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 2 

HIGHLIGHTS 42 

 43 

• We used EEG to analyze depression in Parkinson’s disease. 44 

 45 

• Depressed Parkinson’s patients had distinct spectral EEG features.  46 

 47 

• Machine-learning algorithms could accurately distinguish depression in Parkinson’s 48 

disease.  49 
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ABSTRACT 50 

Introduction: Depression is a non-motor symptom of Parkinson’s disease (PD). PD-related 51 

depression is hard to diagnose and the neurophysiological basis is poorly understood. Depression 52 

can markedly affect cortical function, which suggests that scalp electroencephalography (EEG) 53 

may be able to distinguish depression in PD.  54 

Methods:  We recruited 18 PD patients, 18 PD patients with depression, and 12 55 

demographically-similar non-PD patients with clinical depression. All patients were on their 56 

usual medications. We collected resting-state EEG in all patients and compared cortical brain 57 

signal features between patients with and without depression. We used a machine-learning 58 

algorithm that harnesses the entire power spectrum (linear predictive coding of EEG Algorithm 59 

for PD: LEAPD), to distinguish between groups.  60 

Results: We found differences between PD patients with and without depression in the alpha 61 

band (8-13 Hz) globally and in the beta (13-30 Hz) and gamma (30-80 Hz) bands in the central 62 

electrodes. From two minutes of resting-state EEG we found that LEAPD-based machine 63 

learning could robustly distinguish between PD patients with and without depression with 97% 64 

accuracy, and between PD patients with depression and non-PD patients with depression with 65 

100% accuracy. We verified the robustness of our finding by confirming that the classification 66 

accuracy declines gracefully as data are truncated.  67 

Conclusions: We demonstrated the efficacy of the LEAPD algorithm in identifying PD patients 68 

with depression from PD patients without depression and controls with depression. Our data 69 

provide insight into cortical mechanisms of depression and could lead to novel 70 

neurophysiologically-based biomarkers for non-motor symptoms of PD.   71 
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INTRODUCTION 72 

 Depression is a prominent non-motor symptom of Parkinson’s disease (PD) [1]. PD-73 

related depression affects ~20%–40% of PD patients, several times the expected prevalence 74 

within this population [2]. Importantly, this aspect of PD is often missed by physicians, 75 

contributing to morbidity and decreased quality of life [3–6].  Despite its significance and impact 76 

[7], it is unclear which brain circuits contribute to PD-related depression [8]. Determining which 77 

brain circuits are involved could lead to the development of new diagnostic tools to identify PD-78 

related depression, as well as targeted treatments such as neuromodulation [9]. A fast and 79 

accurate neurophysiologically-based diagnostic tool may also facilitate neuromodulation. In 80 

addition, a better understanding of depression in PD may help us illuminate fundamental 81 

mechanisms of both diseases.  82 

 PD and depression involve several overlapping circuits and associated neurotransmitters, 83 

including dopamine and serotonin [10]. These projection systems affect cortical physiology 84 

[11,12]. Cortical regions can be profoundly dysfunctional in PD [13] and in depression [14].  85 

One technique that is particularly well-suited to capture cortical neurophysiology is 86 

electroeencephalography (EEG), which uses scalp electrodes to record activity from the cortex 87 

via an array of scalp electrodes. An early EEG study comparing depressed and non-depressed PD 88 

patients found widespread differences in alpha bands (8-13 Hz) in posterior and frontal sites [7].  89 

Quantititave EEG (qEEG) studies have found spectral differences that distinguished PD vs 90 

depresson [15].  Furthermore, prefrontal cortical regions are responsive to targeted interventions, 91 

such as transcranial magnetic stimulation [16].  Here, we tested the hypothesis that spectral 92 

features of EEG can distinguish PD patients with depression.  93 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.22271060doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.16.22271060
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

 We tested this hypothesis by collecting resting-state scalp EEG in PD patients with and 94 

without depression. We compared these data with control patients with depression but without 95 

PD. We report three main results. First, PD patients with depression had globally attenuated 96 

alpha (8–13 Hz) rhythms, as well as attenuated central beta (13–30 Hz) and gamma (30–80 Hz) 97 

rhythms relative to PD patients without depression. Second, PD patients with depression had 98 

strong global differences in gamma rhythms relative to non-PD patients with depression. Third, 99 

we used a linear predictive coding of EEG Algorithm for PD (LEAPD) formulated by Anjum et 100 

al. [17,20], which provides binary classification based on resting-state EEG power spectra. 101 

LEAPD-based classification accurately identified PD patients with depression relative to PD 102 

patients and non-PD depressed patients. Collectively, these data implicate cortical rhythms in 103 

PD-related depression, which could lead to novel targeted therapies or new diagnostic 104 

biomarkers for this important non-motor aspect of PD.  105 

 106 

  107 
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METHODS 108 

Participants  109 

36 PD patients (11 women; Table S1) were recruited from clinics at the University of Iowa. A 110 

movement-disorders physician examined all PD patients to verify that they met the diagnostic 111 

criteria recommended by the United Kingdom PD Society Brain Bank criteria. Depression was 112 

quantified using the Geriatric Depression Scale in PD patients; a score of 5 to 15 was considered 113 

depressed). In addition, the motor Unified Parkinson’s Disease Rating Scale (UPDRS) was 114 

administered to all PD patients by a qualified rater, along with other clinical metrics, such as the 115 

Montreal Cognitive Assessment (MOCA) and behavioral assays. Data were collected with 116 

patients taking all medications as prescribed and PD patients were in the “ON” state. See our 117 

prior work for details of cognitive assessments [18]. Demographics and other clinical details are 118 

presented in Table S1 and were compared between groups by non-parametric Wilcoxon tests.  119 

 We recruited 12 demographically-similar depressed patients without PD (5 women; Table 120 

S1) from the University of Iowa’s depression and neuromodulation clinic. These patients were 121 

diagnosed with depression by the Patient Health Questionnaire-9, with a value of 9 to 27. A 122 

psychiatrist evaluated all patients, and patients took their medications as prescribed.  123 

We obtained written informed consent from all participants according to the University of Iowa’s 124 

Institutional Review Board (IRB). Demographics of patients and control subjects are 125 

summarized in Table S1. 126 

 127 

EEG recording and analysis 128 

 Resting-state EEG was collected from patients while they sat in a quiet room with their 129 

eyes open for two minutes. Scalp EEG signals were collected from 64 channels of an EEG 130 
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actiCAP (Brain Products GmbH) using a high-pass filter with a 0.1-Hz cutoff and a sampling 131 

frequency of 500 Hz. Electrode Pz was used as a reference, and electrode FPz was used as the 132 

ground. We used recording methods described previously in detail using a custom EEG cap with 133 

Iz, I1, and I2 leads in place of FT9, PO3, and PO4 leads; these leads were not analyzed [17–19]. 134 

We also removed FP1, FP2, FT10, TP9, and TP10 channels as these channels are often 135 

contamined by artifact, resulting in 56 channels for pre- and post-processing. EEG activity at the 136 

reference electrode Pz was recovered by computing the average reference. Bad channels and bad 137 

epochs were identified using the FASTER algorithm and the pop_rejchan function from 138 

EEGLAB and were then interpolated and rejected, respectively. Eye blinks were removed using 139 

independent component analysis (ICA). All channels were low-pass filtered at 100 Hz. Power 140 

was calculated using the pwelch function and was normalized to the mean power between 0–100 141 

Hz for each channel. Scalp topography was plotted using topoplot from EEGLAB in delta (1-4 142 

Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz; Figure 1) bands.  143 

 144 

Machine learning using Linear predictive coding algorithms for PD (LEAPD) 145 

LEAPD is an algorithm for binary classification of the spectral content of EEG signals. 146 

This approach was developed by Anjum et al. [17,20] to distinguish between PD patients and 147 

control participants. We implemented LEAPD to compare PD patients with depression (PDDEP) 148 

vs PD patients without depression (PD) and PDDEP vs depressed patients without PD (DEP). In 149 

particular, a LEAPD index between 0 and 1 is generated for each EEG recording, using the 150 

procedure outlined below. In each of the two problems, a threshold of 0.5 is used to distinguish 151 

between two groups. For example, if the LEAPD index for an EEG recording is below 0.5 then it 152 

is deemed to be in Group A and if above 0.5 it is classified as belonging to Group B. 153 
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In LEAPD, an EEG time series from a channel is processed using linear predictive 154 

coding (LPC) to encode the signal into coefficients of an autoregressive model minimizing the 155 

square of the prediction error [21] for that time series. The number of coefficients �, is called the 156 

LPC order. These coefficients are put in a vector of dimension � with one entry for each 157 

coefficient. An LPC vector is generated by substracting the mean. Each LPC vector is viewed as 158 

a point in the �-dimensional space.  LPC vectors of each group lies on distinct affine subspaces. 159 

For example those for PDDEP roughly lie on one affine subspace while those of PD on another. 160 

An affine subspace is the generalization of a one-dimensional line or a two-dimensional plane in 161 

larger dimensions. The LEAPD index of a recording is as below, where �� is the distance of its 162 

LPC vector from the affine subspace of one group and �� is the distance from the affine 163 

subspace of the other group: 164 

����� 	�
�� 
��

�� � ��

. 

 165 

Principal Component Analysis (PCA) is used to identify the affine subspace of a given 166 

dimension that best fits the LPC vectors of each group.  Parameters used to control the learning 167 

process include: (1) the cutoff frequencies of the filter used to process the EEG data; (2) the 168 

length of the LPC vector (LPC order); and (3) the dimension of the affine subspace.  169 

We quantified differences between LEAPD values for each channel using non-parametric 170 

Wilcoxon ranksum tests. In addition, we used a classifier to calculate the accuracy of PD vs 171 

PDDEP and DEP vs PD at each channel. Two-channel LEAPD values were computed by taking 172 

the geometric mean of the LEAPD values for each channel. We then used a classifier on all two-173 

channel combinations, and we presented results only from selected high-performing 174 

combinations.   175 
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As the dataset was small, we could not perform out-of-sample prospective tests to 176 

validate the accuracy of the model. However, we tested the robustness of the results by 177 

examining LEAPD performance on truncated data. In all instances leave-one-out cross validation 178 

(LOOCV) was used to quantify performance. LOOCV uses the entire dataset without one test 179 

sample to predict each test sample, which protects against the overfitting common with small 180 

datasets. We report data from individual channels and combinations of channels that yielded the 181 

a) highest accuracy in discriminating PD vs PDDEP and PDDEP vs DEP, and b) were the most 182 

robust on truncated data. 183 

  184 

 185 

186 
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RESULTS 187 

 PD patients with and without depression had similar age (p = 0.23), motor function as 188 

measured by UPDRS (p = 0.22), and cognitive profiles as measured by the MOCA (p = 0.94 189 

value; Table S1). We collected resting-state EEG data and compared scalp topography of relative 190 

power for PD patients vs PD patients with depression (PDDEP) at delta (1-4 Hz), theta (4-8 Hz), 191 

alpha (8–13 Hz), beta (13–30 Hz), and gamma bands (30–80 Hz; Figure 1A).  We also compared 192 

scalp topography for PDDEP vs non-PD patients with depression (DEP; Figure 1B). These data 193 

illustrate that there can be band-specific differences that distinguish depression in PD.   194 

 Our machine learning approach, LEAPD, compress power spectra into a series of 195 

autoregressive coefficients that holistically captures the shape of each power spectra with a few 196 

numbers [17,20]. Here, we used LEAPD to classify PD vs PDDEP and PDDEP vs DEP from 197 

single channels, as well as combinations of two channels (Figure 2).  198 

 
 

Figure 1:  Scalp topography of relative EEG power in PD patients with depression . A) Relative power in PD 
patients with depression (PDDEP) compared to PD patients without depression for delta (1-4 Hz), theta (4-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz). B) Relative power in PDDEP compared to non-PD patients with 
depression (DEP). Electrodes are indicated by black dots; electrodes with significant differences between groups via 
ranksum testing are shown with white diamonds. Data from 18 PD, 18 PDDEP and 12 DEP.  
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 11

 We first used LEAPD to discriminate 18 PD from 199 

18 PDDEP patients across all EEG electrodes (Figure 200 

3A). Single-channel accuracy for channel CP3 was 86% 201 

and for TP8 was 86% (Figure 3A). Combining both CP3 202 

and TP8 resulted in an overall LOOCV classification 203 

accuracy of 97%. These channels had distinct LEAPD 204 

indices between PD and PDDEP (CP3: p = 0. 00009, 205 

Cohen’s d = 1.8; TP8: p = 0. 0.00004 , Cohen’s d = 1.8; 206 

CP3+TP8: p < 0.001; Cohen’s d = 3.25; Figure 3B). 207 

Receiver-operator curves (ROCs) for these channels in 208 

predicting PD vs PDDEP are shown in Figure 3C.  209 

  210 

 In addition, we found that LEAPD was highly accurate in differentiating 12 PDDEP 211 

patients (selected at random from 18 total) from 12 DEP patients, with 96% single-channel 212 

signal accuracy for electrode CPz and 92% for electrode CP4. Combining both channels resulted 213 

in 100% classification accuracy (Figure 3F). For these electodes, LEAPD distguished PDDEP vs 214 

DEP (Figure 3D; CPz: p = 0.00004, Cohen’s d: =  4.3; CP4: p = 0.0007, Cohen’s d: 2.0; 215 

CP4+CPz: p = 0.0004; Cohen’s d = 4.3; Figure 3E).  216 

Figure 2: LEAPD Classification 
approach: Flow chart of classification.  
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Additionally, we performed a truncation analysis of CP3, TP8, and CP3+TP8 combined 217 

for PD vs PDDEP and of CPz, CP4, and CPz+CP4 combined for DEP vs PDDEP. Recorded 218 

EEG data were truncated from full-length samples to samples that were a fraction of the original 219 

length. LEAPD analysis was then performed on the shortened signal using the same 220 

hyperparameters as those of the original signal. Truncation fractions of 0.05, 0.33 and 0.67 were 221 

tested. Performance of the channels at each truncation fraction is shown in Table S2. Although 222 

truncation did reduce the accuracy of the channels, each channel still retained significant 223 

discriminatory ability at shorter signal lengths. The performance degraded gracefully with 224 

truncation, indicating that the signals chosen are likely measuring a fundamental difference in 225 

Figure 3: Machine-learning classification of LEAPD. A) We constructed LEAPD indices from LPC coefficients from
electrodes CP3 and TP8 for PD patients without depression (PD) vs PD patients with depression (PDDEP). B) Receive
operating curves (ROC) for single-channel performance of CP3, TP8, and CP3+TP8 combined, and C) channel perform
across single electrodes. Data from 18 PD and 18 PDDEP patients. D) We also generated LEAPD indices for PDDEP (
compared to depressed patients without PD (DEP; dark green) at CP4, CPz, and CP4+CPz combined. E) ROC curves a
single channel performance across single electrodes. Data from 12 PDDEP and 12 DEP patients.  
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EEG behavior between classes, rather than an artifact of overfitting. It is notable that accuracy of 226 

greater than 85% was achieved from two minutes of resting-state EEG signals. Performance on 227 

truncated data is shown in Figure 4 for channels of interest for PD vs PDDEP (Figure 4A) and 228 

PDDEP vs DEP (Figure 4B). Collectively, these data suggest that spectral features of scalp EEG 229 

can distinguish depression in PD.  230 

 231 

 232 

  233 

Figure 4:  Truncation analysis of LEAPD-based classification. A) Data from PD vs PDDEP for 5, 33, 67, and 100%
of data for PDDEP vs PD for CP3, TP8, and CP3+TP8 and B) PDDEP vs DEP for CP4, CPz, and CP4 + CPz.  
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DISCUSSION 234 

 We explored the cortical basis of depression in PD using resting-state scalp EEG. We 235 

found that PD patients with depression had central differences in beta and gamma rhythms. We 236 

used LEAPD, a spectral machine-learning approach, to detect differences in EEG signals from 237 

two minutes of resting-state data from a single electrode, achieving accuracies of 97% for PD 238 

patients with and without depression and 100% for PD vs non-PD patients with depression. 239 

These data indicate that PD patients with depression can be accurately differentiated from PD 240 

patients without depression and from depressed non-PD patients using machine learning.  241 

Depression is a complex disorder [22] involving many brain networks; however, one 242 

consistent finding is abnormal cortical function [14,23]. Scalp EEG studies have found 243 

dysfunctional alpha rhythms in depressed patients [24,25], a finding that we report here 244 

comparing PD patients with and without depression. Beta rhythms can be profoundly abnormal 245 

in PD [26] and our data here indicate that depression decreases resting-state beta, alpha, and 246 

gamma rhythms in PD. We find that many cortical regions are implicated in PD-related 247 

depression, including prefrontal and parietal regions that have been found in prior studies of 248 

depression [14,27] 249 

These data suggest that EEG, which is relatively inexpensive and ubiquitously available, 250 

can identify PD patients with depression. This is important because depression can be missed in 251 

PD [3–5], and electrophysiological diagnostic tools may aid in this effort. We report that our 252 

spectral approach can rapidly, robustly, and accurately identify EEG signals from PD patients 253 

with depression. Our results are in line with previous efforts to use LEAPD to identify local field 254 

potentials from animal models of PD and EEG data recorded from PD patients and controls 255 

[17,20]. LEAPD-based techniques might have additional utility in settings where 256 
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neurophysiology is common, such as during deep-brain stimulation surgeries, and they may be 257 

helpful for closed-loop control applications. Apart from being robust and accurate, LEAPD is 258 

amenable to fast implementation and can serve as a trigger mechanism for brain stimulation. 259 

Our work is supported by prior qEEG studies describing that a single parameter can 260 

differentiate depression and dementia in PD [15]. An early study which averages across all EEG 261 

electrodes reported distinct scalp topography of depressed PD patients, focusing on alpha 262 

rhythms [7].  Our study is supportive of these differences, and we are able to localize these 263 

results to the left frontal electrodes. In addition, we find broader differences over central 264 

electrodes in beta and gamma bands, which may have been averaged out in prior work that 265 

averaged EEG signals from multiple electrodes. Finally, we used advanced machine-learning to 266 

distinguish PD patients with depression from both PD patients and non-PD patients with 267 

depression. Recent work has reported frontal differences in sleep in PD patients with 268 

depression[28], as well as differences between midline event-related potentials between PD 269 

patients with and without depression [29]. Our study extends these findings and helps define the 270 

spectral topography of resting-state EEG in PD patients with depression, and demonstrates the 271 

potential of machine-learning for identifying PD patients with depression.  272 

In this manuscript, we illustrate these effects from relatively high-performing channels: 273 

CP3/TP8 in PD vs PDDEP and CP4/CPz in PDDEP vs DEP. We chose these exemplars to 274 

illustrate high-performing channel combinations from each comparison. However, we note that  275 

channels also had high performance, and could be used for classification and identificiation of 276 

depression in PD.  277 

 Our study has several limitations. First, our sample size was limited, although in line with 278 

prior EEG studies in PD patients with depression [28,29]. Second, all of our patients were 279 
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medicated, and it is possible that medications could influence these EEG signals [30]. Third, our 280 

method of diagnosing depression and quantifying symptom burden in PD patients was distinct 281 

from the method used with non-PD patients, limiting comparisons between these groups. Finally, 282 

our LEAPD approach did not include an out-of-sample prospective test, though the truncation 283 

analysis does remove concerns of overfitting. Despite these shortfalls, our findings describe 284 

spectral changes in PD patients with depression compared to PD patients without depression and 285 

non-PD patients with depression. We report that LEAPD-based machine learning approaches can 286 

identify EEG signals from PD patients with depression. These data could help illuminate the 287 

cortical neurophysiology of PD-related depression and could help lead to new biomarkers or 288 

diagnostic tools.  289 

   290 

  291 
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Supplementary Tables 388 

Table S1: Demographic, disease, non-motor, motor, and cognitive 

characteristics 

  

 PD 

(N = 18) 

PDDEP 

(N = 18) 

p Value Cohen’s d DEP 

(N = 12) 

p Value Cohen’s d  

Demographics and Disease        

Gender, M/F 11/7 14/4 - - 7/5 - - 

Age, years 68.3 (2.0) 65.8 (1.7) a0.23 a0.32 62.1 (1.8) b0.17 b0.54 

Disease duration, years 4.4 (0.5) 6.7 (0.9) a0.12 a0.70 23.7 (4.6) b <0.01 b 1.64 

LEDD, mg/day 838.6 (98.1) 983.8 (135.5) a0.60 a0.29 - - - 

Cognition Characteristics        

MOCA (0-30) 23.6 (1.0) 23.6 (0.9) a0.94 a0.01 26.8 (0.6) b0.03 b0.97 

Non-Motor Characteristics        

GDS (0-15) 2.2 (0.3) 8.4 (0.7) a<0.01 a2.91 - - - 

PHQ-9 (0-27) - - - - 15.9 (1.6) - - 

Motor Characteristics        

UPDRS III (0-56) 14.2 (1.9) 16.5 (1.4) a0.22 a0.33 - - - 

Values are expressed as mean (standard error of mean). 389 

 390 
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aNon-parametric Wilcoxon test was used for comparison between PD vs PDDEP subjects. bNon-391 

parametric Wilcoxon test was used for comparison between PDDEP vs DEP subjects. 392 

Abbreviations: Male, M; Female, F; Montreal Cognitive Assessment, MOCA; Geriatric Depression 393 

Scale, GDS; Patient Health Questionnaire-9, PHQ-9; motor Unified Parkinson’s Disease Rating Scale, 394 

UPDRS III. 395 

  
396 
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Table S2: Truncation analysis accuracy across datasets  397 

 398 

Dataset DEP vs PDDEP PD vs PDDEP 

TF   Channel CPz CP4 CPz + CP4 CP3 TP8 CP3 + TP8 

0.05 75% 58.3% 66.7% 52.78% 55.6% 61.1% 

0.33 79.2% 75%% 83.3% 61.1% 61.1% 66.7% 

0.66 91.7% 95.8% 95.8% 72.2% 61.1% 75% 

1 95.8% 91.7% 100% 86.1% 86.1% 97.2% 

 399 

400 
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