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Abstract 

Background:  The clinical value of polygenic risk scores has been questioned. We sought 

to clarify performance in population screening, individual risk prediction and population risk 

stratification by analysing 926 polygenic risk scores for 310 diseases from the Polygenic 

Score (PGS) Catalog.  

Methods: Polygenic risk scores in the PGS Catalog are reported using hazard ratios or odds 

ratios per standard deviation, or the area under the receiver operating characteristic curve 

sometimes expressed as the 𝐶-index. We used this information to produce estimates of 

performance in: (a) population screening — by calculating the detection rate (𝐷𝑅5) for a 

5% false positive rate (𝐹𝑃𝑅) and the population odds of becoming affected given a positive 

result (𝑂𝐴𝑃𝑅); (b) individual risk prediction —  by calculating the individual odds of becoming 

affected for a person with a particular polygenic score; and (c) population risk stratification — 

by calculating the odds of becoming affected for groups of individuals in different portions of 

a polygenic risk score distribution.  We use coronary artery disease and breast cancer as 

illustrative examples.  

Findings: Population screening performance: The median 𝐷𝑅5 for all polygenic risk scores 

and all diseases studied was 11% [interquartile range 8 − 18%].  The median 𝐷𝑅5 was 12% 

[9 − 19] for polygenic risk scores for CAD and 10% [9 − 12] for breast cancer, with 

population 𝑂𝐴𝑃𝑅𝑠 of 1: 8 and 1: 21 respectively, with background 10-year odds of 1: 19 and 

1: 41 respectively, which are typical for these diseases at age 50.  Individual risk prediction: 

The corresponding 10-year odds of becoming affected for individuals aged 50 with a 

polygenic risk score at the 2.5𝑡ℎ, 25𝑡ℎ, 75𝑡ℎ and 97.5𝑡ℎ centile were 1: 54, 1: 29, 1: 15, and 

1: 8 for CAD and 1: 91, 1: 56, 1: 34, and 1: 21 for breast cancer. Population risk stratification: 

At age 50, stratifying into quintile groups of CAD risk yielded 10-year odds of 1: 41 and 1: 11 

for the lowest and highest quintile groups respectively. The 10-year odds was 1: 7 for the 

upper 2.5% of the polygenic risk score distribution for CAD, a group that contributed 7% of 

cases. The corresponding estimates for breast cancer were 1: 72 and 1: 26 for lowest and 

highest quintiles; and 1: 19 for the upper 2.5% of the distribution, which contributed 6% of 

cases.  

Interpretation: Polygenic risk scores perform poorly in population screening, individual risk 

prediction, and population risk stratification.  

Funding: British Heart Foundation; UK Research and Innovation; National Institute of Health 

and Care Research. 
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Introduction 

A polygenic risk score represents the weighted sum of independent DNA sequence variants 

that are present in an individual’s genome which increase the risk of a particular disease1. 

The weight assigned to each variant is based on the strength of its disease association 

estimated from a genome wide association study (GWAS).  The increasing range and scale 

of GWAS over the last decade, now spanning over 2500 diseases or traits2, has led to a 

proliferation in polygenic risk scores, igniting widespread interest in potential healthcare 

applications3, and capturing the attention of policy makers4.   

Claims have been made that polygenic risk scores generate ‘substantial’ improvements in 

risk prediction5, will ‘power a transformative change to healthcare’6, and are ready to 

implement in practice7. In a progression toward clinical implementation, position papers have 

appeared on reporting standards and responsible clinical use from the Clinical Genome 

Resource (ClinGen) Complex Disease Working Group8, and the Polygenic Risk Score Task 

Force of the International Common Disease Alliance9. Individual consumers and healthcare 

providers can already access commercial genetic testing and software services based on 

polygenic scores10–12. A ‘world-first pilot’ trial of predictive genetic testing for cardiovascular 

disease is also underway in participants attending Vascular Health Checks in the NHS13, and 

‘genetic risk scores’ for disease prediction are central to aims of the Our Future Health 

programme aiming to recruit 5 million UK adults14. 

These claims, however, are disputed. There is disagreement on the performance of 

polygenic risk scores in population screening, individual risk prediction and population risk 

stratification which makes their eventual role in medicine and public health uncertain15–18.  

Recently, Lambert and colleagues produced the PGS Catalog, a comprehensive, regularly 

updated, open-access directory of studies on polygenic scores for quantitative traits (e.g. 

blood pressure) and polygenic risk scores for diseases (e.g. breast cancer)19.  The catalogue 

lists the following ‘performance metrics’ for polygenic risk scores: the hazard (𝐻𝑅) or odds 

ratio (𝑂𝑅), both per 1-standard deviation (𝑆𝐷) increment in the score, or the area under the 

receiver operating characteristic curve (𝐴𝑈𝐶), sometimes expressed as the 𝐶-index. 

However, these metrics are not directly informative of performance in population screening, 

individual risk prediction, or population risk stratification. An appropriate metric is the odds of 

becoming affected, which is the positive predictive value expressed as an odds. For 

example, an odds of 1: 9 equates to a risk of 1 in 10 or 10%. The odds of becoming affected 

is obtained by multiplying the background odds of developing disease in a specified time 

frame by the likelihood ratio (𝐿𝑅) associated with a ‘positive test’ (in the case of population 

screening), with a particular polygenic score value (in the case of individual risk prediction), 
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or occupancy of a particular polygenic risk score quantile group (in the case of population 

risk stratification).  

We mathematically derive the odds of becoming affected in each of these scenarios using 

the metrics reported in the PGS Catalog.  We use breast cancer and coronary artery disease 

as illustrative examples and scrutinise two proposed early clinical uses of polygenic risk 

scores: to to improve on the performance of the established risk factor models in the 

prediction of CAD and stroke, and to prioritise mammographic screening at a younger age 

for the detection of breast cancer.  

 

Methods 

By April 2022, the PGS Catalog had curated 13 828 performance metric estimates for 2194 

polygenic scores (‘unique polygenic score codes’), involving 544 diseases or traits (‘unique 

experimental factor ontology identifiers’), reported in 303 unique publications.   We removed 

polygenic scores for continuous traits, and polygenic risk scores with implausible values (167 

instances where the 𝐻𝑅 or 𝑂𝑅 per-𝑆𝐷 was recorded as  < 1, two instances where the 𝐴𝑈𝐶 

was < 0.5, and one instance where the 𝐶-index was recorded as 632), leaving 3915 

performance metric estimates for 926 polygenic risk scores involving 310 unique binary 

outcomes (mainly diseases). The reported performance metrics were 𝑂𝑅 per-𝑆𝐷 in 1216 

instances, 𝐻𝑅 per-𝑆𝐷 in 378 instances, 𝐴𝑈𝐶 in 2077 and 𝐶-index in 244 instances 

(Supplementary Tables).   

Polygenic risk scores display a Gaussian distribution, so it is possible to use the originally 

reported metrics in the PGS Catalog to calculate the difference in mean values between 

individuals who are later affected or remain unaffected by disease (Supplementary 

Tables).20,21  We used the difference in mean values to estimate the overlap in Gaussian 

distributions and calculate the 𝐷𝑅 and 𝐹𝑃𝑅 which are the percentage of people with a 

polygenic score above a particular cut-off (‘a positive test’) among those who are later 

affected or remain unaffected by disease, respectively.  For simplicity and consistency, we 

set polygenic score cut-offs that define a 5% 𝐹𝑃𝑅 and calculate the corresponding detection 

rate (𝐷𝑅5) 20,22. However, we also provide estimates for 𝐷𝑅10 and 𝐷𝑅1, the detection rates 

at 10% and 1% false positive rates (Supplementary Tables). Detection rates at any other 

false positive rate can be derived by adapting the equations in the Extended Methods. We 

defined the 𝐿𝑅 in screening as the ratio 𝐷𝑅/𝐹𝑃𝑅. In individual risk prediction, we defined 𝐿𝑅 

as the ratio of the heights of the Gaussian distribution curves for affected and unaffected 

individuals at a particular polygenic risk score centile; and in risk stratification as the ratio of 
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areas under the relative frequency distributions for affected and unaffected individuals in 

each polygenic score quantile (e.g., each fifth, or the upper 2.5% of the polygenic score 

distribution, see Extended Methods). In each case, multiplying the 𝐿𝑅 by the background 

odds of disease for the whole population gives the corresponding odds of becoming affected 

for the individual or group of interest. Where we refer to a polygenic score centile or quantile, 

this is in reference to the distribution in the unaffected group. When referring to a particular 

polygenic risk score, we used the PGS Catalog identifier number.  

We re-analysed data from two original sources5,23 to quantify the extent to which the addition 

of polygenic risk score information to conventional risk factors improves the prediction of 

CAD and stroke. To do this, we calculated the 𝐷𝑅 and 𝐹𝑃𝑅 with and without polygenic risk 

score information, using 10-year risk cut-offs recommended in guidelines for the initiation of 

statin treatment. We then calculated the number of individuals who need to be genotyped 

(and a polygenic score calculated) to detect or prevent one additional CAD event or stroke. 

We refer to this value as the ‘number-needed-to-genotype’. We modelled the use of a breast 

cancer polygenic risk score to prioritise mammographic screening at age 40 rather than from 

the currently recommended 50 years of age.  

 

Role of the funding source 

None of the study sponsors played a role in study design; in the collection, analysis, or 

interpretation of data; in the writing of the report; or in the decision to submit the paper for 

publication 

 

Results  

Performance of polygenic risk scores in screening 

For all diseases studied, the median 𝐷𝑅5 based on all polygenic risk scores was 

11%, interquartile range [8 − 18%], i.e., 89% [82 − 92] of cases missed. The median 𝐷𝑅5 

values for polygenic risk scores whose performance was reported using 𝑂𝑅 or 𝐻𝑅 per-𝑆𝐷 

were 9% [6 − 12]  and  8% [7 − 10] respectively. For polygenic risk score performance 

reported using 𝐴𝑈𝐶 or 𝐶-index, the median 𝐷𝑅5 
values were 14% [10 − 22] and 19% [13 −

25] respectively. The median 𝐷𝑅5 values for polygenic risk scores for 28 common diseases, 

including CAD and breast cancer are shown in Figure 1.  
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Coronary artery disease: The median 𝐷𝑅5 from performance metrics for 27 polygenic risk 

scores for CAD was 12% [9 − 20] (88% of cases missed, Figure 2), which corresponds to an 

𝐿𝑅 of 2.4.  Applied at age 50, with a background 10-year CAD risk of 5% (odds 1: 19), the 

𝑂𝐴𝑃𝑅 = (2.4 ∶ 19) ≈ 1: 8, i.e., false positives outnumber true positives by around eight to 

one.  Reducing the cut-off to reduce the 𝐹𝑃𝑅 to 1% reduces the 𝐷𝑅 to 3%, with 97% of 

cases missed.   Retaining a 5% 𝐹𝑃𝑅 but applying the test in a population with 2% CAD 

incidence over the same period (background odds 1: 55), e.g., at around 40 years of age, 

yields an 𝑂𝐴𝑃𝑅 of 1: 23, with false positives outnumbering true positives by just over twenty 

to one. 

Breast cancer: The median 𝐷𝑅5 from performance metrics reported for 108 polygenic risk 

scores for breast cancer was 10% [9 − 12]  (90% of cases missed Figure 2). This 

corresponds to an 𝐿𝑅 of 2.  Applied at age 50, with a background 10-year breast cancer risk 

of about 2.5% (odds 1: 41), the 𝑂𝐴𝑃𝑅 = 1: 21.  Applying the polygenic risk score as a test at 

age 40, when the background 10-year odds is 1: 64 yields an 𝑂𝐴𝑃𝑅 of 1: 32,  false positives 

outnumbering true positives by just over thirty to one. 

Performance of polygenic risk scores in individual risk prediction 

The overlap in polygenic score distributions derived from the metrics in the PGS Catalog 

enables calculation of the 𝐿𝑅 for an individual which, together with the background odds of 

the disorder for the population, can be used to calculate the odds of becoming affected for 

that individual (see Extended Methods)22.  

Coronary artery disease: The odds of developing CAD in the next 10-years were 1: 54, 1: 29, 

1: 15, and 1: 8  with a polygenic risk score at the 2.5𝑡ℎ, 25𝑡ℎ, 75𝑡ℎ and 97.5𝑡ℎ centile 

respectively at age 50 (when the background odds is 1: 19) (Figure 3); and 1: 157, 1: 85, 

1: 45, and 1: 24  respectively at age 40 (when the background odds is 1: 55).  

Breast cancer: The average 10-year odds of breast cancer is 1: 41 for a woman aged 50, 

and 1: 64 for a woman aged 40. The corresponding odds of being affected were 1: 91, 1: 56, 

1: 34, and 1: 21 respectively at age 50 (Figure 3), and 1: 142, 1: 88, 1: 53, and 1: 33 at age 

40, for a woman with a polygenic risk score at the 2.5𝑡ℎ, 25𝑡ℎ, 75𝑡ℎ and 97.5𝑡ℎ centile 

respectively. 

Performance of polygenic risk scores in risk stratification 

Coronary artery disease: The left panel in Figure 4 shows the overlapping distributions for 

affected and unaffected individuals applied to a hypothetical cohort of 100,000 50-year-old 

men with stratification into polygenic risk score quintile groups. The 10-year odds of CAD are 
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reduced from the average of 1: 19 for all men to 1: 41 for those in the lowest quintile group 

and increased to 1: 11 in the highest quintile group. In Figure 5, focusing on those at the 

highest risk, the 10-year odds was 1: 7 for the upper 2.5% of the polygenic risk score 

distribution for CAD, but this group contributed only 7% of cases (Figure 5).   

Breast cancer: In the right-hand panel of Figure 4, we applied the same approach to a 

hypothetical cohort of 50-year-old women with a background 10-year odds of breast cancer 

of 1: 41.  Odds reduce by about half to 1: 72 for those in the lowest quintile and almost 

double to about 1: 26 for those in the highest quintile of the polygenic risk score distribution.  

For the highest 2.5% of the polygenic risk score distribution in the right-hand panel of Figure 

5, odds are increased to 1: 19, but the latter group only accounts for 6% of breast cancer 

cases.  

Screening using polygenic risk scores together with conventional risk factors or tests 

i) CAD  

It has been proposed that adding polygenic risk scores to conventional risk factors (e.g., 

blood pressure and LDL-cholesterol), would usefully improve CAD and stroke screening to 

indicate who should be offered a statin prescription for primary prevention. The Table shows 

the results from Sun et al.23, applied in a hypothetical cohort of 100,000 40-year old 

individuals with a risk factor profile representative of the English population and a 

background 10-year CAD and stroke risk of 8%. A conventional, multi-risk factor model 

incorporating age and using a 10% 10-year risk cut off, detected 60% of those later affected 

by CAD or stroke at a 24% 𝐹𝑃𝑅 (𝐷𝑅24 = 60%). The addition of polygenic risk scores for 

CAD and stroke to the model (PGS Catalog identifiers PGS000018 and PGS000039 

respectively) led to the detection of 61% of those affected for a 23% 𝐹𝑃𝑅 (𝐷𝑅23 = 61%).  

Assuming a 10-year risk cut-off of 10% for prescribing statins24, 100% adherence, and 

adopting the assumption of Sun et al. that statins reduce the risk of CAD and stroke by 

20%23 , 974 events would be prevented using a model based on conventional risk factors 

and polygenic risk scores instead of 957 using a conventional risk factor model with no 

genetic information, a gain of 17 cases. This gives a number needed-to-genotype to prevent 

one additional event of 5882 (Table). Sun et al. also estimated that 1029 CAD and stroke 

events would be prevented using a hybrid model, where conventional risk factor assessment 

is followed by polygenic risk scores only for those at intermediate (5 − 10%) 10-year risk.   

However, replacing this more complicated model with one where the whole cohort receives 

statins would prevent 1600 cardiovascular events using the same assumptions 

(Supplementary Tables). Since age is the major determinant of CAD and stroke risk, age 

alone performs about as well as muti factor risk models that include age25.  Given the rarity 
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of CAD and stroke events below 50, using an age cut-off of 50 instead of 40 would prevent 

almost as many events but with many fewer false positives26.  

Similar results were obtained using data reported by Riveros-McKay et al.5. These authors 

also investigated the extent to which the addition of a polygenic risk score to conventional 

risk factors improves the identification of UK Biobank participants eligible to receive statins 

because their 10-year risk of CAD and stroke exceeds the cut-offs used in UK or US primary 

prevention guidelines. Deriving the appropriate metrics from their data (Table and 

Supplementary Tables) clarifies the effect of adding information from a polygenic risk score 

for CAD. Using a 10-year risk cut-off of 10% for initiating statins, the QRISK3 model based 

on conventional risk factors including age detected 81% of cases at a 42% 𝐹𝑃𝑅 (𝐷𝑅42 =

81%). The addition of a polygenic risk score to the model detected 84% of cases for a 41% 

𝐹𝑃𝑅 (𝐷𝑅41 = 84%). Using the authors’ assumption that statins reduce CAD and stroke 

events by 20%, the number needed-to-genotype to prevent one additional event based on 

this study is 8879 (Table). 

ii) Breast cancer 

It has also been proposed that polygenic risk scores are used to prioritise the use of 

established screening tests for cancer3. One suggestion is that younger women should 

undergo mammographic screening if their breast cancer risk determined using a polygenic 

risk score exceeds that of an average 50-year-old, the age beyond which mammography is 

offered to all women. Figure 5 shows that  40-year-old women at or above the unaffected 

97.5𝑡ℎ centile of a breast cancer polygenic risk score distribution have an odds of breast 

cancer of 1: 19, higher than the average 10-year odds at age 50 of 1: 41 27.  Figure 6 shows 

that using the breast cancer polygenic risk score (PGS Catalog identifier PGS000004) as a 

stage 1 screen in 100,000 40-year-old women, applying the unaffected 97.5𝑡ℎ centile as a 

cut-off, would result in 2570 women with a ‘high-risk’ polygenic score being offered 

mammography of whom 108 would be affected and 2462 unaffected (𝑂𝐴𝑃𝑅 1: 23). Assuming 

100% uptake and a 𝐷𝑅8 of 75%28, mammography would then correctly identify 81 of the 108 

affected individuals but miss 27 breast cancer cases.  However, 1430 breast cancer cases 

(over ten times as many) are estimated to occur among the 97 430 40-year-old women with 

a polygenic risk score below the unaffected 97.5𝑡ℎ centile who would not be offered 

mammography.  
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Discussion 

Our results show the poor performance of polygenic risk scores in population screening, 

individual disease prediction, and population risk stratification. This is not obvious from the 

metrics reported in the PGS Catalog but is clear using the appropriate metrics employed in 

this study. Our conclusion is consistent with that of other authors,17,18,29 but is insufficiently 

recognised. The findings are relevant to consumers, patients, doctors, those involved in 

preventative medicine and public health, as well as funders and policy makers.   

Polygenic risk score distributions overlap substantially for all conditions studied and this 

extensive overlap constrains their performance in each of their intended applications, 

whether used alone or in conjunction with conventional risk factors or screening tests. For 

instance, achieving a clinically useful performance in population screening, such as an 80% 

detection rate for a 5% false positive rate (𝐷𝑅5 = 80%), requires an 𝑂𝑅 per-𝑆𝐷 of 12 or 

higher (compared to the median observed value of 1.31) or an 𝐴𝑈𝐶 of 0.96 (compared to the 

median observed value of 0.65).  Only 11.4% of 𝐴𝑈𝐶 values in the PGS Catalog exceeded 

0.8 which equates to a 𝐷𝑅5 of 32%, with most of these resulting from large effect variants at 

the HLA locus in a few autoimmune diseases (Figure 1 and Supplementary Tables). 

Where a risk factor displays a monotonic relationship with disease risk30, more cases arise 

among the majority with near average risk factor values than among the few with more 

extreme values – the ‘prevention paradox’ 31 32.  In this respect, polygenic risk scores are 

similar to certain non-genetic risk factors such as blood pressure and LDL-cholesterol which, 

though causal, are poor predictors of CAD17,33. That the performance of polygenic risk 

scores in the prediction of CAD is sometimes compared favourably to that of blood pressure 

and cholesterol23 is simply to benchmark one poor predictor against another.  

Where there are safe and inexpensive preventative interventions (e.g., statins and blood 

pressure lowering drugs for prevention of CAD and stroke) there is greater public health 

benefit in broadening rather than limiting eligibility for such interventions34.  In the prevention 

of CAD and stroke, this has been achieved de facto by the progressive lowering of the 10-

year risk cut-off for statin prescription in primary prevention.  The cut-off was reduced from a 

30% 10-year risk of CAD in the UK in 199735, down to 10% 10-year risk of CAD or stroke in 

the UK from 201624 and 7.5% in the US from 201936. The reduction in the risk cut-off was 

enabled by falling drug acquisition cost through patent expiry, and by accumulating evidence 

on long-term safety.  Eligibility could be extended yet further and also simplified by using age 

alone to guide statin prescription for primary prevention with the prevention of many more 

CAD and stroke cases25. By contrast, retaining the same 10-year risk cut-off and adding 

polygenic risk score information to conventional risk factor models has a much weaker 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.02.18.22271049doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.18.22271049
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

impact. Using recently reported data5,23, we show several thousand individuals need to be 

genotyped and a polygenic risk score calculated to prevent one additional vascular event. 

Identifying a minority of individuals at very high risk (using genetics or other means) may be 

justified if a preventative intervention is costly, resource limited, or has significant harms37. 

However, as we demonstrated using breast cancer as an example, identifying those at high 

risk requires testing in all and, aside from missing the many more cases among those at 

average risk, generates many false positives. This could have substantial downstream 

resource implications for healthcare systems if, for example, genetic risk stratification were 

to be followed by a confirmatory screening test, such as mammography for breast cancer. In 

this case, it would be more sensible to simply reduce the age cut-off for mammography for 

all women without determining their polygenic risk score.  

The enthusiasm surrounding polygenic risk scores may have been encouraged by pressure 

on academia to demonstrate a tangible health impact after decades of research investment 

in human genomics and by commercial opportunity. Unrealistic expectations have probably 

been raised by use of the wrong metrics.  Publications on polygenic risk scores often 

illustrate comparisons between mutually exclusive groups, e.g., those in opposite tails of a 

polygenic score distribution38.  This is relevant in aetiological studies but is not relevant in 

screening. As shown in Figure 1, seemingly impressive odds ratios of 13, 7, 5, 4 or 3, for 

comparisons of the top vs. the bottom 1%, 5%, 10%, 20% and 25% of the polygenic risk 

score distribution respectively, all equate to a 𝐷𝑅5 of only 12%.  What is relevant in 

screening is the risk of an event in a group compared to that of the whole population, which 

is what calculation of the 𝐷𝑅 for a specified 𝐹𝑃𝑅 achieves. 

Our findings are relevant both to commercial providers of genetic tests and to researchers 

working on polygenic risk scores.  Commercial providers could communicate individual test 

results to customers with greater clarity and relevance to performance in disease prediction, 

e.g., by presenting the overlapping distributions of polygenic risk scores among those later 

affected and unaffected and by presenting an absolute measure of risk for an individual or 

group, which requires additional information on population average risk at a particular age 

over a specified time. In tandem, as already suggested39, policy makers may wish to 

consider tighter regulation of commercial genetic tests based on polygenic risk scores, with a 

focus on clinical not just assay performance, to protect the public from unrealistic 

expectations and already stretched public health systems from becoming overburdened by 

the management of false positive results. Researchers reporting studies on polygenic risk 

scores should present as a minimum: 1) the mean and 𝑆𝐷 of polygenic risk score values 

among later affected and unaffected individuals; 2) the overlap in their distributions; 3) the 
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relevant performance metrics such as the 𝐷𝑅 for a specified 𝐹𝑃𝑅, such as the 𝐷𝑅5, avoiding 

the need to calculate this indirectly20; and 4) the performance of polygenic risk scores with 

and without the inclusion of other variables so that users can judge the incremental benefit 

provided by the polygenic risk score itself.  

Although the current analysis shows the poor performance of polygenic risk scores in 

screening, prediction, and risk stratification, they may find use in other situations. For 

example, polygenic scores may explain the variable penetrance of rare mutations in 

monogenic diseases, e.g., hypertrophic cardiomyopathy or familial hypercholesterolaemia, 

and be employed to aid case detection. There are also other predictive applications of 

genotyping, e.g., in pharmacogenetic testing, to optimise efficacy and safety of medicines. 

Genotyping may also be of value in blood and tissue matching. Because genetic variation is 

transmitted from parents to offspring through a randomised process (like treatment allocation 

in a clinical trial), and is unaltered by disease, an important translational application arising 

from genomic discoveries is likely to be in providing evidence on disease causation and 

targets for pharmaceutical intervention40.   

In conclusion, use of the appropriate metrics has demonstrated the poor performance of 

polygenic risk scores in population screening, individual risk prediction, and population risk 

stratification.  By virtue of its wide scope, the current study may help to resolve the debate 

on the value of polygenic risk scores and avoid unjustified expectations about their role in 

preventing disease. 
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Original 
study 

Risk tool Screened Genotyped Risk  
cut-off 

Detection 
rate 

False 
positive 
rate 

Number 
below 
cut-off 

Events  
Below 
cut-off 

Number  
above  
cut-off 

Events  
above 
cut-off 

Additional  
events 
detected 

Events  
prevented  

Additional  
events  
prevented  

Number 
needed 
to genotype  
(detection) 

Number  
needed to 
genotype  
(prevention) 

Sun et al. CRF 100000 0 ≥10% 60% 24% 73277 3214 26722 4783 - 957 - - - 

 CRF + PGS 100000 100000 ≥10% 61% 23% 73554 3127 26445 4870 87 974 17 1149 5882 

Riveros-
Mckay et 
al 

PCE 186451 0 >7.5% 74% 36% 118082 1112 68369 3135 - 627 -  - 

 PCE+PGS 186451 186451 >7.5% 80% 36% 117516 855 68935 3392 257 678 51 725 3656 

 QRISK3 186451 0 >10% 81% 42% 106697 797 79754 3450 - 690 - - - 

 QRISK3+PGS 186451 186451 >10% 84% 41% 108359 690 78092 3557 107 711 21 1743 8879 

 

Table. Effect of adding a polygenic risk score to non-genetic risk factors in prediction of coronary artery disease (CAD) and stroke. The values are 

based on data reported by Sun et al. (Ref 23) and Riveros-Mckay et al. (Ref 5). Both studies utilised data from UK Biobank. Sun et al. developed a 

conventional risk factor model (CRF) and examined the effect of adding polygenic risk scores for CAD (PGS000018) and stroke (PGS000039) on the 

prediction of subsequent CAD and stroke events. They used a 10-year risk cut-off of 10% for offering statin treatment. Riveros-McKay et al. modelled 

screening performance in 186,451 participants based on either the Pooled Cohort Equation (PCE) using a 7.5% 10-year risk cut-off, or QRISK3 using a 10% 

risk cut-off for statin prescription.  The data on events reported by Riveros-Mackay et al. were for CAD alone rather than CAD and stroke. Calculations 

assume that all those exceeding the specified risk cut-off receive a statin, 100% adherence and that statin treatment produces a 20% relative risk reduction. 

Number needed to genotype refers to the number of individuals that need to be genotyped (and have a polygenic risk score calculated) to detect or prevent 

one additional cardiovascular event.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.02.18.22271049doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.18.22271049
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

Figure legends 

 

Figure 1. Performance in screening estimated for polygenic risk scores included in the PGS 

Catalog as of April 2022.  The limits of each box represent the interquartile range and the 

horizontal line within each box is the estimated 𝐷𝑅5 value based on performance metrics 

reported for the corresponding polygenic risk scores. The selected diseases are colour 

coded into the following categories: cancers, cardiometabolic conditions, ocular diseases, 

allergic or autoimmune diseases, bone disease and neuropsychiatric diseases. The 

horizontal grey line is the estimated median 𝐷𝑅5 value based on performance metrics for all 

926 polygenic risk scores and all diseases studied in the PGS Catalog. Abbreviations: PRS 

– polygenic risk score; CVD – cardiovascular disease; VTE – venous thromboembolic 

disease; AMD – age-related macular degeneration; POAG – primary open angle glaucoma; 

SLE  – systemic lupus erythematosus. 

 

Figure 2. Relative polygenic risk score distributions among those later affected or not by 

CAD (left panel) and breast cancer (right panel).  The mean value of the polygenic risk score 

distribution those later affected is shifted 0.48 standard deviation units to the right of the 

mean of the distribution for those who remain unaffected in the case of CAD and 0.37 

standard deviation units to the right in the case of breast cancer. The corresponding 𝐷𝑅5 

values and odds ratios for comparisons of the top and bottom 1%. 5%, 10%, 20% and 25% 

of the unaffected polygenic risk score distribution are shown below each plot.  

 

Figure 3. Likelihood ratios and 10-year odds of CAD (top panel) and breast cancer (bottom 

panel) for 50-year olds with a polygenic risk score result corresponding to the 2.5𝑡ℎ, 25𝑡ℎ, 

75𝑡ℎ and 97.5𝑡ℎ centiles of the corresponding distribution.  

 

Figure 4. Likelihood ratios, odds and the number of affected and unaffected individuals for 

each quintile group in a hypothetical population of 100,000 individuals with a background 10-

year odds of CAD of 1:19 (left panel) and women with a 10-year odds of breast cancer of 

1: 41 (right panel). 

 

Figure 5. As figure 4 but comparing highest and lowest 2.5% of the unaffeted polygenic risk 

score distributions for CAD (left panel) and breast cancer (right panel).  

 

Figure 6. The estimated number of breast cancer cases detected and missed, the number of 

false positives, and the number of additional mammograms for a two-stage screening test 
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using a polygenic risk score PGS000004 with a cut-off at the unaffected 97.5th centile.  

Estimates are based on on a hypothetical cohort of 100,000 40-year old women with a 

background 10-year odds of breast cancer of 1: 41. Performance of mammography in the 

detection of breast cancer uses estimates from JAMA. 2005; 293:1245 
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