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Abstract

This article considers the minimization of the total number of in-
fected individuals over the course of an epidemic in which the rate
of infectious contacts can be reduced by time-dependent nonpharma-
ceutical interventions. The societal and economic costs of interven-
tions are taken into account using a linear budget constraint which im-
poses a trade-off between short-term heavy interventions and long-term
light interventions. We search for an optimal intervention strategy in
an infinite-dimensional space of controls containing multiple consecu-
tive lockdowns, gradually imposed and lifted restrictions, and various
heuristic controls based for example on tracking the effective reproduc-
tion number. Mathematical analysis shows that among all such strate-
gies, the global optimum is achieved by a single constant-level lockdown
of maximum possible magnitude. Numerical simulations highlight the
need of careful timing of such interventions, and illustrate their bene-
fits and disadvantages compared to strategies designed for minimizing
peak prevalence. Rather counterintuitively, adding restrictions prior
to the start of a well-planned intervention strategy may even increase
the total incidence.

1 Introduction

The recent pandemic has underlined the need for non-pharmaceutical in-
terventions to help mitigating disease burden in the society, along with
vaccines and medications. Despite a solid body of past literature and an
enormous research effort during the past two years on epidemic modelling,
certain fundamental questions related to the optimal control of epidemics
still remain open. In this article we discuss the optimal employment of
non-pharmaceutical interventions to mitigate disease burden under the as-
sumption that interventions incur societal costs which are accumulated over
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time. We focus on the minimization of long-term total incidence (the share
of initially susceptible individuals who eventually become infected), and seek
answers to questions of type:

Should interventions be imposed early, or later after prevalence
has grown? Is it better to impose a one-month lockdown at 50%
intervention level, or a milder two-month lockdown at 25% in-
tervention level?

Numerical simulations and control theory are routinely used to answer such
questions on a case-by-case basis for models of unlimited complexity. An
alternative approach, pursued here, is to search for universal mathemati-
cal principles characterizing the shape and size of optimal interventions in
simple parsimonious models.

The simplest mathematical epidemic model, incorporating a time-dependent
intervention strategy is arguably defined as follows. We assume that the
transmission rate of infectious contacts at time t can be reduced by a factor

0 ≤ u(t) ≤ 1.

Under classical simplifying assumptions that recovery from disease gives full
immunity, overall vaccination status in the population remains constant,
there are no imported cases from other populations, population size remains
constant, and the population is homogeneously mixing, the evolution of the
epidemic can be modelled using differential equations

S′ = −(1− u)βSI,

I ′ = (1− u)βSI − γI,
R′ = γI,

(1)

where β > 0 is a baseline transmission rate in absence of interventions, γ > 0
is the recovery rate, and S(t), I(t), and R(t) represent the shares of suscep-
tible, infectious, and recovered individuals in the population, respectively.
The special case with no interventions (u(t) = 0 for all t) reduces to the
constant-rate version of the classical SIR model [1].

We write (S, I,R) = (Su, Iu, Ru) to emphasize that the epidemic tra-
jectory depends on the chosen intervention strategy u. The societal and
economic costs incurred by adopting an intervention strategy u can by mea-
sured by

• total cost ||u||1 =
∫∞
0 u(t) dt,

• total duration ||u||0 =
∫∞
0 1(u(t) > 0) dt,

• maximum intervention level ||u||∞ = supt≥0 u(t).

For this model, the basic reproduction number equals R0 = β
γ . In what

follows, we will assume that R0 > 1 because otherwise epidemic outbreaks
would not happen even in the absence of interventions [2].
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1.1 Minimizing peak prevalence

Recent theoretical research [3–6] on minimizing disease burden has mostly
focused on minimizing the peak prevalence

||Iu||∞ = sup
t≥0

Iu(t).

Morris et al. [3] proved that the peak prevalence subject to interventions of
bounded duration ||u||0 ≤ c0 is minimized by an intervention of form

u(t) =


0, t ∈ (0, t1] (wait)

1− 1
(β/γ)S(t) , t ∈ (t1, t2] (maintain)

1, t ∈ (t2, t3] (suppress)

0, t ∈ (t3,∞) (relax),

(2)

and discovered that such interventions induce a second wave having a peak of
same height as the first wave. Such a twin peaks phenomenon was also noted
in [4]. Miclo, Spiro, and Weibull [5] studied a dual problem of minimizing the
intervention cost ||u||1 subject to a bounded peak prevalence ||Iu||∞ ≤ c∞,
and proved that the optimum is of form

u(t) =


0, t ∈ (0, t1] (wait)

1− 1
(β/γ)S(t) , t ∈ (t1, t2] (maintain)

0, t ∈ (t2,∞) (relax).

(3)

The maintain phase in (2–3) is defined so that I ′u = 0, which keeps the
infectious share at a constant level. A similar control problem restricted to
a finite time horizon is analysed in [6].

1.2 Minimizing total incidence

Recent theoretical works on minimizing total incidence include [7–10]. Un-
der different budget constraints on intervention costs, they all conclude that
the optimal interventions are constant-level lockdowns with shape

u(t) =


0, t ∈ (0, t1] (wait)

c, t ∈ (t1, t2] (suppress)

0, t ∈ (t2,∞) (relax).

(4)

Feng, Iyer, and Li [7] considered on-off controls with finitely many switch-
ing times, with duration ||u||0 = c0 and maximum level ||u||∞ = c∞. In
parallel works, Bliman et al. [8] and Ketcheson [9] studied piecewise contin-
uous interventions subject to ||u||∞ ≤ c∞ and a bounded intervention time
window [0, T0]. Bliman and Duprez [10] considered piecewise continuous in-
terventions with bounded duration ||u||0 ≤ c0 and level ||u||∞ ≤ c∞, and
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described a numerical method to determine the optimal start time t1. The
analysis in [10] represents the state-of-art, covering the full class of piece-
wise continuous intervention strategies, and taking properly into account
the accumulation of intervention costs over time.

The results above provide elegant mathematical principles describing op-
timal intervention shapes, but they all are limited in one important aspect.
Namely, they ignore the fact that interventions of higher magnitude usually
inflict a higher societal cost, and as such cannot help in answering ques-
tions related to the trade-off between the magnitude and duration of an
intervention.

2 Theoretical results

2.1 Optimal intervention strategy

Our goal is to minimize total incidence among intervention strategies with
total time-aggregated cost bounded by ||u||1 ≤ c1 and maximum inter-
vention level bounded by ||u||∞ ≤ c∞ for some 0 < c∞ ≤ 1. The latter
constraint reflects the fact that a complete lockdown might be impossible
to implement in practice. We search for a global optimum in an infinite-
dimensional space of piecewise continuous intervention strategies containing
multiple consecutive lockdowns, gradually imposed and lifted restrictions,
and various heuristic controls based for example on tracking the effective
reproduction number [11]. The following theorem shows that among all
such intervention strategies, the global optimum is achieved by a simple
constant-level lockdown.

Theorem 1. For any initial state with S(0), I(0) > 0, the total incidence
among all piecewise continuous intervention strategies such that ||u||1 ≤ c1
and ||u||∞ ≤ c∞ is minimized by an intervention of form (4) with level
c = c∞, duration t2 − t1 = c1/c∞, and a uniquely determined start time t1.

Theorem 1 provides a simple answer to the simple but mathematically
nontrivial question presented in the beginning, indicating that heavy lock-
downs of short duration outperform light lockdowns of longer duration. The
optimal start time t1 may be numerically determined by solving a one-
dimensional optimization problem, as described in [7, 10].

2.2 Upper and lower bounds

As a byproduct of the mathematical analysis needed for proving Theorem 1,
we obtain universal upper and lower bounds for total incidence, valid for all
intervention strategies with a finite cost. The upper bound corresponds to
total incidence in the absence of interventions, and is expressed in terms of
the limiting susceptible share S0(∞) in a standard SIR epidemic with no
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interventions, which is numerically obtained as the unique solution in the
interval (0, γβ ) of equation

S0(∞)− γ

β
logS0(∞) = S(0) + I(0)− γ

β
logS(0).

Theorem 2. For any initial state with S(0), I(0) > 0 and for any inter-
vention strategy with finite cost ||u||1 < ∞, the total incidence is at least
1− γ/(βS(0)) and at most 1− S0(∞)/S(0)

3 Numerical results

The performance of the optimal strategy in Theorem 1 is investigated by
numerical simulations1 using parameters with basic reproduction number
R0 = 3 and an average infectious period of 5 days (Table 1), roughly in line
with the first wave of the COVID-19 pandemic in spring 2020, e.g. [12]. The
initial state corresponds to an importation of 1000 infectious individuals into
a population of size 10 million.

Parameter Value Meaning

β 0.6 Transmission rate (per day)
γ 0.2 Recovery rate (per day)
S(0) 0.9999 Initial susceptible share
I(0) 0.0001 Initial infectious share

Table 1: Parameters used in numerical simulations.

3.1 Performance

When an epidemic with a basic reproduction number R0 = 3 hits an
overwhelmingly susceptible population, eventually 94.0% of individuals will
become infected if no interventions are imposed. Furthermore, at least
1 − 1/(S(0)R0) = 66.6% will become infected under an arbitrary interven-
tion with a finite total cost (Theorem 2). The top panel in Fig. 1 displays
the total incidence that is achievable using optimal strategies with total cost
||u||1 bounded by c1 = 7.5, 15, 30 and maximum intervention level bounded
by 0 < c∞ ≤ 1. It is seen that interventions with even a modest budget of
c1 = 7.5 may significantly reduce total incidence if they can be imposed at
a sufficient magnitude. On the other hand, long but mild interventions have
little effect on total incidence.

The bottom panel in Fig. 1 shows that the higher the maximal interven-
tion level c∞, the longer one should wait before imposing the intervention,

1https://github.com/lasseleskela/epidemic-models-with-control.
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and that mild interventions should be started immediately. For a complete
lockdown (c∞ = 1), the optimal timing is to wait for 24.94 days, corre-
sponding to the time instant at which the uncontrolled epidemic reaches
herd immunity.
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Figure 1: Minimum total incidence (top panel) achievable using interven-
tions with total cost ||u||1 ≤ c1 and maximum level ||u||∞ ≤ c∞ for
c1 = 7.5, 15, 30, and a full range of c∞ (horizontal axis). The horizontal
lines at levels 0.666 and 0.940 indicate the lower and upper bounds of The-
orem 2. The bottom panel displays the start times of the optimal strategies
corresponding to the (c1, c∞)-pairs.

3.2 Optimal start time

Fig. 2 displays the total incidence of a 20-day constant-level lockdown hav-
ing level 0.75 and total cost 15, for different values of the start time, and
underlines the importance of proper timing of such interventions. Mistim-
ing the lockdown even by just one week may have a big effect on number
of eventually infected individuals. Somewhat strikingly, starting too early
is about equally as bad as starting too late. Similar findings have been
reported in [10, 13]. Proper timing is crucial also when minimizing peak
prevalence, as noted in [3].

3.3 Lack of monotonicity

Fig. 3 displays a striking phenomenon where adding restrictions before the
start of an optimal intervention leads to more individuals eventually becom-
ing infected. The original intervention (blue) with a duration 20 days and
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Figure 2: Total incidence of a constant-level lockdown of duration 20 days
and level 0.75, for different values of the start time. The optimal start time
t1 = 23.6 yields a total incidence of 0.758. The horizontal lines at levels
0.666 and 0.940 indicate the lower and upper bounds of Theorem 2.

a constant level of 0.75, is started optimally at time 23.6. An alternative
intervention (red) has the same level and end time but is started seven days
earlier. Such a modification, aimed at mitigating disease burden by adding
more restrictions, actually has an opposite effect and leads to 19.7% more
infections in the long run. This negative outcome is caused by a second wave
of infections which starts when the alternative intervention is lifted. This
again underlines the important of proper timing: if the longer longer 27-
day lockdown were started optimally at time 23.4, the total incidence would
have been 0.723 which is not much higher than the best possible outcome of
1− 1/(S(0)R0) = 0.666 given in Theorem 2. Similar observations manifest-
ing the counterintuitive lack of monotonicity has been reported in [14–16].
On a positive note, extending interventions from the end will never do harm
in this way (see Lemma 8 in the appendix).

3.4 Comparison with peak-minimizing strategy

Fig. 4 displays time plots of a constant-level lockdown of type (4) designed
to minimize total incidence and an intervention of type (3) designed to
minimize peak prevalence. Both intervention strategies are constrained by a
total budget c1 = 15 and maximum intervention level c∞ = 0.75. The latter
strategy imposes restrictions earlier, and when these are lifted, the share
of infectious individuals in the population is still relatively high, leading to
more additional infections and a higher total incidence. As expected, the
former strategy yields a lower total incidence than the latter, but at the cost
of higher peak prevalence.
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Figure 3: Intervening too early may do more harm than good. An opti-
mally timed 20-day lockdown at 0.75 level is in effect during time interval
(23.6,43.6) and leads to a total incidence of 0.758 (blue). A longer but badly
timed lockdown at the same level is effective during time interval (16.6, 43.6)
and leads to a total incidence of 0.907 (red) which is not far from the total
incidence of 0.940 corresponding to an uncontrolled epidemic (black). For
the longer 27-day lockdown, the optimal start time is 23.4 and yields total
incidence 0.723.

4 Discussion

It was proven that, among all intervention strategies with cumulative cost
not exceeding c1 and magnitude never exceeding c∞, a single lockdown at
level c∞, duration c1/c∞ started at an optimal time instant minimizes the
total number of individuals eventually getting infected. As a consequence,
assuming that a fixed proportion of infected individuals end up in hospitals
and another fixed proportion will die, this strategy also minimizes the cu-
mulative number of hospitalizations and case fatalities. We also saw that
the total incidence is at least 1 − 1/(S(0)R0) for any intervention with a
finite total cost. This reflects the fact that in the absence of future vaccina-
tions, the prevalence would start rising again if the susceptible share would
be above the herd immunity level 1−1/R0 at a time when interventions are
relaxed.

Numerically it was seen that milder restrictions for a longer time had
very little effect on the total incidence, and also, somewhat surprisingly,
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Figure 4: Time plots of cumulative incidence 1−S(t)/S(0) (top), prevalence
I(t) (middle), and intervention level u(t) (bottom) for three strategies: (a)
Total-incidence-minimizing single lockdown of 20 days at 75% level with
||u||1 = 15, and optimized start time = 23.6 (blue). (b) Peak-prevalence-
minimizing strategy (3) with start time 17.0 and duration 36.6 corresponding
to ||u||1 = 15 (red). (c) No control (black). The total incidence values for
the three strategies are 0.758, 0.843, and 0.940. The corresponding peak
prevalence values are 0.289, 0.075, and 0.300.

that restrictions imposed very early are not as effective as waiting until
the prevalence has grown substantially before inserting maximal prevention.
Rather counterintuitively, adding restrictions prior to the beginning of an
existing intervention strategy may even result in a larger total incidence.
On the contrary, as a by-product of our main proof, it was proven that
adding restrictions after an intervention strategy has ended can only reduce
the total incidence.

The optimization problem is formulated without having any fixed time
horizon in mind. If for example a vaccine was known to become available
not too far into the future, then this could lead to a rather different optimal
prevention. Another assumption was that we were only willing to spend a
finite cost c1 for the cumulative preventions. For a severe disease this might
not be the case — we might be willing to keep some restrictive level for a
very long time. In such a case the optimal solution will also be different.

A common feature of epidemic models based on deterministic differential
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equations is that the fraction of infected individuals never exactly reaches
zero. In real epidemics, this might happen due to stochastic finite-population
effects. In such cases, a feasible intervention strategy might be to aim for an
early elimination of the disease by imposing massive restrictions early on,
as has been advocated with SARS-CoV-2 in certain countries. The perfor-
mance of such strategies cannot be analysed using the type of deterministic
models considered here.

The class of interventions considered was assumed to have a bounded
linear cost integrated over time. It is not obvious that the societal cost of
preventive measures act linearly on the amount of prevention, and therefore
nonlinear cost functionals might be relevant to consider. Similarly, changing
an existing intervention level might incur additional societal costs, especially
if such changes are carried out frequently. The analysis of optimal interven-
tion strategies under such cost functions remains an open problem worthy
of attention.

Other extensions worth considering would be to make the underlying
epidemic model more realistic by incorporating seasonal effects, adding a
latency period between which individuals have been infected but are not
yet infectious, including a delay for the time it takes for an intervention
decision to take effect, acknowledging different types of individuals and social
structures such as households and workplaces, and relaxing the assumption
that individuals recover at a constant rate. However, we do not expect
major qualitative changes from these extensions, as opposed to considering
nonlinear cost functions or unlimited intervention budgets.

5 Proofs

5.1 Proof of Theorem 1

Denote by U(c1, c∞) the set of piecewise continuous functions u : [0,∞) →
[0, 1] such that ||u||1 ≤ c1 and ||u||∞ ≤ c∞. Denote by J(u) the total
incidence corresponding to intervention strategy u ∈ U(c1, c∞). Denote

J∗ = inf
u∈U(c1,c∞)

J(u).

Intuition suggests that interventions carried out in a distant future should
have a negligible effect on the evolution of the epidemic. Proposition 4 in
the appendix confirms this and tells that it is possible to select constants
C,α, T∗ > 0 such that ∫ ∞

T
Iu(t) dt ≤ Ce−αT (5)

for all T ≥ T∗ and all controls bounded by ||u||1 ≤ c1. Let us now fix ε > 0
and choose u1 ∈ U(c1, c∞) such that

J(u1) ≤ J∗ + ε. (6)

10
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(i) Truncation. We will approximate u1 by a control u2 = 1[0,T ]u1 of

finite duration, where we choose a large enough T > T∗ so that Ce−αT ≤ ε.
Because the trajectories (Su1 , Iu1) and (Su2 , Iu2) coincide up to time T , we
see that

|J(u2)− J(u1)| =
γ

S(0)

∣∣∣∣ ∫ ∞
T

Iu2(t) dt−
∫ ∞
T

Iu1(t) dt

∣∣∣∣
Because ||u2||1 ≤ ||u1||1 ≤ c1, inequality (5) tells that both integrals on the
right are at most Ce−αT , and it follows that

|J(u2)− J(u1)| ≤ 2ε
γ

S(0)
. (7)

(ii) Quantization. We will next approximate u2 by a bang–bang control
u3 defined as follows. We divide time into small intervals Ik = ((k−1)h, kh]
of length 0 < h ≤ εe−(β+γ)T . We quantize the control function u2 in a
frequency modulated fashion so that in each time Ik, first u3 = 0 for h −
τk time units, and then u3 = c∞ for the remaining τk time units, where

τk = b−1
∫ hk

hk−h
u2(t) dt

is selected so that
∫
Ik
u3(t) dt =

∫
Ik
u2(t) dt, see Figure 5. As a consequence

of h ≤ εe−(β+γ)T , it follows (details in Proposition 6) that∫ T

0
|Iu3(t)− Iu2(t)| dt ≤

∫ T

0
3βhe(β+γ)t dt

≤ 3βh(β + γ)−1e(β+γ)T ≤ 3ε.

Furthermore,∫ ∞
T
|Iu3(t)− Iu2(t)| dt ≤

∫ ∞
T

Iu2(t) dt+

∫ ∞
T

Iu3(t) dt,

and by noting that ||u3||1 = ||u2||1 ≤ c1 (Lemma 5), inequality (5) again
guarantees that both integrals on the right are at most Ce−αT ≤ ε. Hence
it follows that

|J(u3)− J(u2)| ≤ 5ε
γ

S(0)
. (8)

(iii) Prolongation. By construction, u3 = c∞1A where A is a finite
union of intervals of total length |A|. Because ||u3||1 = c∞|A| and ||u3||1 =
||u2||1 ≤ c1, we find that |A| ≤ c1/c∞. Intuition suggests that a smaller
disease burden will be incurred by replacing A by a larger subset of the time
axis, but such monotonicity properties are known to fail in general (see for
example [14, 15]). Nevertheless, prolonging the last interval of A from the
end does increase the final susceptible share (details in Lemma 8). Let us
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Figure 5: Quantization of a function u (blue) by frequency modulated
function û with amplitude 0.75 (red).

define u4 = c∞1Ã where Ã is obtained by prolonging the last interval in A

from the end so that |Ã| = c1/c∞. Then it follows that Su4(∞) ≥ Su3(∞),
and therefore, by recalling the equation S(0) + I(0)−Su(∞) = γ||Iu||1, we
find that

J(u4) ≤ J(u3). (9)

(iv) Merging. The control u4 belongs to the set Ũ of all controls of
the form u = c∞1B where B ⊂ [0,∞) is a union of finitely many disjoint
intervals of total length c1/c∞. Among those, the best for minimizing cu-
mulative incidence are those where all disjoint intervals are merged into a
single interval of length c1/c∞. Especially, it is known [7, Theorem 1.1]
that there exists σ ≥ 0 such that the control u5 = c∞1(σ,σ+c1/c∞) satisfies
J(u5) = infu∈Ũ J(u). Especially,

J(u5) ≤ J(u4). (10)

By collecting the inequalities (6)–(10) together, we conclude that

J(u5) ≤ J∗ + 8ε
γ

S(0)
.

To summarize, for any ε > 0 there exists σ ≥ 0 such that the single-lockdown
control u5 = c∞1(σ,σ+c1/c∞) satisfies the above inequality. We conclude that

inf
u∈U(c1,c∞)

J(u) = inf
σ≥0

J(vσ), (11)

where vσ = c∞1(σ,σ+c1/c∞) denotes a single-lockdown control with start time
σ, duration c1/c∞, and constant intervention level c∞.

(v) Timing. Finally, we will verify that the infimum in (11) is attained
by an optimally chosen start time σ∗ ≥ 0. Denote Û = ∪σ≥0Ûσ where Ûσ
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is the set of controls such that ||u||∞ ≤ c∞ and u = 0 outside the time
interval [σ, σ + c1/c∞]. Then [10, Theorem 1] implies that there exists a
unique σ∗ ≥ 0 such that

sup
u∈Û

Su(∞) = sup
σ≥0

sup
u∈Ûσ

Su(∞) = Svσ∗ (∞)

for vσ∗ = c∞1(σ,σ+c1/c∞). Therefore, by recalling the equation S(0) + I(0)−
Su(∞) = γ||Iu||1., it follows that

inf
u∈Û

J(u) = J(vσ∗).

Because Û contains all controls of the form vσ = c∞1(σ,σ+c1/c∞), we conclude
that

J(vσ∗) = inf
σ≥0

J(vσ).

In light of (11), this confirms the statement of the theorem.

5.2 Proof of Theorem 2

For a standard SIR model with no interventions (u = 0), it is well known
that the limiting susceptible share is bounded by S(∞) ≤ γ

β . By a careful
reasoning (Proposition 3 in the appendix), the same bound extends to epi-
demics controlled by an intervention with ||u||1 < ∞. Therefore, the total
incidence is bounded from below by 1− S(∞)/S(0) ≥ 1− γ/(βS(0)).

For the upper bound, it appears intuitively clear that the limiting sus-
ceptible share Su(∞) in an epidemic with an arbitrary control u is larger
than equal than the corresponding quantity S0(∞) in an epidemic with no
interventions. Indeed, Chikina and Pegden [14] have shown that a point-
wise ordering of interventions u1 ≤ u2 implies Su1(∞) ≤ Su2(∞) under an
extra assumption that u2 is nondecreasing. Straightforward modifications
of the analysis in [14] show that the above implication holds also when u1
instead of u2 is required to be nondecreasing. By selecting u1 = 0 and let-
ting u2 = u be an arbitrary piecewise continuous intervention, we find that
S0(∞) ≤ Su(∞), and we conclude that the total incidence is bounded from
above by 1− Su(∞)/S(0) ≤ 1− S0(∞)/S(0).
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14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.15.22271032doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.15.22271032
http://creativecommons.org/licenses/by-nc-nd/4.0/


Amy Dighe, Bimandra Djaafara, Ilaria Dorigatti, Sabine L. van El-
sland, Richard G. FitzJohn, Katy A. M. Gaythorpe, Lily Geidel-
berg, Nicholas C. Grassly, William D. Green, Timothy Hallett, Arran
Hamlet, Wes Hinsley, Ben Jeffrey, Edward Knock, Daniel J. Laydon,
Gemma Nedjati-Gilani, Pierre Nouvellet, Kris V. Parag, Igor Siveroni,
Hayley A. Thompson, Robert Verity, Erik Volz, Caroline E. Walters,
Haowei Wang, Yuanrong Wang, Oliver J. Watson, Peter Winskill, Xi-
aoyue Xi, Patrick G. T. Walker, Azra C. Ghani, Christl A. Donnelly,
Steven Riley, Michaela A. C. Vollmer, Neil M. Ferguson, Lucy C. Okell,
Samir Bhatt, and Imperial College COVID-19 Response Team. Esti-
mating the effects of non-pharmaceutical interventions on COVID-19
in Europe. Nature, 584(7820):257–261, 2020.

[13] Francesco Di Lauro, István Z. Kiss, and Joel C. Miller. Optimal timing
of one-shot interventions for epidemic control. PLOS Computational
Biology, 17(3):1–25, 03 2021.

[14] Maria Chikina and Wesley Pegden. Failure of monotonicity in epidemic
models, 2020.

[15] Andreas Handel, Ira M Longini, and Rustom Antia. What is the best
control strategy for multiple infectious disease outbreaks? Proceedings
of the Royal Society B: Biological Sciences, 274(1611):833–837, 2007.

[16] Thomas Kruse and Philipp Strack. Optimal control of an epidemic
through social distancing. SSRN Preprint, 2020.

[17] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 1995.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.15.22271032doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.15.22271032
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Truncation

The appendices present technical details needed for proving Theorem 1. Ap-
pendix A contains details related to approximating a control of infinite time
horizon by truncation. Appendix B contains an analysis of a frequency-
modulated quantization operator. Appendix C contains a monotonicity
property related to minimizing the disease burden by prolonged interven-
tions.

A.1 Time to reach herd immunity

For an epidemic trajectory (Su, Iu) controlled by u, we denote the time at
which herd immunity is reached by

tH(u) = inf

{
t ≥ 0 : Su(t) ≤ γ

β

}
.

The following result generalizes [7, Lemma 3.3:(2)] (and corrects a minor
mistake in its proof).

Proposition 3. For any initial state with S(0) > γ
β and I(0) > 0, and any

piecewise continuous control such that ||u||1 < ∞, the time to reach herd
immunity is finite and bounded by

tH(u) ≤ ||u||1 +
log(βγS(0))

βI(0)
eγ||u||1 .

Proof. We will analyse the system on the time interval up to tH = tH(u).
Observe that the logarithmic state variables evolve according to

(logSu)′ = −β(1− u)Iu, (12)

(log Iu)′ = β(1− u)Su − γ. (13)

By definition, Su ≥ γ
β on [0, tH ]. This lower bound combined with (13)

implies that (log Iu)′ ≥ −γu, and therefore

Iu(t) ≥ I(0)e−γ
∫ t
0 u(s)ds ≥ I(0)e−γ||u||1 (14)

on [0, tH ]. By denoting Imin = I(0)e−γ||u||1 and combining the above in-
equality with (12), it follows that (logSu)′ ≤ −βImin(1 − u) on [0, tH ], so
that

logSu(tH)− logS(0) ≤ −βImin

∫ tH

0
(1− u(t)) dt

≤ βImin(||u||1 − tH).

By noting that Su(tH) = γ
β by the continuity of Su, we see that

tH ≤ ||u||1 +
logS(0)− log γ

β

βImin
,

and the claim follows.
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A.2 Uniform integrability

The following result shows that the collection of infectious trajectories in-
duced by controls bounded by ||u||1 ≤ c1 is uniformly integrable.

Proposition 4. For any β, γ > 0, any initial state with S(0) > 0 and
I(0) > 0, and any c1 ≥ 0, there exist constants α,C, T∗ > 0 such that

sup
||u||1≤c1

∫ ∞
T

Iu(t) dt ≤ Ce−αT for all T ≥ T∗.

Proof. (i) Proposition 3 implies that for all controls with ||u||1 ≤ c1, the
time to reach herd immunity is bounded by the constant

t∗H = max{c1 + β−1I(0)−1 log(
β

γ
S(0))eγc1 , 0}.

Therefore, the susceptible share satisfies Su(t) ≤ γ
β from time t∗H onwards.

We will choose a slightly larger time horizon T∗ = t∗H + c1 + 1 and show that

Su(t) ≤ (1− δ)γ
β

(15)

for all t ≥ T∗ and all controls u such that ||u||1 ≤ c1, where δ = 1 −
exp(−βI(0)e−γT∗). To verify (15), observe first that∫ T∗

t∗H

(1− u(t)) dt = c1 + 1−
∫ T∗

t∗H

u(t) dt ≥ c1 + 1− ||u||1 ≥ 1. (16)

The crude lower bound (log Iu)′ = β(1− u)Su − γ ≥ −γ implies that I(t) ≥
I(0)e−γT∗ on (0, T∗). By noting that (logS)′ = −β(1 − u)I, it follows by
(16) that

logSu(T∗)− logSu(t∗H) = −β
∫ T∗

t∗H

(1− u(t))Iu(t) dt ≤ −βI(0)e−γT∗ .

By noting that the right side above equals log(1− δ), and that Su(t∗H) ≤ γ
β

due to tH(u) ≤ t∗H , we conclude that logSu(T∗) ≤ log γ
β + log(1 − δ), and

that (15) is valid.
(ii) We will next derive an upper bound for the tail integrals of Iu. By

applying (15), we see that for all t > T∗,

(log Iu)′ = β(1− u)Su − γ ≤ β(1− δ)γ
β
− γ = −γδ,

so that
Iu(t) ≤ Iu(T∗)e

−γδ(t−T∗) ≤ e−γδ(t−T∗).

By integrating the above inequality, we see that∫ ∞
T

Iu(t) dt ≤ 1

γδ
e−γδ(T−T∗) for all T ≥ T∗.

Therefore, the claim holds for α = γδ and C = 1
γδe

γδT∗ .
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B Quantization

We develop a frequency modulation approach to approximate a general
piecewise continuous function with a square waveform having a small wave-
length. Denote by U(b) the set of piecewise continuous functions u : [0,∞)→
[0, 1] such that ||u||∞ ≤ b. Given an amplitude b > 0 and wavelength h > 0,
we define a quantization operator Qb,h : U(b) → U(b) by setting Qb,hu = û
with

û(t) =

{
b if t ∈ I,
0 otherwise,

(17)

where I = ∪k≥1Ik is a union of disjoint intervals Ik = [hk − τk, hk) having
lengths

τk = b−1
∫ hk

hk−h
u(t) dt.

We will show that û approximates u well in a weak sense for small wave-
lengths. We first prove a general approximation property (Lemma 5), and
then derive an approximation result of an epidemic trajectory controlled by
û (Proposition 6).

A function φ : [0,∞)→ R is called locally bounded if ||φ||∞,t = sup0≤s≤t |φ(s)|
is finite for all t, and locally Lipschitz continuous if ||φ||Lip,t = sup0≤t1<t2≤t

|φ(t2)−φ(t1)|
t2−t1

is finite for all t.

Lemma 5. For any b, h > 0 and u ∈ U(b), the approximation û = Qb,hu
defined by (17) satisfies ||û||1 = ||u||1, and∣∣∣∣∫ t

0

(
û(s)− u(s)

)
φ(s) ds

∣∣∣∣ ≤ bh (||φ||∞,t + t||φ||Lip,t)

for all t ≥ 0 and all locally bounded and locally Lipschitz continuous φ.

Proof. On each interval [hk−h, hk), the quantized control alternates so that
û = 0 for the first h − τk time units, and then û = b for the remaining τk
time units. The choice of τk then implies that∫ hk

hk−h
û(s) ds =

∫ hk

hk−h
u(s) ds (18)

for all k ≥ 1. By summing both sides of the above equality with respect to
k ≥ 1, we find that ||û||1 = ||u||1.

Let us now fix t ≥ 0. Denote n =
⌊
t
h

⌋
and tk = kh, and observe

that
∫ t
0

(
û(s) − u(s)

)
φ(s) ds =

∑n
k=1Ak + Bn, where Ak =

∫ tk
tk−1

(
û(s) −

u(s)
)
φ(s) ds and Bn =

∫ t
tn

(
û(s) − u(s)

)
φ(s) ds. By applying (18), we find

that

Ak =

∫ tk

tk−1

(
û(s)− u(s)

)(
φ(s)− φ(tk−1)

)
ds.
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Because |φ(s)− φ(tk−1)| ≤ h||φ||Lip,t for all tk−1 < s < tk, and ||û−u||∞ ≤ b,
it follows that

|Ak| ≤ h||φ||Lip,t
∫ tk

tk−1

∣∣û(s)− u(s)
∣∣ ds ≤ bh2||φ||Lip,t.

Furthermore, by noting that tn ≤ t < tn + h, it follows that

|Bn| ≤ ||φ||∞,t
∫ t

tn

∣∣û(s)− u(s)
∣∣ ds ≤ bh||φ||∞,t.

We conclude that∣∣∣∣∫ t

0

(
û(s)− u(s)

)
φ(s) ds

∣∣∣∣ ≤ n∑
k=1

|Ak|+ |Bn|

≤ bnh2||φ||Lip,t + bh||φ||∞,t
≤ bht||φ||Lip,t + bh||φ||∞,t.

Proposition 6. For any b, h > 0 and u ∈ U(b), any β, γ > 0 and any initial
state with S(0), I(0) > 0, the epidemic trajectories (Su, Iu) and (Sû, Iû)
associated with u and û = Qb,hu satisfy

max
{
|Sû(t)− Su(t)|, |Iû(t)− Iu(t)|

}
≤ 3βbhe(β+γ)t

for all t ≥ 0.

Proof. The epidemic trajectory (Su, Iu) controlled by u is the unique solu-
tion to X ′(t) = f(t,X(t)), X(0) = (S(0), I(0)), where f : [0,∞)× R2 → R2

is defined by

f(t,X) =

[
−α(t)X1X2,

α(t)X1X2 − γX2

]
(19)

and α(t) = β(1 − u(t)). The state space of the system is denoted by
X =

{
X ∈ [0, 1]2 : X1 +X2 ≤ 1

}
and we equip it with max norm ||X|| =

max{|X1|, |X2|}. The Jacobian matrix of X 7→ f(t,X) equals

∂Xf(t,X) =

[
−α(t)X2 −α(t)X1

α(t)X2 α(t)X1 − γ

]
.

The operator norm of the matrix ∂Xf(t,X) induced by the max norm on
R2 is the maximum absolute row sum, which is bounded by

||∂Xf(t,X)|| = max
{
α(t)(|X1|+ |X2|), α(t)|X2|+ |α(t)X1 − γ|

}
≤ α(t)(|X1|+ |X2|) + γ.
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Hence ||∂Xf(t,X)|| ≤ β + γ for all X ∈ X and t ≥ 0, it follows [17, Lemma
2.2] that f is Lipschitz continuous according to

||f(t,X)− f(t, Y )|| ≤ (β + γ)||X − Y || for all X,Y ∈ X and t ≥ 0. (20)

Let Y : [0,∞)→ X be the unique solution to Y ′(t) = g(t, Y (t)), Y (0) =
(S(0), I(0)), where g(t,X) is defined analogously to f(t,X) but with α(t) in
(19) replaced by α̂(t) = β(1− û(t)). Then

X(t) = X(0) +

∫ t

0
f(s,X(s)) ds,

Y (t) = Y (0) +

∫ t

0
g(s, Y (s)) ds.

Because X(0) = Y (0), we find that the difference Z(t) = Y (t)−X(t) satisfies

Z(t) =

∫ t

0

(
f(s, Y (s))− f(s,X(s))

)
ds

+

∫ t

0

(
g(s, Y (s))− f(s, Y (s))

)
ds.

Inequality (20) shows that ||f(s, Y (s))− f(s,X(s))|| ≤ (β+ γ)||z(s)|| for all
s, and we conclude that the max norm of Z(t) is bounded by

||Z(t)|| ≤
∫ t

0
(β + γ)||Z(s)|| ds+ h(t), (21)

where

h(t) =

∣∣∣∣∣∣∣∣ ∫ t

0

(
g(s, Y (s))− f(s, Y (s))

)
ds

∣∣∣∣∣∣∣∣ .
Observe next that

g(s, Y (s))− f(s, Y (s)) = β(u(s)− û(s))φ(s)

[
−1
+1

]
,

where φ(s) = Y1(s)Y2(s), and hence

h(t) = β

∣∣∣∣∫ t

0
(u(s)− û(s))φ(s) ds

∣∣∣∣ .
We also find that |Y ′1(t)| = |Sû(t)| ≤ β and |Y ′2(t)| = |Iû(t)| ≤ β + γ
for all t ≥ 0. Therefore, |φ′(t)| ≤ 2(β + γ)t, and we conclude that φ is
globally Lipschitz continuous according to |φ(t)− φ(s)| ≤ 2(β+γ)|t− s| for
all s, t ≥ 0. Lemma 5 then implies that

h(t) ≤ C1 + C2t
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for C1 = βbh and C2 = 2βbh(β + γ). By combining this with (21), we
conclude that

||Z(t)|| ≤ C1 + C2t+

∫ t

0
(β + γ)||Z(s)|| ds,

and Grönwall’s inequality (e.g. [17, Lemma 2.1]) then implies that

||Z(t)|| ≤ C1 + C2t+

∫ t

0
(C1 + C2s)(β + γ)e(β+γ)(t−s)ds.

Integration by parts shows that the right side equals C1e
(β+γ)t+ C2

β+γ

(
e(β+γ)t − 1

)
,

from which we conclude that

||Z(t)|| ≤
(
C1 +

C2

β + γ

)
e(β+γ)t = 3βbhe(β+γ)t,

confirming the claim.

C Prolongation

C.1 A special function

Lemma 7. For any ρ > 0, the function f(x) = x − ρ−1 log x is strictly
decreasing on (0, ρ−1], and strictly increasing on [ρ−1,∞), and has a unique
minimum value y0 = 1

ρ(1 + log ρ). The restriction of f into (0, ρ−1] is

invertible, and the corresponding inverse function g : [y0,∞) → (0, ρ−1] is
strictly decreasing.

Proof. Because f ′(x) = 1− ρ−1x−1 we find that f ′(x) < 0 for s < ρ−1, and
f ′(x) > 0 for x > ρ−1. Hence the stated monotonicity properties follow. It
also follows that f restricted to (0, ρ−1] has a well-defined inverse function
g. The inverse function rule g′(y) = 1

f ′(g(y)) shows that g′(y) < 0 for all

y > y0, and confirms that g is strictly decreasing on [y0,∞).

C.2 Prolonged interventions imply less infections

Lemma 8. Let (S1, I2) be an epidemic trajectory controlled by u1 such that
u1 = 0 outside [0, T ]. Let (S2, I2) be an epidemic trajectory with the same
initial state but a modified control u2 = u1 + c1[t1,t2] with T ≤ t1 ≤ t2. Then
S1(∞) ≤ S2(∞).

Proof. The epidemic under a control uk evolves according to S′k = −β(1 −
uk)SkIk and I ′k = β(1− uk)SkIk − γIk. This implies that (Sk + Ik)

′ = −γIk
and (logSk)

′ = −β(1− uk)Ik. As a consequence, we find that(
β(1− uk)(Sk + Ik)− γ logSk

)′
= 0 (22)
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at every time instant in which u′k = 0.
Let Vk = Sk + Ik − γ

β logSk, the vulnerability of the population under
control uk. Because both controls vanish on (t2,∞) and I1(∞) = I2(∞) = 0,
we find from (22) that

Sk(∞)− γ

β
logSk(∞) = Vk(t2), k = 1, 2. (23)

Because both trajectories are equal up to time t1, we see that V1(t1) = V2(t1).
Because u1 = 0 on the interval (t1, t2), (22) shows that V1(t1) = V1(t2).
Analogously, by noting that u2 = c on (t1, t2), it follows that

(1− c)(S2(t1) + I2(t1))−
γ

β
logS2(t1)

= (1− c)(S2(t2) + I2(t2))−
γ

β
logS2(t2),

which can be rewritten as

V2(t2) = V2(t1) + c(S2(t2) + I2(t2)− S2(t1)− I2(t1)).

Because (S2 + I2)
′ = −γI2, we see that S2(t) + I2(t) is decreasing, and

therefore,
V2(t2) ≤ V2(t1) = V1(t1) = V2(t1).

Because of (23), it follows (Lemma 7) that S1(∞) ≤ S2(∞).
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