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Abstract 

Precision medicine is advancing patient care for complex human diseases. Discovery of biomarkers to 
diagnose specific subtypes within a heterogeneous diseased population is a key step towards realizing 
the benefits of precision medicine. However, popular statistical methods for evaluating candidate 
biomarkers – fold change (FC) and area under the receiver operating characteristic curve (AUC) – were 
designed for homogeneous data. Herein, we evaluate the performance of these metrics in 
heterogeneous populations. Using simulated biomarkers that are nearly ‘ideal’ for distinguishing 
subgroups of various proportions of the diseased population, we observe that AUC misses all up to 
subset size of 50% and FC misses all biomarkers entirely. We introduce a simple new measure to address 
this shortfall and run a series of trials comprised of simulated and biological data to demonstrate its 
utility for evaluating biomarkers associated with disease subtypes.  

 

Introduction 

Advances in precision medicine (PM) for cancer patients is extending the healthspan for countless lives 
by tailoring treatments to heterogeneous cancer subtypes. PM utilizes specific biomarker information, 
such as genetics and levels of proteins being produced, to diagnose their specific subtype of the disease 
and enable tailored treatments, prognoses, and monitoring. An additional benefit of PM is that it 
facilitates understanding of underlying biological mechanisms by teasing apart biomarkers into subtype 
groups. Knowledge of distinct biomarkers associated with each subtype empowers drug discovery as 
well as selections of individuals for drug trials. Many complex diseases are heterogeneous and hold 
potential to benefit from PM. For example, heterogeneous subtypes of late-onset Alzheimer disease 
(AD) are exhibited by the spectrum of genetic and environmental risk factors and clinical outcomes 
observed for this enigmatic disease. Efforts are underway to enable PM for AD, including the 
Accelerating Medicines Partnership® for AD 2.01, which began in 2021, and Alzheimer Precision 
Medicine Initiative2, which began in 2016.  

The realization of successful PM can only be attained by identifying disease subtypes and developing 
practical methods to diagnose and treat each subtype. A common approach is to use statistical methods 
to test associations of candidate biomarkers with the disease. Candidate biomarkers may include 
genetics, demographics, lifestyle, and a host of observations such as imaging data, body mass index, and 
omics data – which may include levels of gene expression, proteins, lipids, and metabolites. Different 
statistics are used for categorical, ordinal, and numerical data types. Herein we focus on numerical data 
types, which includes omics data, measurements from imaging data (such as PET amyloid load), and 
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other observations that are quantified as numerical values. Popular statistics for this domain include fold 
change (FC) of levels of candidate biomarkers between diseased cases and normal controls and area 
under the receiver operating characteristic curve (AUC)3. In addition to tests on individual biomarkers, 
patterns comprised of multiple biomarkers can be identified by modeling the data as a network in which 
biomarkers are represented by nodes and correlations between pairs of biomarkers are represented by 
edges between the corresponding node pairs4–9. Clusters of intercorrelated biomarkers are identified 
and evaluated using methods such as modularity7,10 or gene enrichment11. 

This nascent research field faces challenges due to multiple issues, such as the need for large sample 
sizes for studies to elicit power to sift out a subtype that may only represent a small fraction of the 
diseased cases. Another major challenge is that traditional statistical methods that are successful for 
global biomarkers can be inappropriate for subset biomarker identification, and each approach needs to 
be reevaluated for use in this distinct domain. We previously reported that the use of standard 
correlation metrics in network modeling leads to increased type II errors in the presence of subtype 
groups8,9,12,13. All the correlation measures that we have examined, including Pearson’s correlation 
coefficient14, r-squared15, dot product16, and mutual information17, return single scalar values that are 
crippled by heterogeneity9. They are universal measures, in that individuals in the entire group are 
viewed as a whole, and thus subtle but crucial subgroup structures are obscured. If two analytes are 
highly correlated for a subset of individuals but not at all correlated for the others, the correlation value 
is reduced due to the latter individuals, thereby contributing to false negative signals8,9.  

In this manuscript, we examine the use of FC and AUC when subtype groups exist. A traditional 
approach for identifying differentially expressed analytes involves calculating the FC of the analyte 
expression levels between two groups as a quotient: (level in diseased cases) / (level in normal controls). 
If the quotient is above or below a given cutoff, the analyte is considered differentially expressed. A 
single value representing the expression level of the analyte is required for each group; usually the 
median or mean. Typically, a cutoff of >2 is used to indicate significant up-regulation in the diseased 
cases group and a cutoff of <0.5 for down-regulation. In order to more easily interpret across both up- 
and down-regulated analytes, the log2FC is often employed, where log2FC = abs(log2((level in diseased 
cases) / (level in normal controls))), providing a cutoff of log2FC > 1 tests for both up- and down-
regulation18. FC calculations are unstable when the expression levels are near the noise level of the 
measurement system. This can lead to false positives at low intensity levels. At the other end of the 
spectrum, FC is also biased against samples that have high expression levels, but small differences 
between two groups19. Mariani et. al. reported that high FC cutoffs are needed for low intensity genes 
and lower cutoffs are needed for high intensity genes. They introduced a variable FC cutoff-based 
approach that uses LOESS to estimate a variance based on expression intensity, thereby alleviating the 
bias at both high and low intensity levels19. Despite these improvements to the FC calculation, there is a 
fundamental problem with this metric: Use of the mean or median in the presence of heterogeneity 
tends to miss subgroup signals, as demonstrated in this manuscript.  

Standard 2 x 2 contingency tables are commonly used to assess predictive accuracy of biomarkers using 
various statistics, such as sensitivity/specificity, precision/recall, Fisher’s Exact Test20, and Youden’s J 
index21. Note that Youden’s J definition can be rearranged to produce a simple interpretation: J = TPR – 
FPR, where TPR is the true positive rate and FPR is the false positive rate. A key benefit of utilizing 
Youden’s J is that subgroups are captured, rather than being lost in a summary statistic, as is done with 
FC. However, without other information, subgroups may be overlooked due to the existence of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 1, 2022. ; https://doi.org/10.1101/2022.02.14.22270972doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.14.22270972


moderate case/control biomarkers with the same J value, just higher TPR and FPR, e.g. J = 0.20 - 0.01 vs J 
= 0.70 - 0.51.    

When testing numerical values, 2 x 2 contingency tables require the selection of a threshold to separate 
diagnostic classifications. A key strength of AUC is that it has no reliance upon a specified threshold to 
predict diseased cases vs. normal controls. This metric originated as a tool for radar receivers, spread 
throughout engineering and medical domains, and has become a prevalent tool for evaluating the 
diagnostic ability of biomarkers3,22,23. AUC simultaneously accounts for sensitivity and specificity across 
all threshold values as a plot of the TPR vs. FPR is constructed and the area under the curve is returned 
as the AUC value24. The plot for a random classifier would tend toward a diagonal line from (0,0) to (1,1) 
with an AUC value of 0.5. A ‘perfect’ predictor would have FPR=0 and TPR=1 for all thresholds of the 
biomarker and a corresponding AUC value of 1. An example of this rare event was reported by Karikari 
et al. for discriminating Alzheimer’s disease from healthy young adults using plasma tau phosphorylated 
at threonine 181 (pTau-181)25.  

There isn’t a consensus for a significance cutoff for AUC values. Previous publications have suggested an 
AUC between 0.7 and 0.8 as acceptable and greater than 0.8 as excellent26,27, while the National Center 
on Response to Intervention’s Technical Standard sets AUC values between 0.75 and 0.85 as ‘partially 
convincing’ and below 0.75 as ‘unconvincing’28. On the other hand, it has been recommended that no 
set value should be utilized; rather AUC values should be used to compare predictors within a single 
domain rather than enforcing a strict cutoff value29–32. 

In addition to evaluating biomarkers across all threshold values, AUC has several other beneficial 
properties. It is a simple and intuitive measure and the corresponding ROC plot provides additional 
information beyond the scalar value. Also, there are no parameters to be tuned, yielding robust 
reproducibility.   

There are also some well-known issues with AUC. First, small sample size can yield poor 
performance33,34. Second, AUC includes the areas under the ROC curve that represent threshold values 
that are not utilized in practical applications35. A related issue is when the ROC curves of two different 
biomarkers cross, the relative AUC values may be misleading36.  

In general, the points in the ROC curve arise solely from differences in TPR and FPR and are not scaled 
across threshold values, resulting with the possibility of incremental spans of threshold values being 
stretched across broad regions of the area under the curve. In clinical practice, target thresholds or 
threshold ranges are used to flag individuals at risk. AUC values are generally computed over clean data 
that have been acquired and processed using highly uniform methods, but this uniformity deteriorates 
when moving from bench to bedside. Consequently, examination of AUC values and plots do not directly 
provide insights for evaluating biomarkers for robustness across measurement error. The metric 
introduced in this manuscript addresses this issue. 

The AUC metric is entirely dependent upon, and equally weighted on, the TPR and FPR. When testing 
across a heterogeneous group, the TPR for a perfect biomarker has an upper limit equal to the 
proportion of the subtype. In general, the percentage of samples representing subtype i, pi, produces a 
corresponding upper bound on the TPR and lower bound of 1 - pi on the false negative rate. 
Consequently, we hypothesized that screening based on AUC may discard valuable subtype biomarkers, 
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regardless of sample size. Using simulated tests mimicking nearly ‘ideal’ biomarkers for subsets of 
disease cases, we demonstrate the failure of AUC to capture their significance. 

In this manuscript, we introduce a metric for evaluating biomarkers of heterogeneous phenotypes which 
springs from observations of the distributions of values, rather than TPR, FPR, and other traditional 
metrics. Consider a biomarker that is a strong indicator of a subset of diseased cases, referred to as 
associated cases. We assume here that the cases that are not associated exhibit biomarker levels that 
are similar to the normal controls. Consequently, the distribution of biomarker levels for the cases tends 
to skew or exhibit a bimodal profile, where one of the modes lines up with the controls’ distribution. It 
should be noted that normal controls might show a bimodal distribution also. For example, blood sugar 
levels are high following a meal and low just before a meal, so controls sampled at varying times of day 
would be prone to exhibit a bimodal curve for this analyte.  

Aiming to identify aberrant bimodal distributions, we propose a metric which calculates the difference 
between the bimodalities of the diseased cases and normal controls. A number of formulae for 
distinguishing between unimodality and bimodality have been proposed and evaluated37. Hartigan’s Dip 
Statistic (HDS)38 and the Bimodality Coefficient (BC)39 have both been shown to have good accuracy to 
detect bimodality37. Note that high skewness in a unimodal distribution tends to increase BC values and 
can lead to false-positive bimodal predictions40. We selected BC as we are interested in identifying either 
bimodality or skewness that is significantly different between cases and controls.  

BC was introduced by SAS in 1990 and is based on three parameters of the array of values: cardinality 
(n), skewness (s), and kurtosis (k). The value is computed as follows: 

𝐵𝐵𝐵𝐵 =  
𝑠𝑠2 + 1

𝑘𝑘 + 3 × (𝑛𝑛 − 1)2
(𝑛𝑛 − 2)(𝑛𝑛 − 3)

 

BC values range from zero to one and a uniform distribution has a value of 5/9 ≈ 0.555. Higher values 
indicate greater bimodality.  

We propose the following measure, bimodality coefficient difference (BCD), for identifying biomarkers 
representing subtypes in heterogeneous populations:   

𝐵𝐵𝐵𝐵𝐵𝐵 = |𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| 

The absolute value is applied as a protective factor may result with the controls having a higher BC value 
than the cases. BCD can range from zero to one, but we observe from our trials that relatively low values 
indicate significance. Using a series of simulation trials and biological data, we demonstrate the 
effectiveness of this metric for identifying promising biomarkers representing subsets of cases. 

 

Methods 

Biological data trials. We utilized publicly-available gene expression data from human cortex tissue 
generated using Sentrix HumanRef-8 Expression BeadChip41. These data are available on NCBI’s Gene 
Expression Omnibus (GEO), Accession GSE15222. Standard protocols for cRNA hybridization and 
BeadStudio software, with Illumina’s custom error model, were utilized in data generation, as previously 
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described41. Data for 8,650 genes for 176 AD cases and 187 controls are provided and used for the 
current study. 

Simulated data trials. In our simulations, samples were drawn from one of two normal distributions, N1 
and N2, with the following means and standard deviations: N1~(0.03, 0.04) and N2~(0.40, 0.016). These 
means and standard deviations were derived from analysis of highly differentially-expressed proteins 
from our COVID-19 study (Supplementary Information). The size of the subtype, as a percentage of the 
cases, was varied over seven scenarios from 0% to 50%. In each scenario, the cases in the subtype group 
were sampled from N2 and the remaining cases, along with all controls, were sampled from N1. A total of 
1000 cases and 1000 controls were simulated in each trial. Each scenario was tested using 1000 trials. 
Histograms for randomly selected trials are shown in Figure 1.  

Data pre-processing. The AD data were pre-processed by the Myers’ lab, as described previously41. We 
utilized these data without further normalizations in order to preserve the natural distributions. 
However, outliers disproportionately affect BC values, so they were trimmed by replacing values 
more/less than 3 interquartile ranges above/below the third/first quartile with the value that is equal to 
3 interquartile ranges above/below the third/first quartile.   
 

Results 

Simulated Trials 

We generated large-scale simulated data for a total of 7000 pseudo analytes and analyzed each using 
FC, AUC, and BCD. The subset size of zero provides a baseline for which no association should be 
observed as all of the data points for cases and controls are drawn from the N1 distribution. Results for 
the simulations are summarized in Table 1. Sample ROC curves for each scenario are shown in Figure 2. 

Biological Data 

We analyzed the AD gene expression data using FC, AUC, and BCD. Lists of the top six genes for each 
method are shown in Table 2 and histograms for each of these genes are shown in Figures 3, 4, and 5. 
Some of the FC and AUC plots exhibit tendency towards bimodality or increased skew, but in general 
they represent differences in expression across the majority of the samples, demonstrating their value 
for identifying biomarkers associated with large proportions of the cases. Across the 8650 genes, an AUC 
score of 0.74 represented a p-value ≤ 0.05.  

In our first round of BCD trials, the genes with the highest values proved to be spurious. For each of the 
highest BCD values, we extracted the covariate data for the samples in the second mode of the cases 
distribution. As shown in the Supplementary Information, more than x% of these second mode 
individuals were drawn from brain region 4, despite the fact that only 12.5% of the case samples overall 
were drawn from this region. Furthermore, only 4.8% of the control samples were drawn from region 4, 
yielding an imbalance of samples for this region. Consequently, diseased cases samples that were drawn 
from region 4 formed distinct subsets that created second modes for genes that were differentially 
expressed across the brain regions. These results demonstrate the power of BCD to identify subtypes, 
but do not yield information of interest regarding AD. As shown in the Supplementary Information, 
brain region 2 is also unbalanced between cases and controls. 
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In our second round of trials, we removed samples drawn from brain regions 2 and 4, yielding 137 AD 
cases and 175 normal controls. Histograms for the six genes with the highest BCD values are shown in 
Figure 5.  These 8650 trials provided a cutoff value of 0.209 for p-value ≤ 0.05. 

 

Discussion 

The simulation trials provided a comprehensive evaluation across methods with 1000 repetitions of 
large-scale trials comprised of 1000 cases and 1000 controls each and nearly ‘ideal’ subtype biomarkers 
representing each subtype percentage. The results from these trials are truly eye opening.  

Assuming log2FC > 1 indicates significance, fold change performed extremely poorly. Even when 50% of 
the cases were associated with the subtype biomarker, the median log2FC value was only 0.608. The 
maximum across all 1000 trials was only 0.821. Consequently, all of the pseudo biomarkers would be 
thrown out, despite their nearly perfect discrimination.  

It’s trickier to evaluate AUC, due to lack of a clear significance cutoff value. The literature points to 0.7 or 
0.75 and our trials on AD gene expression provided a cutoff of 0.74 for p-value ≤ 0.05. All of the pseudo 
biomarkers had AUC values less than 0.7 across the 1000 trials for subsets less than 40%. Furthermore, 
the median for the 40% subset trial was 0.695. Significance emerged as the subset size grew to 50%. 

Being a newly introduced metric, there are no established significance cutoffs for BCD. The AD gene 
expression data provided a cutoff value of 0.209 for p-value ≤ 0.05. Using this proxy, every one of the 
1000 trials for subsets of 10% or more would be marked as significant.  

As expected from the biological trials, the top six genes identified by FC and AUC show significant 
differences between the diseased cases and normal controls. While several of the top results exhibit 
some degree of bimodality, others tend towards differences across the majority of the samples. On the 
other hand, each top BCD result clearly delimitates a subgroup, without requiring differences for 
individuals that are not in the given subgroup.  

A particularly interesting result is that the first round of BCD trials produced spurious associations for all 
of the top values due to the imbalance of cases and controls samples from brain region 4. While this 
imbalance, coupled with differential expression across brain regions, created subsets, none of these 
genes were included in the top six genes for FC or AUC. 

It should be noted that BCD is not expected to identify global biomarkers. When all of the cases are 
associated with the biomarker, as has been shown for pTau-181 associations with AD, a shift in the cases 
mean, not modality, is expected. Shifts in means are directly captured by FC and ignored by BCD.  

BCD enjoys the same favorable properties exhibited by AUC. No specific biomarker threshold or other 
parameters are utilized. The metric is simple and intuitive. Furthermore, examination of the 
corresponding histograms provides additional information beyond the scalar value and individuals 
representing the subtype are distinguished from those who are not associated.  

At the same time, BCD does not suffer from AUC’s drawbacks. The lower bound on sample size is only 
limited by the ability to distinguish the bimodal coefficient for the distribution. Indeed, analytes that are 
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already known to be unimodal under normal conditions do not necessarily require any new controls 
data.  

AUC includes regions under the curve where analyte thresholds are not of practical interest and can be 
misleading when comparing two ROC curves that cross. Neither of these issues are of concern for BCD as 
the distributions of analyte levels, rather than TPRs and FPRs, dictate the computed values. Finally, high 
AUC value does not always correlate with a robust threshold for practical use of the biomarker. In 
contrast, high BCD value indicates strong bimodality, which corresponds to a natural inversion between 
the modes. While lower, but still significant, BCD values may indicate skewness rather than bimodality, 
inspection of the histogram will reveal the sensitivity of the threshold cutoff selected for diagnosis.  

Precision medicine is based upon the assumption that different subtypes exist for the given disease. We 
show here that popular statistics used for assessing biomarkers, FC and AUC, generally perform 
suboptimally when heterogeneity exists. We also provide a new metric, BCD, which appears to hold 
promise in this domain. 
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Figure 1 Sample histograms for the simulation trials. Shown are random histograms drawn from the 
1000 trials for each of the seven subset size scenarios.   
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Table 1 Median values for the simulation trials, with minimum and maximum values shown in brackets. 
The first row represents no subsets, where all of the cases and controls values are drawn from the N1 
distribution. Subsequent rows represent trials with 5%, 10%, 20%, 30%, 40%, and 50%, respectively, of 
the cases values drawn from the N2 distribution and represent the disease subtype. For each scenario, 
1000 cases and 1000 controls values were generated for each of 1000 trials. 

 

  

Trial log2FC AUC BCD
Sim_0% 0.016 [5.47E-06, 0.080] 0.508 [0.491, 0.542] 0.016 [8.68E-06, 0.076]
Sim_5% 0.0276 [2.25E-06, 0.107] 0.525 [0.483, 0.563] 0.145 [0.066, 0.214]

Sim_10% 0.0544 [2.79E-04, 0.143] 0.548 [0.509, 0.605] 0.282 [0.214, 0.350]
Sim_20% 0.124 [0.037, 0.210] 0.598 [0.563, 0.630] 0.395 [0.325, 0.458]
Sim_30% 0.206 [0.071, 0.320] 0.646 [0.617, 0.675] 0.441 [0.372, 0.514]
Sim_40% 0.337 [0.134, 0.452] 0.695 [0.669, 0.723] 0.464 [0.389, 0.525]
Sim_50% 0.608 [0.221, 0.821] 0.743 [0.719, 0.768] 0.438 [0.383, 0.504]
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Figure 2 AUC plots for subtype groups of 0%, 5%, 10%, 20%, 30%, 40%, and 50% of the diseased cases. 
Random plots for each scenario are shown. 
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Table 2 Top six genes for each analysis of the AD gene expression data.  
 

 
   

Gene log2FC Gene AUC Gene BCD
GI_38201693-S 1.448 GI_4585642-S 0.854 GI_4502806-S 0.403
GI_40255112-S 1.428 GI_27734844-S 0.830 GI_17999536-S 0.378
GI_40254432-S 1.342 GI_24308166-S 0.829 GI_37540877-S 0.378
GI_40018630-A 1.306 GI_34577121-S 0.822 GI_28872783-A 0.375
GI_29744077-S 1.288 GI_13376557-S 0.820 GI_14589948-S 0.374
GI_27475984-S 1.217 GI_23312375-A 0.815 GI_23503234-A 0.372

Fold Change AUC BCD
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Figure 3 Histograms for the six top genes identified using FC. Each row corresponds to a gene in Table 2 
and are given in the same order.   
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Figure 4 Histograms for the six top genes identified using AUC. Each row corresponds to a gene in Table 
2 and are given in the same order.   
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Figure 5 Histograms for the six top genes identified using BCD. Each row corresponds to a gene in Table 
2 and are given in the same order.   
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