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Abstract:  32 

INTRODUCTION: Early detection of patients with cognitive impairment may facilitate care for 33 

individuals in this population. Natural language processing (NLP) is a potential approach to 34 

identifying patients with cognitive impairment from electronic health records (EHR). 35 

METHODS: We used three machine learning algorithms (logistic regression, multilayer 36 

perceptron, and random forest) using clinical terms extracted by NLP to predict cognitive 37 

impairment in a cohort of 199 patients. Cognitive impairment was defined as a mini-mental 38 

status exams (MMSE) score <24.  39 

RESULTS: NLP identified 69 (35%) patients with cognitive impairment and ICD codes identified 40 

44 (22%). Using MMSE as a reference standard, NLP sensitivity was 35%, specificity 66%, 41 

precision 41%, and NPV 61%. The random forest method had the best test parameters; 42 

sensitivity 95%, specificity 100%, precision 100%, and NPV 97% 43 

DISCUSSION: NLP can identify adults with cognitive impairment with moderate test 44 

performance that is enhanced with machine learning. 45 

KEYWORDS: Dementia, Cognition, Early Detection, Machine learning, Cognitive Impairment 46 
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Introduction 48 

Cognitive impairment is common among Americans over the age of 65, with an 49 

estimated prevalence as high as 9% for dementia and 28% for mild cognitive impairment in 50 

some populations.1, 2 Further, the absolute number of individuals with cognitive difficulties will 51 

continue to rise as the U.S. population ages.3 Early detection of patients with cognitive 52 

impairment may enable primary care providers to facilitate care and care management and 53 

improve outcomes for individuals in this population.4 Yet systematically identifying patients with 54 

cognitive impairment in clinical settings has proven to be logistically difficult.5  For example, 55 

validated tools for cognitive impairment screening, like the mini Mental State Exam (MMSE) and 56 

the Montreal Cognitive Assessment (MoCA), are infrequently used in clinical care, possibly 57 

owing to the competing demands of management of multimorbidity in the primary care of older 58 

adults.6-11   Therefore, a method to efficiently and accurately identify mild cognitive impairment 59 

that minimizes primary care provider involvement is necessary.  60 

The rise of healthcare information technology and big data analytics present potential 61 

new opportunities to circumvent the existing challenges of identifying patients with cognitive 62 

impairment. Electronic health records (EHR) hold an enormous quantum of data beyond 63 

traditionally used discrete data elements, like International Classification of Diseases (ICD) 64 

diagnosis codes. Free text documentation by clinicians and other members of the health system 65 

may hold information about cognitive abilities for the individual, ranging from the nuanced (e.g., 66 

“the patient forgets”) to the overt (e.g., “family is concerned about dementia”). Such data can be 67 

leveraged using advanced informatics approaches for cognitive impairment research.12 Natural 68 

language processing (NLP) is such an approach. NLP can be used to process large volumes of 69 

free text in clinical documentation and convert it into discrete data elements suitable for 70 

quantitative analysis.13 Machine learning can then be applied to the data elements extracted 71 

through NLP to create precise prediction models when a standard measure of cognition is 72 

available. In this study, we used NLP and machine learning to identify patients with cognitive 73 
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impairment using EHR data from an academic medical center and a neurocognitive assessment 74 

as the reference standard.  75 

 76 

Methods  77 

Study Population 78 

Data for this study were obtained from multiple sources. While all patients were part of 79 

the BioMe Biobank, patient interview data was obtained from two cohort studies.14  The data 80 

from these sources were used to characterize study patients and provide a reference standard 81 

for cognitive impairment. The cohort studies were conducted in primary care and pulmonary 82 

practices in New York City and Chicago, included older adults (ages ≥50 years) with chronic 83 

obstructive pulmonary disease (COPD) or asthma, and excluded individuals with dementia 84 

based on ICD coding in the electronic record. Patients with diagnosed dementia were excluded 85 

since the primary goal of this study was to identify patients with previously undiagnosed 86 

cognitive impairment. In both studies, baseline assessments of cognition were conducted by 87 

research assistants who were formally trained and supervised in the administration of 88 

neuropsychological assessment, including the MMSE, by a research psychologist.15, 16 89 

The BioMe Biobank is a prospective registry of patients recruited from primary care and 90 

subspecialty clinics in the Mount Sinai Health System. Participants consent to the use of their 91 

EHR data for biomedical research and the Mount Sinai Institutional Review Board approved the 92 

BioME protocols. For the purpose of the present study, we included patients in the cohort 93 

studies who had also consented to BioMe participation, and linked their EHR data with cohort 94 

study survey data. We retrieved all clinical notes of participants available from the EHR up to 95 

December 31, 2017. 96 

 97 

Study Design 98 

Reference Standards for Cognitive Impairment 99 
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The primary reference standard was the mini-Mental State Exam, which was 100 

administered to subjects in both cohort studies at baseline, 12 months, and 24 months. 101 

Research assistants were formally trained and supervised in the administration of 102 

neuropsychological assessment by a research psychologist from the Mount Sinai School of 103 

Medicine Alzheimer’s Disease Research Center. For Spanish-speaking patients, the MMSE was 104 

administered in Spanish. We defined cognitive impairment as an unadjusted MMSE score of 105 

<24 and used data from the most recent assessment.17  106 

In a set of secondary analyses, we used physician review of the chart to determine 107 

whether there was documented evidence of cognitive impairment. We randomly selected 25 108 

patients who were positive for cognitive impairment by NLP and 25 who were negative. Chart 109 

review was independently performed by 2 physicians who were blinded to the results of the NLP 110 

analyses and to the ICD codes. Disagreements between the 2 physicians were adjudicated by a 111 

third physician. Each reviewer read through all available notes in the EHR. Patients were 112 

considered to have cognitive impairment if reviewers found documentation of patient or patient 113 

family member complaints of forgetfulness, difficulty learning new things, concentrating, or 114 

making decisions to the point of interfering with their everyday life. This could be intermittent or 115 

related to a transient condition, such as delirium. Additionally, if a patient was referred to a 116 

specialist for dementia workup, reviewers considered this to be positive for cognitive 117 

impairment. However, patients forgetting to take medications or to bring in blood pressure/blood 118 

sugar logs were not considered to be cognitively impaired, nor were patients who developed 119 

altered mental status or cognitive decline while under inpatient hospice care.  120 

 121 

Natural Language Processing 122 

NLP was used to parse all available progress notes and discharge summaries. When 123 

using MMSE as a reference only notes from a 24-month period, between 12 months prior to and 124 

12 months after the most recent MMSE administration was used. Since the MMSE was 125 
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obtained at a defined time, this time restriction allows for inclusion of only notes that reflect the 126 

provider assessment of the patients’ cognitive function around the time of the MMSE. This 127 

avoids including notes from patients who may have developed cognitive impairment after the 128 

MMSE. However, when we compared the NLP algorithm to manual chart review and ICD codes, 129 

since the entire chart was reviewed, there were no time restrictions to the notes for NLP 130 

querying. We excluded radiology reports and pathology reports as text from these note types 131 

are generally devoid of assessments of cognition. The NLP program matched words and 132 

phrases in EHR free-text documentation to clinical terms of the Systematized Nomenclature of 133 

Medicine – Clinical Terms (SNOMED CT).  SNOMED is a comprehensive healthcare 134 

terminology consisting of hierarchies of concepts, with parent terms encompassing specific 135 

concepts (child terms).18 Two physicians independently reviewed available SNOMED CT for 136 

terms associated with cognitive impairment to be used for NLP querying.  The SNOMED CT 137 

parent and child terms included in the query are diagrammed in eFigure 1. 138 

For each of these terms a query was created to identify instances of the concept 139 

documented as present in the clinical record and determined whether it represented the subject 140 

of record (the patient vs. a family member) and its temporality (current or past). We defined 141 

cognitive impairment by NLP as identification of ≥1 term in the medical record linked to cognitive 142 

impairment by SNOMED CT. Cognitive impairment was not considered present when negation 143 

terms, e.g., not or no, were used in the same sentence or when cognitive impairment was 144 

mentioned in the context of family history.  NLP was performed using CLiX NLP (Clinithink, 145 

London, UK). 146 

After first use of NLP to identify patients with cognitive impairment, we conducted a 147 

manual review of 50 randomly selected charts to identify and correct inaccuracies in the NLP 148 

strategy that could lead to false positive and negative results. For example, NLP labeled one 149 

patient as having cognitive impairment when it recognized the “mCi” abbreviation used for 150 

“millicurie” (a unit of radioactivity) as indicative of mild cognitive impairment.  151 
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 152 

Identifying Cognitively Impaired Patients by ICD Codes  153 

We also used ICD 9 and 10 codes to identify patients with cognitive impairment (eTable 154 

1).19, 20 The codes we used included 290.x (dementias, including senile and vascular), 294.x 155 

(persistent mental disorders due to conditions classified elsewhere, e.g., amnestic disorder in 156 

conditions classified elsewhere, dementia unspecified), F01.x (vascular dementia), and F01.x 157 

(unspecified dementia).   158 

 159 

Machine Learning Strategy 160 

In order to develop a machine learning approach to predicting cognitive impairment from 161 

free text data, all SNOMED terms were extracted from every available progress note for all 162 

patients for the 24 month period of observation.  Each data element matched to a SNOMED 163 

clinical term has 4 features (temporality, association, subject relationship, finding or presence of 164 

the condition). An example is presented in eFigure 2 for the term “forgetful”. While an asset 165 

when trying to describe patient features in great detail, the granularity of textual data parsed by 166 

NLP complicates the correlation of patients with similar traits when sample sizes (number of 167 

patients) are small. To resolve this complexity, we eliminated parts of the SNOMED expression 168 

that were unnecessary for analysis such as redundant modifiers. As the SNOMED expressions 169 

alone do not capture the logical hierarchy of SNOMED, we also walked up the SNOMED 170 

hierarchy and created additional features for relevant children concepts. Thus, for the parent 171 

term “cognitive impairment,” the additional features were created to represent the children 172 

concepts of forgetful, memory impairment, memory finding, cognitive function finding, mental 173 

state, behavior and/or psychosocial function finding, and impaired cognition. We then trained 174 

and tested machine learning classifiers using only the condensed output from our NLP algorithm 175 

to predict whether the patient would have MMSE score <24. Classification methods included 176 

logistic regression, multilayer perceptron (MLP) a feedforward neural network21, and random 177 
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forest.22 We performed 100-fold cross validation. Models were trained on a varying number of 178 

top features, according to K-Means correlation with MMSE <24.  All machine learning 179 

procedures were performed in Python, using the standard scikit-learn package. 180 

 181 

Statistical Analysis 182 

We assessed performance of NLP, ICD, and the combination of NLP and/or ICD codes 183 

for identification of patients with cognitive impairment by calculating the sensitivity, specificity, 184 

precision (also knowns as positive predictive value), negative predictive value (NPV), and F1 185 

scores, using MMSE scores and determination by manual chart review as the primary and 186 

secondary reference standards, respectively. We performed comparison of categorical 187 

demographic variables by cognitive impairment status using Chi Square and Fisher Exact tests 188 

and t-tests for continuous variables. We calculated kappa statistic for inter-rater agreement for 189 

manual chart review using SAS Macro MAGREE. All statistics were calculated using SAS 190 

version 9.4 (SAS Institute, Cary, NC). 191 

 192 

Results 193 

Subject Characteristics 194 

We linked EHR and cognitive assessment data for 199 patients. The average age of 195 

patients was 68±7. They were predominantly female (75%), Hispanic (53%), and low income 196 

(<$750 per month, 51%); 46% had completed less than 12 years of formal education (Table 1).     197 

MMSE score was less than 24 for 79 (40%) patients and was more common with 198 

increasing age, lower education, poorer general health, and Spanish language preference.  199 

 200 

Performance of NLP and ICD Codes with MMSE Assessment as the Reference Standard  201 

NLP identified 69 (35%) patients as having cognitive impairment and ICD codes 202 

identified 44 (22%).  Sensitivity of NLP for detection of cognitive impairment was low, 0.35 (95% 203 
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CI 0.25-0.47), while specificity was moderate, 0.66 (95% CI 0.57-0.74) (Table 2).  Use of ICD 9 204 

and 10 codes to detect cognitive impairment performed similarly (sensitivity, 0.24 (95% CI 0.13-205 

0.59); specificity, 0.79 (95% CI 0.6-0.91). Negative and positive predictive and F1 values were 206 

also similar for the two strategies (Table 2). Combining NLP and ICD codes into a single 207 

diagnostic strategy did not meaningfully alter test performance compared to either approach 208 

alone: sensitivity, 0.41 (95% CI 0.3-0.52); specificity, 0.63 (95% CI 0.54-0.72).   209 

 210 

Performance of NLP and ICD Codes with Manual Chart Review as the Reference Standard  211 

Agreement between reviewers for chart review was high (kappa 0.78, 95% CI 0.62-212 

0.94). Sensitivity of NLP for cognitive impairment as determined by manual chart review was 213 

high, 0.96 (95% CI 0.75-1), specificity was moderate, 0.68 (95% CI 0.5-0.82), and precision was 214 

moderate 0.52 (95% CI 0.31-0.72) (Table 3).  ICD 9 and 10 codes for cognitive impairment by 215 

manual chart review had moderate sensitivity, 0.77 (95% CI 0.46-0.95), high specificity, 0.92 216 

(95% CI 0.78-0.98), and moderate precision 0.77 (95% CI 0.46-0.95).  NPV and F1 scores were 217 

similar for the two strategies (Table 3). The combination of NLP and ICD codes as a single 218 

diagnostic strategy did not substantially change test performance: sensitivity 0.96 (95% CI 0.75-219 

1), specificity 0.7 (95% CI 0.5-0.82), precision 0.52 (95% CI 0.31-0.72), NPV 0.98 (95% CI 0.86-220 

1), and F1 score of 0.68.  221 

 222 

Machine Learning with NLP terms for Identification of Cognitive Impairment 223 

Application of machine learning to NLP-identified terms resulted in substantial 224 

improvements in identification of patients with cognitive impairment with respect to the MMSE 225 

reference standard (Table 4). Of the three classifiers tested, the Random Forest method 226 

performed best, though only slightly better than the MLP neural net. The Random Forest 227 

approach yielded a sensitivity of 0.95, specificity 1.00, precision 1.00, NPV 0.97, F1 score of 228 

0.98 with overall AUC 0.98. For Supervised Neural Network (MLP Classifier) approach, 229 
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sensitivity was 0.94, specificity 1.00, precision 1.00, NPV 0.96, F1 score of 0.97 with overall 230 

AUC 0.97. Lastly, for the logistic regression approach sensitivity was 0.63, specificity 0.98, 231 

precision 0.95, NPV 0.79, F1 score of 0.76 with overall AUC 0.80.  232 

 233 

Discussion 234 

 In this study, we used NLP to identify patients with cognitive impairment from EHR 235 

documentation and found that it had modest test performance in relation to the MMSE, a 236 

standardized assessment. NLP performed similarly to ICD codes when using MMSE as the 237 

reference standard but had better performance when using manual review as the reference 238 

standard. However, applying machine learning approaches to the concepts extracted by NLP 239 

greatly improved test performance. 240 

 Our study builds on prior literature aimed at detection of patients with cognitive 241 

impairment. Multiple studies have utilized NLP to analyze patient speech patterns to identify 242 

cognitive impairment.23-25 However, this approach requires prospective collection of recordings 243 

or transcription of patient-physician visits and may be logistically challenging in clinical practice. 244 

Only one study has used NLP with EHR data.20 Reuben et al used medications, ICD codes, and 245 

NLP to identify patients with dementia and compared it to physician manual chart review. Their 246 

NLP algorithm only included terms for “dementia” or “neurodegenerative” without negation terms 247 

or family history markers. We used a more complex NLP algorithm that was based on SNOMED 248 

terms and hierarchy, therefore including a more extensive list of terms for querying. This may 249 

have contributed to the higher sensitivity we found compared to that reported by Reuben et al. 250 

Additionally, our main comparison was between NLP and an objective cognitive assessment 251 

with the MMSE, rather than chart review.  252 

As the proportion of older adults in the US population increases, the number of patients 253 

with cognitive impairment is also increasing.  Cognitive impairment puts a strain on the US 254 

healthcare system as it is a major risk factor for hospital admission and readmissions, and a 255 
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major contributor of healthcare costs among older adults.26-29 Additionally, cognitive impairment 256 

negatively impacts an individual’s life by affecting their ability to self-manage chronic diseases, 257 

as a risk factor for functional status decline, and contributes to the development of depression 258 

and other chronic health problems.30-33 Despite this, cognitive impairment is under-recognized 259 

with only 8-28% of older adults every being screened and on average 10 years between the 260 

appearance of early declines in cognitive function and a clinician diagnosis.  261 

While our NLP and machine learning approach requires additional validation, since it is 262 

based on existing EHR, it can be easily implemented into EHR systems. One proposed method 263 

would be a clinical decision support system, which can notify patient’s providers when the 264 

algorithm identifies a patient with cognitive impairment and suggest potential actions to take 265 

such as referrals to neuropsychological testing or assessment for the need of a home health 266 

aide. This EHR-based intervention could most benefit patients who regularly interact with 267 

healthcare providers that typically do not screen existing clinical data in the chart for evidence of 268 

cognitive impairment. For example, an elderly patient who is frequently admitted to a hospital 269 

and regularly follows up with multiple specialists for non-cognitive concerns but rarely sees a 270 

primary care physician, geriatrician, psychiatrist, or neurologist could easily avoid formal 271 

cognitive screening despite risk factors. Because our proposed cognitive impairment detection 272 

tools would only use data already contained within the EHR, would only be visible to the 273 

patient’s providers, and would only suggest the initiation of the cognitive impairment diagnostic 274 

workup rather than attempt to establish the diagnosis itself, this intervention would not raise 275 

privacy or other ethical concerns. 276 

Early detection of cognitive impairment is advocated by the US Department of Health 277 

and Human Services and the Alzheimer’s Foundation.34, 35 Early identification can allow for 278 

enrollment into programs to exclude reversible causes of dementia, cognitive intervention 279 

programs36, pharmacotherapy when appropriate, and identifying care coordination needs.37 280 

Additionally, identification will enable care givers to receive support to alleviate the stress and 281 
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burden associated with caring for people with cognitive impairment. Lastly, effective and 282 

efficient methods of identifying patients with cognitive impairment will allow for inclusion of these 283 

patients into clinical trials and cohort studies. Our NLP and machine learning approach is a 284 

scalable method that can facilitate identification given its high sensitivity, understanding that 285 

there is the potential for false positive given the lower specificity. As with any screening test, 286 

there can be false negatives and false positives. A false negative will lead to a delay in a patient 287 

with cognitive impairment receiving appropriate referrals for care, while a false positive will lead 288 

to unnecessary additional testing and can cause patient’s unneeded stress. Therefore, 289 

validation of our results are necessary before implementation. 290 

 In this study, patients who had lower MMSE scores were older, had less education, and 291 

preferred to communicate in Spanish. It has been well established that age, education, and 292 

language are associated with lower MMSE scores.38 Some researchers have performed age 293 

and education adjustment, which increases the sensitivity but decreases the specificity of the 294 

MMSE.39 Lastly, others have argued against using adjustment for education as there may be a 295 

true association between education level and cognitive impairment.40 Due to this uncertainty 296 

and that our study is a proof of concept that NLP can be used to identify patients with cognitive 297 

impairment, we chose to use the unadjusted cutoff of 24 consistent with mild impairment that is 298 

a widely accepted threshold for cognitive impairment in our analyses.  299 

We chose to not include medications in the NLP or machine learning algorithm. Prior 300 

studies did not find that the addition of medications improved performance of their NLP or ICD 301 

algorithms for dementia identification.20 Authors cite the use of dementia medications for 302 

alternative diagnoses as a possible cause.  We found a higher prevalence of cognitive 303 

impairment than the 15-25% that is reported in literature, which may be due to the inclusion of 304 

only older adults with asthma or COPD, two conditions having established associations with 305 

cognitive impairment in older adults.41  Differences between sensitivity of NLP when using 306 
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MMSE as a standard and chart review as a standard may be influenced by the under diagnosis 307 

of cognitive impairment by providers and therefore not documented in the chart.42  308 

This study has several limitations. First, the sample size was relatively small, which 309 

could have led to overfitting of the machine learning algorithm. We performed a 100-fold cross 310 

validation to reduce the risk of overfitting, but validation with data from a different health system 311 

is needed before conclusions can be drawn about the NLP and machine learning strategies we 312 

employed. As NLP can only identify cognitive impairment from what is in the EHR, it is 313 

dependent on the number of encounters and notes available. While there are many methods of 314 

identifying cognitive impairment, we only used the MMSE, which can be biased by a person’s 315 

education, primary language, and culture. Despite these limitations, this is the first study to use 316 

NLP and machine learning to identify patients with cognitive impairment using data from EHR.  317 

 318 

Conclusion 319 

NLP can be used to identify adults with cognitive impairment with moderate test 320 

performance and greatly enhanced with the addition of machine learning. NLP and machine 321 

learning out performed ICD codes for identification of cognitive impairment.   While additional 322 

validation in external datasets is necessary, this method provides for a scalable and high 323 

throughput method for identifying patients with cognitive impairment for more appropriate 324 

diagnostic testing, early treatment, and enrollment into research studies. 325 
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Table 1: Demographics 467 

Characteristic Total 
(n=199) 

MMSE<24 
(n=79) 

MMSE>24 
(n=120) 

p-value 

n (%) n (%) n (%)  
Age     
 55-64 88 (44.2%) 25 (31.7%) 63 (52.5%) 0.008 
 65-70 58 (29.2%) 31 (39.2%) 27 (22.5%)  
 >71 53 (26.6%) 23 (29.1%) 30 (25.0%)  
Female 149 (74.9%) 56 (70.9%)  93 (77.5%) 0.29 
Married/Living with Partner 44 (22.1%) 17 (21.5%) 27 (22.5%) 0.87 
Race     
 White 29 (14.6%) 7 (8.9%) 22 (18.3%) 0.27 
 Black 56 (28.1%) 22 (27.8%) 34 (28.3%)  
 Hispanic 106 (53.3%) 47 (59.5%) 59 (49.2%)  
 Other 8 (4.0%) 3 (3.8%) 5 (4.2%)  
Monthly Income     
 $0-$750 100 (50.8%) 38 (48.1%) 62 (51.7%) 0.63 
 $751-$1350 62 (31.5%) 28 (35.4%) 34 (28.3%)  
 $1351-$3000 23 (11.6%) 8 (10.1%) 15 (12.5%)  
 >$3000 6 (3.1%) 1 (1.3%) 5 (4.2%)  
 Refused/Don’t Know 8 (4.0%) 4 (5.1%) 4 (3.3%)  
Education     
 Less than 12 years 91 (45.7%) 50 (63.3%) 41 (34.2%) <0.001 
 High school graduate 42 (21.1%) 12 (15.2%) 30 (25.0%)  
 Some college 35 (17.6%) 9 (11.4%) 26 (21.7%)  
 College degree or 

higher 
30 (15.1%) 7 (8.9%) 23 (19.2%)  

 Refused/Don’t Know 1 (0.5%) 1 (1.3%) 0 (0.0%)  
General Health Rating     
 Excellent/Very Good 29 (14.6%) 6 (7.6%) 23 (19.2%) 0.003 
 Good 53 (26.6%) 15 (19.0%) 38 (31.7%)  
 Fair/Poor 117 (58.8%) 58 (73.4%) 59 (49.2%)  
Assistance with ADLs     
 No help 123 (61.8%) 42 (53.1%) 81 (67.5%) 0.08 
 Help needed 74 (37.2%) 36 (45.6%) 38 (31.7%)  
 Refused/Don’t Know  2 (1.0%) 1 (1.3%) 1 (0.8%)  
Origin Country/Territory     
 United States 103 (51.8%) 33 (41.8%) 70 (58.3%) 0.02 
 Puerto Rico 73 (36.7%) 34 (43.0%) 39 (32.5%)  
 Dominican Republic 9 (4.5%) 7 (8.9%) 2 (1.7%)  
 Other 14 (7.0%) 5 (6.3%) 9 (7.5%)  
Preferred Language     
 English 147 (73.9%) 46 (58.3%) 101 (84.2%) <0.001 
 Spanish 52 (26.1%) 33 (41.7%) 19 (15.8%)  

468 
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Table 2: NLP and ICD9/10 compared with MMSE (inclusive of notes +/- 1 year of MMSE) 469 

 NLP ICD NLP/ICD 
Sensitivity 0.35 (0.25-0.47) 0.24 (0.13-0.59) 0.41 (0.30-0.52) 
Specificity 0.66 (0.57-0.74) 0.79 (0.60-0.91) 0.63 (0.54-0.72) 
Precision 0.41 (0.29-0.53) 0.43 (0.19-0.75) 0.42 (0.31-0.54) 
NPV 0.61 (0.52-0.69) 0.61 (0.50-0.82) 0.62 (0.53-0.70) 
F1 Score 0.38 0.31 0.41 
 470 
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Table 3: NLP and ICD9/10 compared with Manual Chart Review (inclusive of all notes) 472 

 NLP ICD NLP/ICD 
Sensitivity 0.96 (0.75-1.00) 0.77 (0.46-0.95) 0.96 (0.75-1.00) 
Specificity 0.68 (0.50-0.82) 0.92 (0.78-0.98) 0.68 (0.50-0.82) 
Precision 0.52 (0.31-0.72) 0.77 (0.46-0.95) 0.52 (0.31-0.72) 
NPV 0.98 (0.86-1.00) 0.92 (0.78-0.98) 0.98 (0.86-1.00) 
F1 Score 0.68 0.77 0.68 
 473 
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Table 4: Machine Learning Applied to NLP extracted terms compared with MMSE 475 

 Logistic Regression MLP Random Forest 
Sensitivity 0.63 0.94 0.95 
Specificity 0.98 1.00 1.00 
Precision 0.95 1.00 1.00 
NPV 0.79 0.96 0.97 
F1 Score 0.76 0.97 0.98 
AUC 0.80 0.97 0.98 
 476 
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