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Abstract 1 

Objectives: To evaluate an artificial intelligence-based smartphone application to 2 

automatically and objectively read rapid diagnostic test (RDT) results and assess its 3 

impact on COVID-19 pandemic management. 4 

Methods:  Overall, 252 human sera from individuals with PCR-positive SARS-CoV-2 5 

infection were used to inoculate a total of 1165 RDTs for training and validation 6 

purposes. We then conducted two field studies to assess the performance on real-world 7 

scenarios by testing 172 antibody RDTs at two nursing homes and 92 antigen RDTs at 8 

one hospital emergency department. 9 

Results: Field studies demonstrated high levels of sensitivity (100%) and specificity 10 

(94.4%, CI 92.8-96.1%) for reading IgG band of COVID-19 antibodies RDTs compared 11 

to visual readings from health workers. Sensitivity of detecting IgM test bands was 12 

100% and specificity was 95.8%, CI 94.3-97.3%. All COVID-19 antigen RDTs were 13 

correctly read by the app. 14 

Conclusions: The proposed reading system is automatic, reducing variability and 15 

uncertainty associated with RDTs interpretation and can be used to read different RDTs 16 

brands. The platform can serve as a real time epidemiological tracking tool and 17 

facilitate reporting of positive RDTs to relevant health authorities.   18 
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Introduction 1 

To control COVID-19 pandemic, timely and accurate early-detection strategies of 2 

SARS-CoV-2 infections have been critical to slow down the spread of the virus. The 3 

use of rapid diagnostic tests (RDTs), both for detection of antibodies and antigens, has 4 

contributed to improve COVID-19 testing capacity reducing costs of diagnosis and 5 

allowing for fastest results (1). First, COVID-19 RDTs were intended to be used just by 6 

professional healthworkers, who have extensive experience in the use of this tool for 7 

different infectious diseases (2, 3). Later, multiple Health Ministries have approved 8 

home testing kits improving the accessibility to testing and taking pressure off from 9 

health institutions. Nevertheless, self-testing strategies have some limitations, the 10 

general population is not familiar with the use of RDTs and a minimum training is 11 

needed for sampling, testing and result interpretation. Furthermore, as it has been seen 12 

during the latest Omicron wave (4), many results go unreported, impairing post-testing 13 

counseling and epidemiological surveillance. 14 

Combining RDTs with digital tools, artificial intelligence (AI) and mobile health 15 

approaches can help standardize result interpretation and facilitate immediate reporting 16 

and monitoring of results (5). The use of AI to automatically interpret photographs of 17 

RDTs has been also recently proposed (6, 7). Here, we describe the development and 18 

field validation of a mobile-based tool for reading and reporting multiple types of 19 

SARS-COV-2 RDTs which is connected to a real-time epidemiological monitoring web 20 

platform. 21 

 22 

Methods 23 

This study was divided into two phases. First, the training and validation of an AI 24 

algorithm for the automatic interpretation of RDTs. Second, two field studies to assess 25 
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the performance of the AI-based system for reading both COVID-19 antibodies and 1 

antigen RDTs in real-world scenarios. Ethics approval for the study was obtained from 2 

the Clinical Research Ethics Committee of the Ramón y Cajal University Hospital (Ref. 3 

127/21). 4 

 5 

Algorithm Training and validation dataset 6 

For generating the training image dataset, twelve human sera from SARS-CoV-2 7 

positive PCR patients with a positive ELISA test (Vircell Spain S.L.U., Granada, Spain) 8 

were used. Each serum sample was serially diluted until it reached a negative result 9 

when inoculated in a COVID-Ab test.  Each dilution was tested in three replicates for 10 

each of the three brands tested (2019-nCoV IgG/IgM Rapid Test Cassette (Hangzhou 11 

AllTest Biotech Co., Ltd.); Panbio COVID-19 IgG/IgM Rapid Test Device (Abbott); 12 

UNscience COVID-19 IgG/IgM Rapid Test (Wuhan UNscience Biotechnology Co., 13 

Ltd.), resulting in 433 RDTs inoculated (61 IgG+/IgM+; 166 IgG+/IgM-; 43 IgG-14 

/IgM+; 164 negative). Additionally, twelve COVID-Ag RDTs (Panbio COVID-19 Ag 15 

Rapid Test Device (Abbott) (6+,6-) were also included to train the algorithm to read not 16 

only three-band tests (such as the COVID-19 antibody tests used in this study) but also 17 

two-band RDTs such as COVID-19 antigen tests. The entire training dataset consisted 18 

of 3614 images. 19 

For collecting the independent validation dataset, 240 human sera samples 20 

independent from the ones used for training were used to inoculate 720 COVID-Ab 21 

RDTs (each serum was tested in triplicate using the aforementioned brands). The 22 

samples were selected ensuring all possible results are well represented along the 23 

dataset (108 IgG+/IgM+; 321 IgG+/IgM-; 27 IgG-/IgM+; 264 negative). 24 
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Each RDT was visually read by multiple observers (from 3 to 5) and the ground truth 1 

was established as the majority result from the total of analyzers. Each inoculated RDT 2 

was digitized by using the TiraSpot mobile app (Spotlab, Madrid, Spain) for guided and 3 

standardized acquisition ensuring correct positioning of RDTs in the image and using a 4 

total of 9 smartphone models. Results data was uploaded to a web platform. 5 

 6 

Field validation studies 7 

The workflow for the field studies was as follows: a health professional digitized the 8 

RDTs by using the app, was asked for recording the visual interpretation of the test 9 

result, images were uploaded to the telemedicine platform and processed by the AI 10 

algorithm, and discrepancies between the interpretation made by the health professional 11 

and that obtained by the algorithm were subsequently reviewed by an external health 12 

professional through the platform. 13 

The first field study used the system as part of a seroprevalence study conducted in 14 

two nursing homes in Madrid (Spain). A total of 172 vaccinated health care personnel  15 

were included in this study from which a finger-prick blood sample was taken and 16 

inoculated into SARS-CoV-2 Rapid Antibody Test (Roche). A trained nurse digitized 17 

the RDTs and record their result using the application. 18 

The second field validation field study tested the system to read also COVID-19 19 

antigen tests composed of two bands (Panbio COVID-19 Ag Rapid Test Device, 20 

Abbot). This study was carried out at the Emergency Department of the Ramón y Cajal 21 

Hospital (Madrid, Spain), where 92 individuals’ nasal swabs were inoculated in antigen 22 

tests, and digitized by experienced health professionals using the app. 23 

All images were acquired in very diverse real-world conditions (including different 24 

environmental illuminations and shades). 25 
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 1 

Results 2 

AI algorithm training and app validation 3 

All images acquired with the app were uploaded to a cloud platform where the AI 4 

algorithm processed the photographs to predict its result interpretation. As shown in 5 

Table 1A, when comparing the visual interpretations (used as ground truth) against the 6 

AI algorithm, the performance was high for all brands of RDTs tested, obtaining a mean 7 

sensitivity and specificity of 98% and 100% respectively for detecting the IgG band and 8 

a mean sensitivity and specificity of 80% and 89% for the detection of the IgM band.  9 

 10 

Validation in real-world scenarios 11 

From the 172 RDTs used in this study (5 IgG+/IgM+; 149 IgG+/IgM-; 1 IgG-/IgM+; 17 12 

negative), we only found 9 discrepancies between test result interpretation made by the 13 

health professional and the AI algorithm. From these 9 cases, two of them were 14 

incorrectly classified by the algorithm due to an incorrect image acquisition with the 15 

app. The remaining discrepant cases were further reviewed by a second professional, 16 

and the AI-based system allowed to detect and modify the result with respect to the 17 

initial healthworker interpretation in 4 cases by confirming the result predicted by the 18 

algorithm. 19 

The overall performance of the algorithm with respect to the ground truth is shown in 20 

Table 1B. It should be noted that the performance of the system is high even when used 21 

with a RDT different from those used for training the algorithm, suggesting its potential 22 

use with any RDT on the market. The slight disparity in the performance of IgM band 23 

identification in antibody RDTs between the validation set and this field study may be 24 
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explained by the presence of very faint signals which were almost invisible in the 1 

photographs. 2 

Regarding the second field study for reading COVID-19 antigen RDTs, we found 3 

that all tests used and digitized using the TiraSpot app (58 negative, 30 positive) were 4 

correctly interpreted by the proposed system (Table 1C), demonstrating that the system 5 

can also be applied for reading two-band (control and test) as well as three-band tests 6 

(IgG, IgM and control). 7 

 8 

Discussion 9 

We describe the usefulness of an app for reading and result interpretation of lateral-flow 10 

RDTs for SARS-CoV-2 testing. Additionally, results are sent to a telemedicine platform 11 

which allows for case identification and confirmation, quality control and real-time 12 

monitoring.  13 

Our AI algorithm demonstrates excellent performance, especially in prospective 14 

validation in real-life scenarios and for both antibodies and antigen detection tests. The 15 

algorithm performed as well in RDTs brands which were not used at all for training 16 

purposes, making the solution suitable for other RDTs, including other diseases. 17 

Compared with previous studies (6, 7), our system is able to identify individual bands of 18 

the RDTs allowing complex results reading and sending them in real-time to a cloud 19 

platform. A requirement and limitation of the proposed system is the correct acquisition 20 

of the image (acquisition error in the field studies <0.8%).  21 

In conclusion, the use of TiraSpot (Figure 1) is a useful tool for reporting, real-time 22 

monitoring and quality control, as the results can be reviewed by specialists when 23 

needed. This is especially important in contexts where massive testing is to be done and 24 

the likelihood of subjectivity and errors in the interpretation of the result is higher. It is 25 
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also important in the validation of self-diagnostic tests performed by untrained users, as 1 

it avoids the loss of information in case it is not notified by the user and provides an 2 

efficient system to confirm and report data, which has been a key challenge during the 3 

Omicron wave (4).  4 
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Table 1. Performance of the AI algorithm for predicting RDTs results with respect to 1 

human visual reading in the validation set (A), in the field study for reading antibodies 2 

RDTs (Ab) (B) and in the field study when reading antigen RDTs (Ag) (C). 3 

 4 

 A Model (Ab) Band AUC [95% CI] SN [95% CI] SP [95% CI] N 

  Abbott IgG 99.5 [98.7,100] 96.4 [94.1,98.8] 100 [100,100] 94-, 145+ 

   IgM 92.5 [85.4,99.6] 80.8 [75.8,85.8] 90.7 [87.0,94.3] 184-, 55+ 

  UNScience IgG 100 [100,100] 100 [100,100] 100 [100,100] 100-, 140+ 

   IgM 89.5 [83.7,95.2] 80.0 [74.9,85.1] 88.6 [84.6,92.6] 214-, 26+ 

  AllTest IgG 99.8 [99.4,1] 97.9 [96.1,99.7] 100 [100,100] 96-, 144+ 

   IgM 90.6 [85.0,96.1] 79.6 [74.5,84.7] 86.0 [81.6,90.4] 186-, 54+ 

  Global IgG 99.8 [99.5,100] 98.1 [97.1,99.1] 100 [100,100] 290-, 429+ 

   IgM 90.8 [87.4,94.3] 80.0 [77.1,82.9] 89.0 [86.2,90.9] 584-, 135+ 

        

 B Model (Ab) Band AUC [95% CI] SN [95% CI] SP [95% CI] N 

  Roche IgG 100 [100,100] 100 [100,100] 94.4 [92.8,96.1] 18-, 154+ 

   IgM 99.6 [96.0,100] 100 [100,100] 95.8 [94.3,97.3] 166-, 6+ 

        

 C Model (Ag) Band AUC [95% CI] SN [95% CI] SP [95% CI] N 

  Abbott NA 100 [100,100] 100 [100,100] 100 [100,100] 58-, 30+ 

 5 
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Figure 1. Tiraspot system is composed of (1) a mobile app for test digitization and 
result recording, (2) an AI model for RDT result interpretation and (3) a web platform 
where all collected data can be visualized and allows for result corrections in the cases 
in which a discrepancy exists between AI and user interpretation. 
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