed vs. expected p-values revealed no genomic inflation, as well as an excess of 

p-values less than ~1e-4, consistent with polygenicity (λGC = 0.8; Fig. S2A). Linkage-

disequilibrium (LD)-based clumping supported four genome-wide significant risk loci at 

cytobands 3q28/29, 5q13, 7q22, and 16q21 (Fig. S2B-E; Table S4). Each of the four 

lead SNPs was associated with >2-fold relative risk. Consistent with founder effects, the 

lead SNPs or other SNPs in LD with them (D’ > 0.9) at all four loci were uncommon, 

OOA-enriched SNPs on extended haplotypes(15). Carriers from 3-10 families 

contributed to each allele’s association with mood disorders (Figs. 1B, S3A-B).  

Several analyses support the robustness and reproducibility of these 

associations. First, we confirmed 100% accuracy for reference and non-reference 

genotype calls for all four lead SNPs by comparing the imputed genome to WGS (n=214 

from ACP, n=80 from ASMAD (22,26,27), and n=87 from TOPMed). These results 

indicate that the associations are not an artifact of biases in genotyping or imputation. 

Second, we performed pseudo-replication analyses within subsets of our OOA 

sample using a leave-one-cohort-out approach, in which the GWAS was conducted 

using the integrated data from all but one cohort. All four lead SNPs remained nominally 

significant (P < 0.05; Table S5). The lead SNPs at 5q13, 7q22, and 16q21 were also 

nominally significant in GWAS of the ASMAD and ACP cohorts singly. Carriers of the 

3q28/29 lead SNP were identified primarily in ACP, with a single affected carrier in the 

ASMAD cohort. These results indicate that the associations are reproducible in multiple 

OOA cohorts. 
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Third, we performed secondary analyses using alternative affection status 

models (Table S6). All four lead SNPs remained either significant (P < 5 x 10-8) or 

suggestive (P < 5 x 10-6) when we broadened the affection status model to include 

Persistent Depressive Disorder and Single Episode MDD, rather than removing these 

individuals from the analysis. Similar results were obtained when we treated ten 

participants with SCZ as affected (rather than excluding them from the analysis). We 

also found suggestive associations for all four lead SNPs when we considered only 

recurrent MDD cases to be affected and when we considered only BD cases to be 

affected. These results suggest that the associations are robust to affection status 

model and that the loci influence risk for multiple mood disorders. 

Fourth, we performed analyses to test whether the risk loci identified in the OOA 

overlap known risk loci for mood disorders and related traits in the broader population 

(7)(8,9) (42) (43) (Table S7). The 5q13 risk locus overlaps previously reported risk loci 

for BD and educational attainment. The 16q21 risk locus overlaps a previously reported 

risk locus for educational attainment. The 7q22 risk locus overlaps previously reported 

risk loci for MDD, BD, SCZ, and educational attainment. Though the 3q28/29 risk locus 

has not previously been identified in large-scale GWAS of BD, MDD, SCZ, or 

educational attainment, 3q29 microdeletions are associated with increased risk for BD 

and SCZ (70,71). By contrast, none of the lead SNPs or genetically correlated SNPs 

identified in the OOA had significant p-values in previous GWAS of mood disorders. 

This Is expected, as causal alleles whose true effect sizes are large are expected to be 

selected against and rare in the broader population, and the lead SNPs at three of the 

four risk loci are uncommon even in the OOA. Taken together, these results suggest 
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that the loci we identified in the OOA correspond to novel risk haplotypes, potentially 

with large effects, at known risk loci for mood disorders and related traits. 

 

Evaluation of genotype-phenotype relationships with polygenic risk scores and deep 

phenotyping 

 

The discovery of risk alleles with substantial effects provides opportunities for 

deeper exploration of genotype-phenotype relationships. First, we evaluated the 

relationship between OOA-specific risk alleles and polygenic risk from common 

variants. Consistent with previous studies in the ASMAD cohort (22,26), a polygenic risk 

score (PRS) for BD, derived from GWAS in the broader population (8,9), explained a 

small but significant proportion of risk for mood disorders in our cohort (2.4% of risk, P = 

8.3x10-6; Fig. S4), corresponding to a 2.6-fold relative risk in the top vs. bottom quartile. 

Individuals with mood disorders had significantly higher PRS than their unaffected 

family members (P = 9.4 x 10-6). Similar results were obtained using PRS for SCZ and 

MDD (Fig. S4). We tested for additive and non-additive effects of bipolar disorder PRS 

and OOA-specific risk alleles using multivariate logistic regression models. We found 

significant main effects of PRS and of each OOA-specific risk allele (P < 0.05), but 

interactions between PRS and OOA-specific alleles were not significant. These results 

suggest that OOA-specific risk alleles and common risk alleles have additive, 

independent effects on risk for mood disorders in this cohort. 

Next, we tested whether OOA-specific risk alleles for mood disorders also have 

quantitative effects on the classic behavioral symptoms of mood disorders, which we 
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assessed via three rating scales (n up to 314 ACP participants): the Beck Depression 

Inventory (50) (BDI), which measures depression symptoms in the two weeks prior to 

testing; the Maryland Depression Trait Scale (51) (MDTS), which assesses lifetime 

depression symptoms; and the modified Bipolar Spectrum Diagnostic Scale (52) 

(BSDS), which measures the polarity of the depressive and manic symptoms. We found 

significant broad-sense heritability in this sample for all three scales (h2 = 0.25-0.41, P < 

0.003; Table S8) and confirmed that participants with mood disorder diagnoses had 

higher scores (Table S8). The lead SNPs at the 3q28/29, 7q22, and 16q21 risk loci 

were all associated with higher scores on the MDTS (Fig. 3, Table S9). Also, the 7q22 

lead SNP was associated with a higher BSDS score. However, none of the lead SNPs 

were significantly associated with BDI, suggesting these loci more strongly influence 

lifetime history than current symptoms. These results suggest that the OOA-specific risk 

alleles identified in our analysis impact the core behavioral symptoms of MDD and BD.  

Cognitive deficits are observed in a subset of individuals with BD and MDD (53). 

We assessed effects on cognition via five tasks that measure cognitive dimensions 

previously implicated in mood disorders: Digit Sequencing, which primarily measures 

verbal working memory; Spatial Span, which measures visuospatial working memory; 

Digit Symbol Coding, which primarily measures processing speed; Matrix Reasoning, 

which measures fluid intelligence, spatial ability, and perceptual organization; and 

Vocabulary, which measures semantic knowledge and verbal comprehension. We 

confirmed significant broad-sense heritability for all five tests (Table S8). Mood disorder 

diagnoses were associated with lower scores, especially for digit sequencing and digit 

symbol coding (Table S9). Despite low n, we detected an association of the lead SNP at 
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the 5q13.3 locus, rs569742752, with decreased performance on the digit symbol coding 

task (n=2 carriers and 299 non-carriers, β = -28.3, P = 0.006). The lead SNPs at the 

other loci were not significantly associated with cognitive performance. Therefore, 

cognitive deficits are present in a minority of carriers with these risk variants. 

 

Gene networks associated with mood disorders in the OOA 

 

We applied a network analysis approach to gain insight into the biological 

characteristics of the genes located at risk loci. As a starting point, we computed gene-

based p-values from our GWAS summary statistics with MAGMA (55). This analysis 

revealed three exome-wide significant genes: ATP13A5 at 3q29 (P = 1.6e-7), SV2C at 

5q13 (P = 2.8e-7), and MB21D2 at 3q28 (P = 6.5e-7), and 820 genes reaching a 

nominal level of significance, P < 0.01 (Table S10). ATP13A5 encodes ATPase 13A5, 

which is highly expressed in brain pericytes and is involved in the transport of diverse 

cargo across cellular membranes (72). SV2C encodes Synaptic Vesicle Glycoprotein 

2C, which is expressed specifically on the vesicles of dopaminergic neurons and 

contributes to dopamine release (73). MB21D2 encodes Mab-21 Domain Containing 2. 

 Next, we asked whether these OOA risk genes overlap genes and gene 

networks previously implicated in neuropsychiatric disorders, using 21 gene sets 

derived from psychiatric GWAS, exome sequencing, post-mortem prefrontal cortex 

gene expression, and analyses of disease-associated gene networks (56,57). We 

tested both for direct overlap of OOA risk genes with these gene sets, as well as 

network overlap, in which OOA risk genes interact with established neuropsychiatry 
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genes via protein-protein interactions (Methods). OOA risk loci contained numerous 

established neuropsychiatry genes. For instance, 44 genes within the bounds of the 

7q22 risk locus had a prior annotation to a psychiatric disorder, including the well-

established autism spectrum disorder risk genes RELN, KMT2E. and CUX1(74). 

However, gene-set enrichment analysis with MAGMA indicated that, overall, risk genes 

identified in our study were not over-represented for established neuropsychiatry gene 

sets (P > 0.05).  

In contrast, we found strong evidence that OOA risk genes interact with 

established neuropsychiatry genes via protein-protein interactions. Specifically, we 

examined protein-protein interactions in the STRING database that link OOA risk genes 

to genes from each of the established neuropsychiatry gene sets. 15 of the 21 

neuropsychiatry gene sets showed at least a nominally significant over-representation 

for network edges (hypergeometric test: P < 0.001; Fig. 4A; Table S11). The most 

strongly over-represented gene sets included target genes of the neuronal RNA-binding 

proteins CELF4 (174,778 interactions, odds ratio [OR] = 1.06, P = 1.0e-116) and 

RBFOX1 (235,084 interactions, OR = 1.05, P = 1.8e-87), genes down-regulated in 

prefrontal cortex from bipolar disorder cases (17,684 interactions, OR = 1.06, P = 1.8e-

13), and autism spectrum disorder risk genes from exome sequencing studies (11,242 

interactions, OR = 1.07, P = 7.8e-13). Permutations of network edges confirmed 

significant over-representation for each of these gene sets. 

We prioritized specific OOA risk genes based on the extent of their interaction 

with this shared neuropsychiatry gene network. The top 250 genes, selected from 

among the 820 OOA risk genes with GWAS p-values < 0.01 and ranked by 
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eigencentrality, are shown in Fig. 4B. These genes were enriched for 13 Gene Ontology 

functional categories (FDR < 0.01; Table S12), including genes localized to dendrites 

(18 genes, P = 5.5e-6) and genes involved in signal transduction (39 genes, P = 3.1e-6) 

and focal adhesion (18 genes, P = 2.5e-5). These results suggest that OOA risk loci 

harbor novel risk genes within a polygenic gene network that is shared with 

neuropsychiatry genes discovered by independent approaches. 

 

Associations of OOA-enriched protein-coding variants with mood disorders 

 

Association testing in founder populations has the potential to identify population-

enriched, functional alleles with substantial effects on disease risk. We therefore 

annotated the SNPs at each locus to identify protein-coding variants in strong LD with 

our lead SNPs (D’ > 0.9). For this purpose, we utilized our WGS from the ACP sample 

so as to include unimputed, population-specific variants. This analysis revealed 15 non-

synonymous variants (Table S4). Of these, three stood out based on their strength of 

linkage with lead SNPs, their enrichment in the OOA compared to the broader 

European population, and their predicted deleteriousness: chr7:102278021:A:C 

(rs118010189, CUX1 K500Q), chr16:58576526:C:T (rs201250006, CNOT1 M547I), and 

chr16:58551644:G:A (rs960417287, CNOT1 A1049V). The latter two variants are in 

perfect LD in our sample. 

  CUX1 encodes Cut Like Homeobox 1, and the rs118010189 variant is located in 

an alternatively spliced exon that is included only in the CUX1 Alternative Splicing 

Product (CASP) isoform. Previously, rare, protein-truncating and regulatory variants in 

CUX1 have been implicated in neurodevelopmental disorders and autism (75). The 
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protein product of the canonical CUX1 transcript is a homeodomain transcription factor 

with well-established roles in the development of cortical projection neurons and 

cerebellar granule neurons (75–78). The CASP isoform lacks a DNA-binding domain, 

interacts biochemically with other CUX1 isoforms (79), and has independent functions 

as a transmembrane protein involved in intra-Golgi retrograde transport (79–82). 

Notably, CUX1 is a hub gene of the OOA mood disorder risk gene network (Fig. 4B). 

We examined the expression of exons specific to the CUX1 and CASP isoforms in the 

developing and adult brain using RNA sequencing data from BrainSpan (67) (Fig. S5A). 

As expected, CUX1 exons were expressed most highly in the primary visual cortex and 

in the cerebellum. Intriguingly, CASP exons were highly expressed only in the 

cerebellum and did not have substantial expression in the cortex. These results suggest 

differential use of CUX1 and CASP isoforms, and that the rs118010189 variant may 

have its greatest impact in the cerebellum. 

 CNOT1 encodes CCR4-NOT Transcription Complex Subunit 1, a component of a 

transcription factor complex implicated in brain development (83). Pediatric carriers of 

loss-of-function variants in CNOT1 have been described to have developmental delay, 

as well as mental health conditions such as attention deficit and hyperactivity disorder 

and autism spectrum disorder. One of the few adult carriers in the published case series 

had bipolar disorder (83). Data from BrainSpan suggest that CNOT1 is broadly 

expressed in the brain, with the highest expression at prenatal timepoints (Fig. S5B). 

 

DISCUSSION 
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Our findings build on >40 years of research on mood disorders in the OOA 

population, which previously provided insight into the genetic architecture of mood 

disorders but were underpowered to detect specific risk loci (22,24–27). Here, in an 

expanded sample, we identified the first genome-wide significant risk loci for mood 

disorders in this population. These OOA-specific risk alleles have larger effects than 

common variants identified in the broader population, most likely explained by founder 

effects. They act additively with previously described common risk variants for mood 

disorders and influence sub-clinical behavioral and cognitive traits. Gene network 

analyses suggest that the loci harbor novel risk genes within gene networks that are 

shared with neuropsychiatry-related genes identified in the broader population. 

Annotation of the risk loci revealed missense variants impacting neurodevelopmental 

genes.  

The discovery of OOA-specific risk loci for mood disorders was facilitated by their 

large effect sizes. Indeed, the major rationale for studies in founder populations is to 

identify alleles with larger effects than those that can be discovered through GWAS in 

the broader population. We cannot rule out winner’s curse effects, which would predict 

that the true effect sizes are smaller than is observed in the current sample. And the 

lack of an independent cohort is an important limitation. However, large effects are 

plausible, especially since we find evidence for founder effects. Other factors that may 

contribute to large effect sizes in the OOA include the relative uniformity in education, 

lifestyle, and socioeconomic status, and the reduced influence of alcohol and illicit drugs 

– all of which may provide higher fidelity of neuropsychiatric phenotyping.  
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Risk for mood disorders in the OOA appears to be highly polygenic, despite the 

relatively large effects of certain risk loci. Modeling polygenic risk from common variants 

together with population-specific risk alleles suggested additive contributions. The 

extent of polygenicity may vary among OOA individuals. It is plausible that the rare 

3q28/29 and 5q13 risk alleles confer risk for mood disorders in a pseudo-Mendelian 

fashion. For carriers of the 7q22 and 16q21 risk alleles, polygenic background and non-

genetic factors likely play larger roles. Many OOA individuals with mood disorders are 

not carriers of any of these population-specific risk alleles. These observations extend 

previous work in the broader population showing additive effects of polygenic risk 

scores and copy number variants (84). 

Deep phenotyping provided insights into the effects of risk variants on sub-

clinical phenotypes. We found that the 3q28/29, 7q22, and 16q21 risk alleles were 

associated with elevated scores on the Maryland Depression Trait Scale, while the 5q13 

risk allele was associated with deficits in digit symbol coding. These associations 

buttress the primary association of these SNPs with mood disorders. We interpret the 

stronger effects of these SNPs on MDTS vs. the Beck Depression Inventory to indicate 

that they more strongly influence lifetime history than current symptoms. The digit 

symbol coding task primarily measures deficits in information processing speed. This 

task and other measures of processing speed are among the cognitive tasks most 

consistently found to be impaired in individuals with bipolar disorder and major 

depression (85–88). We note that these results are limited by the relatively small 

sample, which precluded analyses stratified by affection status (i.e., to test whether the 

SNPs influence these quantitative phenotypes in individuals whose symptoms do not 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.22.22271369doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.22.22271369
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

qualify for a major mood disorder). Nonetheless, these findings demonstrate promise for 

utilizing population isolates to gain insight into the genetic influences on 

endophenotypes and should be followed up with larger sample sizes and additional sub-

clinical assessments. 

Network analysis suggested that genes proximal to OOA-specific risk loci 

converge on a highly polygenic gene network shared with neuropsychiatry risk genes 

identified by independent approaches. This analysis provided the strongest evidence for 

interactions with genes that are targets of CELF4 and RBFOX1/2/3, which are neuron-

specific RNA binding proteins with roles in neurodevelopment. For instance, RBFOX1, 

encodes RNA Binding Fox-1 Homolog 1, a neuron-specific splicing factor. RBFOX1 

itself is located at a top GWAS risk locus for major depression (6) and is disrupted by 

copy number variants associated with risk for autism spectrum disorder(89), and its 

targets have previously been implicated in risk for major depression(6), bipolar disorder 

(90), schizophrenia (62), and autism (91) through GWAS and exome sequencing 

studies. These network enrichments support the biological relevance of OOA-specific 

risk loci -- including those at suggestive levels of significance in our GWAS -- and will 

aid in the prioritization of specific genes for follow-up studies. 

Variant annotation identified promising protein-coding variants at the 7q22 and 

16q21 risk loci, in the genes CUX1 and CNOT1. Both these genes are highly plausible 

candidates with established roles in brain development and previously implicated in risk 

for neurodevelopmental disorders. However, it is important to note that these variants, if 

causal, are unlikely to be the only causal variants at these loci. Both loci include 

hundreds of additional variants, some of which could have important gene regulatory 
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functions, which remain difficult to predict bioinformatically. It is also possible that the 

risk loci tag structural variants that were not considered in our analysis. The relatively 

modest enrichment of CUX1 K500Q in the OOA (it has a minor allele frequency of 0.019 

in the Amish and 0.007 in the broader European population) puts an upper bound on its 

true effect size. The CNOT1 variants are >170-fold enriched in the OOA, with minor 

allele frequencies less than 0.0001 in the broader population. However, the linkage 

structure at the 16q21 locus suggests that multiple haplotypes contribute to the signal in 

this region, with the CNOT1 variants being much less common than the lead SNP. 

Nonetheless, these variants represent some of the stronger leads to have emerged 

from studies of rare variants in mood disorders. 

The discovery of OOA-specific risk loci for mood disorders enables a variety of 

future studies. Additional deep phenotyping may include assessments of brain structure 

and function. Functional studies may be merited, particularly for CUX1 and CNOT1. 

Additional loci are likely to be discovered by continuing to expand our sample and 

through analyses of family-specific variants that could be identified through genome 

sequencing. These and other family-based studies will continue to provide insights into 

the etiology and pathophysiological mechanisms of psychiatric disorders, 

complementary with large-scale GWAS and sequencing studies in the broader 

population. Family studies are likely the most efficient strategy to characterize specific 

variants with moderate to large effects. 
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FIGURE AND TABLE LEGENDS 

 

Table 1. Summary of risk loci 

 

Figure 1. Genome-wide association study of mood disorders in the Old Order 

Amish founder population (n=1,672). A. Manhattan plot: -log10(p-values) for 

associations of 6.6 million single-nucleotide polymorphisms (SNPs) with mood 
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disorders. B. Empirical kinship among carriers of the lead SNP at the 7q22 risk locus. Y-

axis indicates the coefficient of relatedness, with the dotted line at 0.5 indicating first-

degree relatives. a=ACP, b=AMBiGen, c=ASMAD, d=TOPMed. 

 

Figure 2. Associations of OOA-specific risk alleles for mood disorders with 

depressive symptoms and cognitive performance. A. Direction and significance (z-

score) of each SNP’s associations with behavioral and cognitive traits. Blue dots 

indicate lead SNPs, and gray dots indicates other SNPs in LD with the lead SNP at 

each locus. BDI = Beck Depression Inventory; BSDS = bipolar spectrum diagnostic 

scale; depression trait = Maryland Depression Trait Scale. B-E. Plots of the most 

strongly associated trait for each lead SNP. 

 

Figure 3. Genes at OOA-specific risk loci for mood disorders interact with 

neuropsychiatry-related gene networks. A. Putative OOA risk genes (820 genes; MAGMA, P 

< 0.01) had an elevated rate of protein-protein interactions with gene sets derived from GWAS, 

rare variant studies, differential gene expression, and network analyses of psychiatric disorders. 

B. Protein-protein interactions among the top 250 genes at OOA risk loci prioritized by their 

centrality in a gene network centered on known neuropsychiatry-related genes and strength of 

their statistical association with mood disorders in the OOA. Node size and color correspond to 

MAGMA p-values. 
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Table 1 
 
Locus 
Cytoband 3q28/29 5q13 7q22 16q21 
Bounds 
(r2 > 0.6) 

chr3:190970484-
193299693 

chr5:74704443-
76506247 

chr7:99213680-
111440525 

chr16:62294564-
62303850 

Width 
(r2 > 0.6) 2.7 Mb 6.1 Mb 10.5 Mb 9.2 kb 
N SNPs  
(r2 > 0.6) 15 6 71 7 
Bounds 
(D’ > 0.9) 

chr3:187812688-
195437973 

chr5:71732447-
80465342 

chr7:100470502-
107647081 

chr16:58087965-
66459275 

Width  
(D’ > 0.9) 7.6 Mb 8.7 Mb 7.2 Mb 8.4 Mb 
N SNPs  
(D’ > 0.9) 207 538 1584 1405 
Lead SNP 
SNP chr3:191857829:C:A chr5:76339511:G:A chr7:103511937:C:T chr16:62294564:T:C 
rsID rs192622352 rs569742752 rs117752843 rs7185072 
Amish 
MAF 0.004 0.004 0.019 0.311 
BETA 0.66 0.74 0.28 0.08 
P 3.4e-8 5.4e-10 1.3e-8 2.7e-8 
Aff / Unaff 7 / 2 8 / 2 27 / 34 133 / 64 
Relative 
Risk 6.4 (4.4-9.4) 6.7 (4.8-9.3) 4.0 (2.9-5.4) 2.1 (1.6-2.8) 
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Figure 1 
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Figure 2 
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Figure 3 
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