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ABSTRACT
Balanced chromosomal rearrangements (BCRs), including inversions, translocations, and insertions, reorganize large sections of 
the genome and contribute substantial risk for developmental disorders (DDs). However, the rarity and lack of systematic screening 
for BCRs in the population has precluded unbiased analyses of the genomic features and mechanisms associated with risk for DDs 
versus normal developmental outcomes. Here, we sequenced and analyzed 1,420 BCR breakpoints across 710 individuals, including 
406 DD cases and the first large-scale collection of 304 control BCR carriers. We found that BCRs were not more likely to disrupt 
genes in DD cases than controls, but were seven-fold more likely to disrupt genes associated with dominant DDs (21.3% of cases vs. 
3.4% of controls; P = 1.60x10-12). Moreover, BCRs that did not disrupt a known DD gene were significantly enriched for breakpoints 
that altered topologically associated domains (TADs) containing dominant DD genes in cases compared to controls (odds ratio [OR] 
= 1.43, P = 0.036). We discovered six TADs enriched for noncoding BCRs (false discovery rate < 0.1) that contained known DD 
genes (MEF2C, FOXG1, SOX9, BCL11A, BCL11B, and SATB2) and represent candidate pathogenic long-range positional effect 
(LRPE) loci. These six TADs were collectively disrupted in 7.4% of the DD cohort. Phased Hi-C analyses of five cases with noncoding 
BCR breakpoints localized to one of these putative LRPEs, the 5q14.3 TAD encompassing MEF2C, confirmed extensive disruption to 
local 3D chromatin structures and reduced frequency of contact between the MEF2C promoter and annotated enhancers. We further 
identified six genomic features enriched in TADs preferentially disrupted by noncoding BCRs in DD cases versus controls and used 
these features to build a model to predict TADs at risk for LRPEs across the genome. These results emphasize the potential impact 
of noncoding structural variants to cause LRPEs in unsolved DD cases, as well as the complex interaction of features associated with 
predicting three-dimensional chromatin structures intolerant to disruption.

INTRODUCTION
Balanced chromosomal rearrangements (BCRs), including 
translocations, insertions, and inversions, are a unique class of 
rare genomic variation that occur roughly five-fold more frequently 
in individuals with developmental disorders (DDs) than in the 
general population.1–6 Delineation of BCR breakpoints has long 
represented an approach to discover novel disease genes,7,8 
and has been accelerated by innovative methods using whole 
genome sequencing (WGS) with long-inserts (liWGS) to capture 
BCR breakpoints.9–16 Our previous WGS analyses suggested that 

26.6% of cytogenetically visible BCRs contribute to risk for DDs 
due to direct gene disruption.11 The observation, while substantial, 
also implies that alternative mechanisms of disease are likely to be 
mediating additional genetic risk for DDs due to BCRs. However, 
the lack of sufficient sample sizes, and the virtual absence of large 
cohorts of unaffected control BCR carriers with sequence-resolved 
breakpoints, have precluded a systematic evaluation of the full 
spectrum of pathogenic mechanisms associated with BCRs to date.
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Beyond the direct disruption of disease-associated protein-
coding genes, emerging evidence has begun to implicate a small 
number of noncoding elements in the etiology of DDs. Recent 
analyses have emphasized the challenges with the statistically 
rigorous genome-wide discovery of rare and de novo noncoding 
regulatory risk variants, including their small average effect 
sizes, the lack of a cipher equivalent to trinucleotide codons 
for variant interpretation, and the large number of noncoding 
functional categories that could be tested.17–19 Nonetheless, 
there are examples of noncoding variants with strong regulatory 
consequences and considerable influence on risk for DDs,19–21 
including long-range positional effects (LRPEs) that result from 
disruption of or topological associating domains (TADs)20,24–26 or 
long intergenic noncoding RNAs (lincRNAs).22,23 The disruption of 
TADs, which are megabase-sized regulatory domains of folded 
chromatin that contain most cis-regulatory interactions,27–30 can 
lead to loss of physical connections between enhancers and 
their target genes24,25 and/or the generation of ectopic enhancer-
promoter contacts through a process known as “enhancer 
adoption”.31,32 While relatively few studies have systematically 
evaluated the contribution of rare noncoding variants to risk for 
disease, BCRs represent a unique class of highly penetrant 
genomic variation from which we might begin to understand the 
mechanisms of pathogenic noncoding variants in DDs given the 
outsized impact of BCRs on genome structure and function.11,32,33

In this study, we analyzed 1,420 BCR breakpoints from 710 
unrelated individuals, including 406 DD cases as well as the first 
large-scale sequence-resolved cohort of 304 unaffected BCR 
carriers (i.e., controls), and evaluated a range of mechanisms by 
which BCRs may increase risk for DDs. Our analyses revealed 
a series of significant chromosomal, genic, and noncoding loci 
associated with DDs, as well as features that distinguished BCRs 
occurring in DD cases versus unaffected controls. In addition to 
refining DD risk estimates for BCRs directly disrupting dominant 
DD genes, we identified six TADs significantly associated with 
recurrent disruption by noncoding BCRs in DD cases, representing 
strong-effect LRPEs in DDs. Collectively, 7.4% of our DD cohort 
harbored a noncoding BCR breakpoint that disrupted one of these 
six TADs. We also defined a subset of core genomic features that, 
when considered together, can aid in the interpretation of DD-
associated LRPEs throughout the genome.

RESULTS
International aggregation, sequencing, and genome-wide 
analyses of BCRs in 406 DD cases and 304 controls
We have previously shown that chromosomal rearrangements 
that appear balanced at cytogenetic resolution can involve 
extensive complexity ranging from multiple cryptic breakpoints 
to balanced chromosomal shattering, or chromothripsis, at 
sequence resolution.11,15,34 Here, we focused analyses on the most 
interpretable classes of BCRs by aggregating a cohort of 710 
unrelated individuals harboring a “simple” BCR (i.e., breakpoints 
at two genomic positions without significant imbalance or 
additional complexity) initially identified by cytogenetic methods 
and subsequently resolved using either short-insert or long-
insert WGS (Fig. 1A; Supplementary Fig. 1; Supplementary 
Methods). This cohort included 406 cases diagnosed with a DD 
or congenital anomaly in which a BCR was confirmed to have 
arisen de novo or segregate with phenotype and 304 unaffected 
control adults with no early-onset pediatric phenotype (see Fig. 
1B and Supplementary Table 1 for complete descriptions). 

Over 55% of the BCR breakpoints have not been previously 
published. As a comparison for these 710 empirically-identified 
BCRs (n = 1,420 breakpoints; Supplementary Table 2), we 
also generated a set of 30,400 simulated BCRs under the null 
hypothesis that breakpoints should be randomly distributed 
throughout the genome. These simulated BCRs were randomly 
sampled in silico from the genome while matching properties of 
the 304 BCRs empirically identified in controls, including structural 
variant (SV) type, inversion size, as well as excluding N-masked 
regions known to be inaccessible to short read alignments 
(Supplementary Methods).35,36

We first sought to understand the global patterns of BCRs 
throughout the genome by comparing the rates of breakpoints 
per chromosome between cases, controls, and simulations 
(Supplementary Fig. 2). We found that BCR frequency was 
approximately proportional to chromosome length with two 
exceptions: translocations were enriched on chromosome 14 in 
DD cases (P = 5.8x10-6 for cases vs. random simulations) and 
were depleted on chromosome X in controls (P = 1.4x10-6 for 
controls vs. random simulations) (Fig. 1C and Supplementary 
Fig. 2). The distribution of breakpoints across chromosome 14 did 
not appear to cluster in any particular location (Supplementary 
Fig. 3) and we did not find any features (i.e., compartment state, 
replication timing, recombination frequency, or gene disruption) 
that could account for the enrichment. In contrast, when we 
subset chromosome X, we observed that both cases and controls 
were 2.7-fold to 5.3-fold depleted for breakpoints on the q-arm 
(Supplementary Fig. 2 and 3). The Xq depletion in controls 
may be partly explained by the exclusion of males with oligo/
azoospermia and females with premature ovarian failure given 
their known association with X-autosome translocations.37,38 
However, most of our DD cases were too young to be assessed 
for infertility, thus the Xq depletion in cases is unlikely to be 
related to a similar ascertainment bias. Overall, we identified that 
most (65%; 20/31) translocation breakpoints on chromosome 
X localized to the p-arm (length=58.6 Mb), which exhibited a 
6.9-fold enrichment of case vs. control breakpoints (P = 0.002). 
Interestingly, 90.0% (18/20) of the Xp translocations identified in 
DD cases were found in females. Finally, controls were depleted 
for translocations involving either sex chromosome: just 2.1% of 
control translocations involved either chromosome X or Y, which 
was significantly less than translocations in DD cases (8.9%; 
P = 9.2x10-4) or randomly simulated BCR carriers (12.1%; P = 
5.86x10-7) (Fig. 1D).

Our assessments of BCR breakpoint distributions per chromosome 
led to two additional discoveries. First, a single cytoband on 
chromosome 17 was significantly enriched for BCRs in cases  
(P = 1.2x10-5 vs. random simulations) and surpassed a genome-
wide significance threshold adjusted for all 862 cytobands tested 
across all chromosomes (Fig. 1E; Supplementary Fig. 4).39 This 
cytoband, 17q24.3, matches the location of a well-described 
pathogenic LRPE in DDs and congenital anomalies caused 
by SVs altering the local TAD organization and dysregulating 
SOX9 and KCNJ2.24,25 Second, after transforming the position 
of each breakpoint into a percentile relative to the length of its 
corresponding chromosome arm (i.e., meta-chromosome), we 
found that translocation breakpoints in controls were biased 
towards the most distal ends of chromosomes (Kolmogorov-
Smirnov test; P = 0.002 for control vs. simulation and P = 0.021 for 
control vs. cases; Fig. 1F; Supplementary Fig. 5). For example, 
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(A) We mapped the breakpoints of 710 simple (i.e., two-breakpoint) BCRs that were originally detected with cytogenetic methods. Here, we provide 
the genome-wide BCR breakpoint density in 10Mb windows per chromosome. (B) These 710 BCRs were identified in the genomes of 406 individuals 
affected by DDs and 304 unaffected controls. For purposes of comparison, we also generated 30,400 synthetic BCRs in silico by resampling the 
distribution of control BCRs 100 times randomly from the genome. (C) BCR breakpoints were distributed across the chromosomes as expected 
between affected, control, and simulated subsets except for chromosome 14, which exhibited a significant enrichment of breakpoints in affected 
samples, and chromosome X, which was depleted of breakpoints in controls. All comparisons were Bonferroni-adjusted for 72 total tests. (D) 
Balanced translocations involving at least one sex chromosome were significantly depleted in control samples compared to either affected samples or 
simulated null expectations. (E) We conducted association tests per cytoband for BCR breakpoints in affected samples vs. simulated null expectations. 
After correcting for 862 independent tests, just one cytoband was significant at the Bonferroni-adjusted threshold of P ≤ 5.8x10-5): 17q24.3, which 
corresponds to a locus with well-described LRPEs in DDs involving SOX9 and KCNJ2.24,25 (F) The distribution of autosomal BCR breakpoints in 
controls across a “meta-chromosome” arm (i.e., chromosome size-normalized position) was significantly different from those of affected samples or 
simulated null expectations, with controls exhibiting depletions near centromeres and enrichments very close to telomeres. (G) Loci corresponding to 
empirically identified autosome-autosome translocation breakpoints (i.e., those sequenced in affected or unaffected genomes) contacted each other 
in 3D within the nucleus of human embryonic stem cells 1.08-fold more frequently than expected vs. simulated null expectations. 

Fig. 1 | The properties of BCRs in the healthy human germline and DD cases
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control BCR breakpoints were roughly three-fold enriched within 
the terminal 2% of each chromosome arm: 2.7-fold vs. DD cases 
and 3.3-fold vs. random simulations. This might suggest that 
translocations occurring near telomeres–which do not rearrange 
most of the affected chromosome–are more likely to be tolerated 
in the general population without leading to severe disease.

We also sought to identify genomic features that predispose to 
BCR formation by annotating all BCR breakpoints with features 
relating to chromosome maintenance (e.g., recombination rate, 
replication timing), chromatin accessibility, sequence context 
(e.g., repetitive elements, sequence homology), and three-
dimensional (3D) nuclear organization (e.g., Hi-C contact 
frequency, nuclear compartment state).40 Most features showed 
no significant differences from expectations after correcting for 
multiple testing. One feature of note was that our empirically-
observed translocations (i.e., those sequenced in DD cases 
and controls) were slightly more likely to form between pairs 

of chromosomes in close proximity to each other in 3D within 
the nucleus than predicted from simulated breakpoints that did 
not account for this biological organization (1.08-fold increase; P 
= 0.002; Fig. 1G). This result was true in a fetal lung fibroblast 
cell line (IMR90) and replicated in a second dataset derived 
from embryonic stem cells.40 These findings might suggest a 
weak influence on the formation of BCRs between chromosomal 
regions that co-localize within the nucleus, as suggested by 
analyses of tumor genomes and cytogenetic data from germline 
BCR carriers.41

BCRs in DD cases are strongly enriched for direct disruption 
of established disease genes
Previous studies have demonstrated that BCRs confer substantial 
risk for DDs through direct disruption of haploinsufficient, 
developmentally critical genes.8,11,15 However, the absence 
of matched cohorts of unaffected control BCR carriers has 
historically hindered the quantification of disease risk contributed 
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by gene-disruptive BCRs. Here, we annotated all BCR 
breakpoints for direct gene disruptions using Gencode v19 and 
compared the frequency of gene-disrupting autosomal BCRs 
between DD cases, controls, and random simulations.42 Most 
BCRs disrupted at least one protein-coding gene and there was 
no difference between cases and controls (68.1% of DD cases 
and 67.6% of controls) or expectations from random simulations 
(69.0% expected; Fig. 2). We further subdivided protein-coding 
genes into four tiers based on the evidence for their association 
with disease (Supplementary Table 3). Briefly, these included 
genes associated with dominant DDs (i.e., Tier 1, n = 812), 
genes associated with all other diseases (Tier 2, n = 3,129), 
mutationally constrained genes with no prior disease association 
(Tier 3; n = 1,257), and all remaining protein-coding genes (Tier 
4; n = 15,188). We found a strong enrichment of cases with 
BCR breakpoints directly disrupting Tier 1 genes compared to 
controls (21.3% of cases versus 3.4% of controls; odds ratio 
[OR] = 7.45; 95% confidence interval [CI] = 3.74-16.50; Fisher’s 
exact test; P = 1.60x10-12) and compared to simulations (21.3% 
of cases vs. 6.6% of simulations; OR = 3.67; 95% CI = 2.80-4.76; 
P = 2.06x10-18), but not for Tiers 2-4.  

Motivated by the strong association between disruption of 
dominant DD genes and BCRs in cases, we systematically 
searched for genes that were recurrently disrupted by BCRs 
in cases beyond expectations by conducting association tests 
for each autosomal gene (Supplementary Table 4). These 
analyses identified four protein-coding genes disrupted in at 
least three independent DD cases and none in controls (Table 
1). Among these, just one gene, TCF4,11,15 surpassed a strict 
exome-wide significance threshold (disrupted in 1.6% of DD 
cases vs. 0.01% of simulated BCRs; P = 4.3x10-10; OR = 149.5). 
Haploinsufficiency of TCF4 is the dominant genetic cause of 
Pitt-Hopkins Syndrome and has been associated with autism 
spectrum disorder (ASD) and broadly defined neurodevelopmental 
disorders (NDDs).43,44 The three remaining protein-coding genes
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Fig. 2 | Risk conferred for DDs by BCRs disrupting genes 
and other transcribed loci
We annotated all BCR breakpoints for predicted overlap with protein-
coding and noncoding genes present in Gencode v19.14 Here, we 
further subset these BCRs based on the properties of the gene(s) 
disrupted at either breakpoint, including: any gene present in Gencode; 
protein-coding genes; “Tier 1” genes including those known to be 
associated with dominant DDs; “Tier 2” genes including all remaining 
disease-associated genes; “Tier 3” genes including all genes in the 
top decile of loss-of-function constraint47 but with no existing disease 
association; “Tier 4” genes including all remaining genes not captured in 
the preceding tiers; lincRNAs; all noncoding RNAs other than lincRNAs 
present in Gencode. For each subset of genes, we computed the rate of 
BCRs disrupting at least one qualifying gene between cases, controls, 
and simulated BCRs, and further computed the odds ratios of cases 
vs. controls and cases vs. simulated null expectations. Only BCRs 
disrupting Tier 1 genes were significantly enriched in cases vs. controls 
and cases vs. simulated BCRs after correcting for multiple comparisons.

Table 1 | Genes recurrently disrupted by BCRs in DD cases
A list of seven genes that are disrupted by BCRs from ≥3 DD cases and zero controls. The type (“biotype”), constraint information,47 P value (for case 
versus control and simulated breakpoint comparisons, respectively), and odds ratio (OR) for each gene are also shown. Only one gene, TCF4, met 
a strict exome-wide significance threshold. LOEUF, loss-of-function observed/expected upper bound fraction; Mis., missense; Pct, percent; BCR, 
balanced chromosomal rearrangement.

did not reach exome-wide significance but had suggestive (P ≤ 0.005) evidence of association with DDs in our analyses. These 
included two established DD genes (AUTS2, MBD5)45,46 and one candidate DD gene, CDK6, which was disrupted in three cases that 
presented with developmental delay (n = 3), speech delay (n = 2), microcephaly (n = 2), and cardiac defects (n = 1). CDK6 is highly 
constrained against damaging point mutations,47 is ubiquitously expressed across tissues,48,49 and encodes a cyclin-dependent kinase 
with major roles in skin, blood, and breast cancers.50 CDK6 has also been associated with a recessive form of primary microcephaly,51 
but has not been previously associated with dominant germline disease.
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Our analyses identified an unambiguous, strong association 
between DDs and BCRs disrupting dominant DD genes; however, 
the majority of autosomal BCRs in DD cases did not disrupt a 
known disease gene (n = 289; 78.7%), and one-third (n = 113; 
30.8%) did not disrupt any annotated protein-coding gene. We 
therefore considered three other models by which BCRs might 
confer DD risk through noncoding mechanisms based on: (i) 
their disruption of noncoding genes (e.g., lincRNAs), (ii) their 
linear distance from known disease genes, and (iii) the disruption 
of TADs containing known disease genes. We excluded all 78 
(21.3%) cases and 10 (3.4%) controls with autosomal BCRs 
that directly disrupted a Tier 1 gene, which we reasoned would 
largely exclude the confounding influence of BCRs associated 
with pathogenic effects via direct gene disruption. We first 
tested whether direct disruption of noncoding genes could be 
responsible for pathogenic effects in DD cases and observed no 
difference in the fraction of cases versus controls that disrupted 
any subgroup of noncoding genes (Fig. 2). We next assessed 
whether pathogenic LRPEs could be predicted based on the 
absolute distance between disease genes and BCR breakpoints 
and observed no difference between DD cases and controls for 
proximity to any tier of genes (e.g., Tier 1 genes; Kolmogorov-
Smirnov test; P = 0.159; Fig. 3A-B). These analyses confirm that 
linear distance to disease genes alone is insufficient to predict 
pathogenic LRPEs. However, when we tested the third model by 
comparing the fraction of cases to controls with a BCR breakpoint 
disrupting a TAD containing genes from each tier, we observed 
a significant effect for TADs containing Tier 1 genes (OR = 1.43;  

Pathogenic positional effects from disruption of three-
dimensional chromatin structures

Fig. 3 | Disruption of TADs, and not proximity to known dominant DD genes, is predictive of LRPEs
(A-B) Fraction of cases and controls with an autosomal BCR breakpoint in proximity to a Tier 1 dominant DD gene (Supplementary Table 3) when 
direct disruption of Tier 1 genes are included (A) and excluded (B). P value corresponds to a two-sample Kolmogorov-Smirnov test. (C-D) Fraction 
of cases compared to controls with a BCR breakpoint directly disrupting TADs40 containing each of the four gene tiers when direct disruption of 
genes within that gene tier are included (C) and excluded (D).

95% CI = 1.68-3.18; Fisher’s exact test P = 0.033; Fig. 3C-
D), supporting the role of 3D chromatin topology disruption in 
pathogenic LRPEs. Given these results, we next performed 
genome-wide analyses to define the TADs most strongly 
associated with DD phenotypes. 

We searched for specific TADs associated with risk for DDs 
by evaluating each autosomal TAD identified from a fetal lung 
fibroblast (IMR90) cell line40 for an enrichment of case BCRs 
against a Poisson null model fit to the distribution of control 
breakpoints. Overall, we identified 26 recurrently disrupted TADs 
with suggestive evidence for association with DDs based on a 
Benjamini-Hochberg false discovery rate (FDR) q ≤ 0.1 (Fig. 4 
and Supplementary Table 5). Five of these TADs surpassed 
a Bonferroni-adjusted genome-wide significance threshold of 
2.2x10-5, including three known LRPE loci at MEF2C, FOXG1, and 
SOX9 (Fig. 5).11,14,52–54 These five TADs also remained significant 
when we compared BCRs from DD cases against simulated 
breakpoints, suggesting that our models were not simply capturing 
rearrangement hotspots. Consistent with the finding that most 
TAD boundaries are tissue-invariant,28,29,40 tissue source had no 
impact on the genome-wide significant TADs (Supplementary 
Fig. 6). Given that we only removed cases and controls with a 
direct disruption of a Tier 1 gene, our TAD results represented a 
combination of true LRPEs, genic effects not previously associated 
with DDs, and other unknown mechanisms of disease etiology. For 
example, one of the genome-wide significant TADs was altered by 
three cases that all directly disrupted CDK6, a novel candidate DD 
gene identified from our exome-wide gene association analysis, 
suggesting that it likely represents a genic effect and not a LRPE.
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Fig. 4 | Genome-wide enrichment of TADs disrupted by BCR breakpoints from DD cases
(A) Genome-wide enrichment of BCR breakpoints in DD cases across 2,257 autosomal TADs.40 P values correspond to enrichments against a 
Poisson null model fit to the distribution of control breakpoints. The genome-wide significance threshold of 2.21x10-5 (denoted by the red line) was 
determined by correcting for the total number of autosomal TADs tested and the blue line represents the Benjamini-Hochberg FDR<0.1 cutoff. Known 
dominant DD genes (Tier 1) contained within each genome-wide significant TAD are reported in parentheses. The GM12878 Hi-C maps30 are shown 
for each of the six TADs significantly enriched for BCR breakpoints from DD cases: (B) 2p16.1 TAD containing BCL11A, (C) 5q14.3 TAD containing 
MEF2C, (D) 14q12 TAD containing FOXG1 and PRKD1, (E) 14q32.2 TAD containing BCL11B, (F) 17q24.3 TAD containing SOX9, and (G) 2q33.1 
TAD containing SATB2. The annotation tracks under the HiC maps include BCR breakpoints from DD cases and controls, Tier 1 DD genes (blue), all 
other protein-coding genes from Gencode v19 (gray),42 VISTA enhancers (pink),62 and UCEs (green).63
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(A) The 3D resequencing pipeline starts by using Hi-C data to call short variants (SNPs and indels) against a haploid reference. In this paper we 
used the DRAGEN software,79 but similar results can be achieved with other publicly available variant callers such as GATK.83 We then use the Hi-C 
alignment data as generated by Juicer84 in conjunction with the 3D-DNA phaser to phase the variants and produce chromosome-length haploblocks. 
The phased variants enable the generation of molecule-specific contact maps, which in turn allow for molecule-specific annotation of SVs. Using 
the assembly tools from the 3D-DNA/Juicebox Assembly Tools ecosystem we then create assisted assemblies congruent with the annotated SVs 
and remap the contact data against the new reference to allow for phased diploid epigenetic analyses. (B) Molecule-specific Hi-C contact maps 
showing DNA-DNA interactions in the vicinity of the MEF2C promoter in LCLs derived from patient DGAP101: “normal” haplotype Hi-C data mapped 
to hg19 reference genome (left); haplotype with a chromothriptic chromosome 5 (middle, notice the numerous signal depletions along the diagonal 
corresponding to breaks and off-diagonal enrichments in the signal corresponding to fusion points); chromothriptic haplotype remapped against a 
reference that accounts for the chromotriptic rearrangements (right). The 1D tracks show the phased SNP density, highlight the syntenic regions 
between the three maps (rainbow colors are reserved for sequences in the vicinity of MEF2C in the “normal” reference, while hatching corresponds to 
sequences juxtaposed into the genomic segment of interest from elsewhere on chromosome 5 in the affected haplotype), as well as show the position 
of the promoter and 16 known enhancers61 in the ‘standard’ human reference as well as in the SV-corrected reference. (C) A dotplot of the whole 
chromosome 5 showing the correspondence between the affected and the normal molecules (100Kb synteny blocks are used, with direct synteny 
blocks colored red, and inverted blocks colored blue). The position of the MEF2C promoter is highlighted with dashed lines.

Fig. 5 | Hi-C analysis of DD case with complex BCR disrupting the TAD containing MEF2C
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We previously implicated the 5q14.3 locus as a putative pathogenic 
LRPE with MEF2C as the target gene based on a statistically 
significant enrichment of noncoding BCR breakpoints that all 
disrupted the same TAD containing MEF2C and observed down-
regulation of this gene in multiple cases harboring the noncoding 
BCRs.11 Based on these data, we hypothesized that the disruption 
of 3D topological organization could represent the underlying 
mechanism for this LRPE. To functionally validate this hypothesis, 
we generated high-throughput chromatin conformation capture 
(Hi-C) data from lymphoblastoid cell lines from five cases harboring 
BCRs disrupting the TAD containing MEF2C and developed a 3D 
resequencing workflow (see Supplementary Methods and Fig. 
5A) to facilitate analysis of the resulting data. The goal of this 
workflow was to use Hi-C datasets to: (i) identify single nucleotide 
polymorphisms (SNPs), small insertions and deletions (indels), 
and SVs, (ii) phase these variants onto chromosome-length 
haploblocks, thereby reconstructing the end-to-end sequences 
of each molecule, and (ii) use the resulting diploid assembly to 
generate homolog-specific 3D contact maps.  

To identify candidate pathogenic LRPE loci among the 26 TADs with 
q ≤ 0.1, we required that each TAD: (i) be disrupted by a noncoding 
BCR breakpoint (e.g., does not disrupt a protein-coding gene) in at 
least 50% of cases contributing to the signal, (ii) contain a Tier 1 
gene representing a plausible target gene, and (iii) have multiple 
cases disrupting the same TAD that present with phenotypes 
that are frequently observed in cases with direct disruption of the 
candidate target gene (Supplementary Table 6). This resulted in 
six candidate pathogenic TADs containing the known DD genes 
SATB2, MEF2C, FOXG1, SOX9, BCL11B, and BCL11A (Fig. 4). 
Supporting our statistical enrichments, five of the six significant 
TADs have been previously associated with pathogenic LRPE 
loci (SATB2, MEF2C, FOXG1, BCL11B and SOX9) based on 
individual case  reports,11,14,52,54-56 suggesting that we are accessing 
bona fide LRPE signals. The novel candidate LRPE at 2p16.1 
contains BCL11A, which encodes a zinc finger protein involved in 
the BAF SWI/SNF chromatin remodeling complex, and has been 
previously associated with an intellectual disability syndrome.57 

All four of the cases with noncoding BCRs disrupting the TAD 
containing BCL11A presented with DD or ASD.57 Overall, these six 
TADs were disrupted by 30 cases (7.4%) and one control (0.32%; 
Fisher’s exact test; OR = 21.2; 95% CI 4.5-500.1; P = 7.12x10-7), 
suggesting that they represent highly-penetrant LRPE loci.
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We applied this workflow to two simple (one inversion and one 
translocation) and three additional complex BCRs from prior 
studies with noncoding breakpoints disrupting the TAD containing 
MEF2C.11,14 Each rearrangement was genotypically distinct with 
different resultant derivative chromosomes. While complex BCRs 
were excluded from other aspects of this study, we included 
three in our Hi-C analysis because their impact on 3D genome 
organization has not been previously examined in a homolog-
specific manner.59,60 Comparing the results of rearrangement 
detection using Hi-C to those using liWGS, we found that the 
3D resequencing pipeline detected 92.7% (n = 51/55) of the 
breakpoints found by the combination of both methods. Three of 
the four breakpoints missed by Hi-C were short segments (<10kb) 
of DNA that had been rearranged and inserted into a new position. 
The missed breakpoints were visible in the Hi-C map but had not 
been identified by the computational analysis. Conversely, liWGS 
detected 96.4% (n = 53/55) of the Hi-C identified breakpoints, 
failing to detect a breakpoint associated with a short interval, 
as well as a 78kb deletion. Crucially, Hi-C was able to reliably 
order and orient the rearranged sequences on each homolog, 
even when a breakpoint was missed (Supplementary Table 
7, Supplementary Figs. 7A-E). By contrast, it is challenging to 
reliably order and orient the rearranged sequencing using liWGS 
data alone if breakpoints are missed. Taken together, these 
results demonstrate that Hi-C can be used to robustly generate 
both homolog-specific sequences and architectural maps.

In all five BCR cases we examined, 3D resequencing via 
Hi-C also revealed significantly altered 3D organization of the 
rearranged homolog (Supplementary Figs. 7A-E). Moreover, 
we observed reduced frequency of contact between the 
MEF2C promoter and 16 distal enhancers60 (Supplementary 
Table 8), consistent with the dysregulation of MEF2C 
expression observed in the same cases. In the majority of the 
cases, the reduction in contact frequency appeared to result 
from the BCR greatly increasing the distance between the
promoter and its enhancers (Supplementary Fig. 7). However, in 
one case with chromothripsis (DGAP101), the BCR breakpoints 
only had a modest effect on the linear distance between the 
MEF2C promoter and its enhancers. Instead, the promoter and 
enhancers were separated into distinct architectural domains 
through the creation of a new boundary, which likely prevented 
physical contact between the promoter and enhancers (Fig. 5B-
C). The observed 3D remodeling suggests a reduced frequency 
of contact between sequences that influence MEF2C expression, 
providing a plausible explanation for how a noncoding BCR 
breakpoint can result in a DD phenotype through disruption of 3D 
genome architecture.

Genomic features predict TADs associated with pathogenic 
LRPEs

large polymorphic deletion in the genome aggregation database 
(gnomAD),61 which excludes adults with a history of early onset 
developmental conditions. Thus, additional genomic features 
beyond the presence of disease-associated genes are required 
to predict TADs preferentially disrupted by BCRs in DD cases.

To identify genomic features that characterize TADs intolerant 
to disruption, we annotated all autosomal TADs40 in the genome 
with 54 features that can be broadly grouped into five categories: 
genes, cis-regulatory elements, primary sequence conservation, 
repetitive elements, and ‘other’ (Figs. 6A and Supplementary 
Methods). We defined 45 “positive” training TADs (disrupted by 
≥2 BCR cases and zero BCR controls) and 261 “negative” TADs 
(disrupted by ≥1 BCR control and no BCR cases) and performed 
a univariate logistic regression for each of the 54 features, which 
identified 26 features at a FDR<0.05 (Supplementary Table 9). 
Next, given that many genomic features are highly correlated 
(Supplementary Fig. 8), we trained an elastic net regression on 
the positive and negative training TADs that included all 26 features 
from the univariate analysis and identified six features that were 
individually associated with case status after controlling for the 
effects of all other features: VISTA enhancers,62 ultraconserved 
elements (UCEs),63 transposon-free elements,64 TAD size,40 the 
presence of at least one Tier 1 gene, and primary sequence 
conservation65,66 (Fig. 6B).

We tested this model’s predictive accuracy on an independent 
set of 372 TADs (see Supplementary Methods for selection 
criteria) that were not used in our training data and determined 
that these six features alone were moderately predictive of LRPE 
pathogenicity (area under the receiver operating characteristics 
curve=0.633; Fig. 6C). We next defined a “LRPE pathogenicity” 
cutoff score of ≥0.43 (TADs ranked in the top 10th percentile 
from our model) based on the point in which case-control and 
case-simulation enrichments surpassed OR>1.5 (Fig. 6D). We 
demonstrated that 75.0% of previously established LRPE loci 
(Supplementary Table 10) in the human genome that were not 
represented in our training dataset surpassed this score, a highly 
significant enrichment when compared to all other TADs in the 
genome (Fisher’s exact test; P = 2.55x10-5). These orthogonal 
approaches collectively confirmed that this relatively simple 
six-feature regression model was able to prioritize TADs likely 
intolerant to disruption. While much larger cohorts will be required 
to power more sophisticated predictive models, these analyses 
demonstrate the potential of this approach to improve noncoding 
variant interpretation and shed greater light on the genomic 
features associated with noncoding mechanisms of disease.

DISCUSSION

Motivated by our discovery of multiple genome-wide significant 
LRPE loci in DDs, coupled with our validation of functional 
changes in MEF2C and alterations to the 3D organization 
associated with the putative 5q14.3 LRPE, we exploited this 
unique BCR dataset to identify additional features contributing 
to pathogenic TAD disruptions that could be used for future 
LRPE predictions. As described above, we demonstrated 
that the genic content of TADs alone is insufficient to 
unequivocally predict the pathogenicity of an individual BCR, 
as 43.0% of BCRs in controls disrupted a TAD containing a 
Tier 1 gene. We also found that 9.4% of all TAD boundaries 
encompassing a Tier 1 gene were overlapped by at least one  

It has been well-established that de novo BCRs are associated 
with increased risk of congenital anomalies and a broad range of 
DDs,2,4,6,10 yet little is known about the pathogenic mechanisms 
through which this risk occurs outside of direct gene disruption. 
Using a large, aggregated cohort of cytogenetically-defined 
simple BCRs from which we derived sequence-resolved 
breakpoints, including several hundred BCRs from unaffected 
controls, our analyses reveal new insights into the mechanisms 
through which BCRs confer risk for DDs. These data identified 
an enrichment of BCRs impacting chromosomes 14 and Xp 
in DD cases, the latter of which was predominantly driven by 
X-autosome translocations in females. A previous cytogenetic 
study observed an association between telomeric breakpoints on
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This result is also certainly an underestimate of the pathogenic 
impact of disruptions of 3D topology as it is restricted to only the 
six most prominent LRPE loci identified in our dataset. Many 
decades of disease gene discovery have biased our findings 
considerably towards identifying and prioritizing pathogenic gene 
disruptions, whereas much less is known about the molecular 
mechanisms, pathogenic processes, and genomic features of 
pathogenic noncoding variation. We anticipate that the fraction of 
BCR carriers associated with identifiable pathogenic LRPEs will 
continue to increase as future studies increase sample size and 
further clarify the essential features necessary for cis-regulatory 
disruption of disease-associated genes.

To investigate the potential underlying mechanism of LRPEs due to 
3D topology disruption, we performed Hi-C analyses on five cases 
with noncoding BCRs that disrupted our top putative LRPE locus, 
the TAD containing MEF2C. While Hi-C has been performed on 
human cells from a small number of DD cases harboring SVs,58,59 
none of these studies have explicitly isolated the impact of 
heterozygous SVs on 3D topology. This is largely due the fact that 
existing computational workflows do not effectively combine the 
phased de novo assembly of genomes with the discovery of SVs. 
Our 3D resequencing pipeline merged these tasks into a single 
workflow that was able to recapitulate the structure of each BCR 
detected by liWGS. In addition, the Hi-C analyses provided data 
on the 3D architecture at the 5q14.3 locus, revealing extensive 
disruption to the normal TAD structure of the region. The Hi-C 
analyses demonstrated that the 5q14.3 BCRs disrupted the

Fig. 6 | Identification of genomic features associated with pathogenic LRPEs
(A) An overview of the framework used to generate a model to predict pathogenic LRPEs across the genome based on disruption of 3D genome 
architecture. (B) Features identified to be potentially associated with TADs preferentially disrupted by BCRs from DD cases based on a BH-FDR<0.05 
from a univariate logistic regression performed for each feature, ordered by effect size. (C) Evaluation of the LRPE model using an independent set of 
372 TADs. Performance of TADs overlapping other common functional annotations are shown as a comparison. (D) To determine a cut-off score that 
could be used to identify TADs that are especially intolerant to disruption, we compared the fraction of cases to controls and simulated breakpoints 
that disrupt a TAD in each percentile and identified the inflection point at which a case enrichment (OR>1.5) begins to emerge.

the X chromosome, particularly at Xp22 and Xq28, and DDs in 
females with X-autosome translocations.67 Our analyses confirm 
and broaden these results by suggesting that this enrichment 
extends beyond Xp22 and likely encompasses the entire p arm. 
We further demonstrated that there is a seven-fold enrichment of 
BCR breakpoints that directly disrupt known DD genes in affected 
cases compared to controls, but that roughly 79% of DD BCR 
carriers cannot be explained by the direct disruption of currently 
recognized disease genes. We discovered TADs containing 
known DD genes that were recurrently disrupted by noncoding 
BCRs in DD cases far more frequently than expected by chance, 
suggesting that additional risk for DDs from BCRs are mediated 
through noncoding mechanisms, which represents an enticing 
area for future investigations.

These data implicate disruption of 3D chromatin domains as a 
mechanism likely mediating some of these noncoding effects. Our 
analyses identified six TADs enriched for BCR breakpoints in DD 
cases beyond what would be expected by chance. Notably, all three 
of the most significant TAD associations that exceeded genome-
wide significant thresholds and matched previously established 
pathogenic LRPEs (MEF2C, FOXG1, and SOX9).11,52,54 The three 
additional LRPE loci are particularly compelling candidates given 
that they harbor well-known DD genes, BCL11A, SATB2, and 
BCL11B,56,57,68–70 and are disrupted by cases with phenotypes that 
match those seen in individuals with direct disruption of these 
DD genes. We note that, collectively, 7.4% of DD cases in this 
cohort harbor noncoding BCRs that disrupt these six LRPEs.  
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physical contact between the MEF2C promoter and enhancers via 
two mechanisms, either by increasing the linear distance between 
them, or creating a new boundary that prevented the promoter from 
interacting with the enhancers. The creation of a novel boundary 
is consistent with a recent study that functionally dissected the 
TAD containing SOX9, one of our genome-wide significant TADs, 
and demonstrated that repositioning of the TAD boundary itself via 
inversion or insertion of novel CTCF sites created a new boundary 
that decoupled the SOX9 promoter from its enhancers, resulting 
in downregulation of SOX9 and abnormal phenotypic outcomes in 
mice.24 Additional Hi-C analyses of different SV classes at various 
loci will be critical for determining the full range of potential LRPE 
mechanisms, the relative prevalence of each, and what features 
predispose certain genomic regions to their pathogenic effects.
 
Our study further illustrates the complexity of interpretation of TAD 
disruption in human disease. We find that the disruption of TADs 
containing DD genes by control BCRs usually does not result in an 
appreciable disease phenotype, nor does the deletion of boudaries 
from these TADs as identified in population controls.61 This result 
refutes the utility of interpretation approaches that simply seek to 
match TAD disruption with the presence of a DD gene within the 
domain,  particularly when assessing DD phenotypes that can be 
plausibly linked to hundreds of dominant disease genes throughout 
the genome. To systematically identify additional genomic features 
that were predictive of TAD intolerance, we leveraged our BCR 
cohort to build a model that prioritized six genomic features 
independently associated with TADs preferentially disrupted by 
DD cases. In addition to DD-associated (Tier 1) genes we also 
identified TAD size as being positively correlated with risk for DDs, 
which is consistent with developmentally regulated genes having 
complex cis-regulatory landscapes that likely occupy greater 
genomic space.71 We discovered an enrichment of primary 
sequence conservation and UCEs in TADs disrupted by BCRs 
from DD cases, which aligns with the report of an enrichment 
of UCEs in the vicinity of SVs associated with NDDs.63 Despite 
this initial progress towards identifying features associated with 
TADs intolerant to disruption, this model lacks sufficient predictive 
power to discriminate individual BCRs identified in cases from 
controls. However, we anticipate that larger sample sizes and 
improved noncoding functional predictions will eventually power 
increasingly sophisticated statistical models to aid in the clinical 
interpretation of noncoding BCRs. These data, together with our 
Hi-C analyses from the 5q14.3 locus, suggest that LRPEs are 
likely to be modified by the type of structural rearrangement as 
well as the complex interplay of genomic features within the TAD.

In conclusion, these data demonstrate that BCRs exert highly 
penetrant effects in DDs through both coding and noncoding 
mechanisms and that the disruption of 3D chromatin structures 
is associated with pathogenic LRPEs. We provide statistical 
evidence to support highly penetrant LRPEs at previously known 
and novel loci. Our feature selection analysis demonstrates that 
additional features within the TAD structure will also be critical for 
identifying novel LRPEs as well as provide insights into underlying 
molecular mechanisms through which this risk for disease occurs. 
The ongoing aggregation of population-scale datasets through 
international biobanks promises to further define the features 
associated with LRPEs and three-dimensional structures that are 
intolerant to disruption by SVs in the human genome.
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