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Abstract 

The COVID19 pandemic has caused a large number of infections and fatalities, causing 

administrations at various levels to use different policy measures to reduce viral spread by 

limiting public mobility. This paper analyzes the complex association between the stringency of 

restrictions, public mobility, and reproduction rate (R-value) on a national level for Germany. 

The goals were to analyze; a) the correlation between government restrictions and public mobilit y 

and b) the association between public mobilities and virus reproduction. In addition to 

correlations, a Gaussian Process Regression Technique is used to fit the interaction between 

mobility and R-value. The main findings are that: (i) Government restrictions has a high 

association with reduced public mobilities, especially for non-food stores and public transport, 

(ii) Out of six measured public mobilities, retail, recreation, and transit station activities have the 

most significant impact on COVID19 reproduction rates. (iii) A mobility reduction of 30% is 

required to have a critical negative impact on case number dynamics, preventing further spread.   

Keywords: Sars-COV2 virus, Pandemic Response, Machine learning, Public health, Mobilit y 

measures 

1. Introduction 

The COVID-19 virus first appeared in China in December 2019 and spread rapidly around the 

world. The World Health Organization (WHO) declared it a Public Health Emergency of 

International Concern in January 2020 and as a pandemic on March 11 [1]. As of the end of May 

2021, it has cost 3.5 million lives worldwide [2-3].   

The airborne nature of the virus meant that it was imperative to ensure that infected persons 

spread it to a few others as possible. The pivotal average number of other individuals that each 

carrier of the virus infects at a given point in time is defined as the reproduction value (R-value) 

[4-5]. The goal of lowering the R-value made it essential to reduce close contact between 

individuals, and most policy responses targeted social distancing and public mobility reduction. 

This was pursued through various means by the national governments. Various countries or 

specific regions around the world have placed a wide variety of mobility restrictions to protect 

their populations from being infected. The efficiency of these measures can be quantified as to 

their isolated effect on changing the R-value.  
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The most successful restrictions appear to have been based on the premise of reducing a human 

to human contact. Through prohibitions, public closures, and recommendations, citizens were 

forced or encouraged to spend less time near others and more time in a private sphere, while 

keeping the maximum size of private gatherings at minimum levels. Note that all jurisdiction 

policies could be based on national, regional, or local level, and R-values are compiled and 

reported by government authorities in each nation. An international review of government 

interventions found that a combination of measures implemented at the right points in time was 

essential for curbing reproduction numbers [6].  

General compliance with these policies could be estimated by observing the amount of traffic at 

public spaces of various kinds. For example, the current mobility could be measured through 

automated data collection implemented on a variety of platforms [7]. This allows for an estimate 

of the number of people passing at certain locations and is usually presented as daily aggregates. 

Due to the variety in responses and reporting, the present study concentrates on the effects of 

policy implementation in a single country and use Germany as a case study for the dependencies 

between public policy, aggregate mobility, and virus contamination. According to the WHO, 

there were 3.7 million cases and 90,000 deaths in Germany through May 26, 2021. There were 

several national "lockdown" periods in Germany with a combination of measures from the list 

enforced by work-at-home orders, mandatory closures of public and private establishments, and 

travel restrictions [8]. The government response is related to loss of mobility and the spread of 

infections.  

The nonlinear nature and influence of external factors in the relationship between mobility and 

virus transmission make modeling their interaction a complex task. While several conventional 

statistical approaches have been attempted [9-11], previous research shows indications that 

Gaussian Process Regression (GPR) models form a solid basis for models of virus spread [12,13]. 

In direct comparisons between the methods on COVID-19 data, GPR has been able to fit the data 

better than other machine learning methods like Support Vector Machines (SVM) or Decision 

Trees (DT) [14]. Due to its capacity to capture spatio-temporal variations combined with external 

factors, it can be considered the state of the art for modeling the geographical spread of diseases. 

This has been found also for other diseases such as malaria [15]. GPR seems to work well with 

small to moderate-sized datasets as in the COVID-19 pandemic (daily observations over slightly 

more than a year). The model was applied with a particular focus on threshold levels of mobilit y 

for the urgent goal of keeping R-values below one to dampen the spread of the virus. In this 

context, the contributions of the present study can be summarized as follows. First, the 

connection between stringency and mobility is quantified, identifying what sectors of public life 

are affected most by public restrictions. Second, the association between various mobilities and  

spread of the virus is established through correlation analyses, determining what mobilities has 

the most influence on the reproduction number. Finally, machine-learning analysis of mobility , 

vaccinations and temperature as predictors of virus spread leads to an estimate of 30 % as a 

threshold to contain further spread of pandemic infections.  
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2. Method 

2.1. Data Sources 

Google Mobility reports measures public mobility as aggregated averages of the number of 

observed individuals passing multiple monitored locations. Utilizing data from the Google Maps 

system and other platforms, it measures the amount of mobility in the categories in six categories 

presented in Table 1. The numbers are reported as the percentage change from a baseline level.  

Table 1. Public mobility data categories. 

Category Inclusion 

Retail and Recreation restaurants, cafes, shopping centers, theme 

parks, museums, libraries, and movie 

theaters 

Grocery and Pharmacy grocery markets, food warehouses, farmers 

markets, specialty food shops, drug stores, 

and pharmacies 

Transit stations subway, bus, and train stations 

Parks local parks, national parks, public beaches, 

marinas, dog parks, plazas, and public 

gardens 

Workplaces places of work 

Residential homes 

 

The government-level of restrictions is quantified in a project known as the Oxford COVID-19 

Government Response operated by the Blavatnik School of Government at the University of 

Oxford. It incorporates a wide variety of different restrictions related to social distancing in the 

wake of the pandemic and serves as a benchmark on how much each administration enforced 

lockdown. The Stringency Index is a weighted average of several categories [16], including 

school closures, workplace closures, cancellation of public events, restrictions on public 

gatherings, closures of public transport, stay-at-home requirements, public information 

campaigns, restrictions on internal movements, and international travel controls. 

Temperature data were collected from the German Weather Service (DWD). The daily average 

at the Berlin-Tegel station was used as an aggregate for each day in the studied period. 

R-values were obtained from the Robert Koch Institute derived from a now-casting model which 

has been used to forecast virus propagation on national and local levels [17]. Through time series 

analysis of the number of new cases per day, an instantaneous reproduction number can be 

derived retrospectively for each day [18]. 

2.2.Mobility Correlations 

Spearman correlations were used to identify associations between: 
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a) Oxford Stringency Index and the various mobilities: a positive association means that higher 

stringency led to higher mobility, whereas negative correlations indicate that restrictions served 

to reduce public movement.  

b) Mobilities and reproduction values: positive associations would lead to the conclusion that 

increased mobilities caused wider spread. 

2.3.Gaussian Process Regression 

An exponential–logarithmic model has been identified as an adequate fit for the association 

between community mobilities and reproduction rates [19-20], i.e. the logarithm of the R-value 

is dependent on aggregate mobility. It has also been identified that both temperature and level of 

vaccinations have an impact on reproduction [21-22].  

Gaussian Process Regression (GPR) is a nonparametric supervised machine learning method 

usually applied to multivariate classification and regression problems [23]. GPR is used for 

describing the original distribution for flexible classification and regression models, where 

regression or class probability functions are not only simple parametric forms. One of the main 

advantages of the Gaussian process is the diversity of covariance functions that leads to the 

formation of functions with distinct types or degrees of continuous structures and enables 

choosing the proper selection. 

Based on these previous findings it was possible to fit a GPR model for the relationship between 

mobility, temperature, and vaccinations with the following setup: 

Kernel function: Exponential  

Kernel scale: 14.396  

Signal standard deviation: 0.230  

Sigma: 0.230 

Training data: 80 % of observations, randomly chosen, Test data: Remaining 20 % 

3. Results 

3.1. Government stringency 

The Oxford Stringency Index calculates stringency as a weighted index of government 

response related to nine factors: school closures; workplace closures; cancellation of public 

events; restrictions on public gatherings; closures of public transport; stay-at-home 

requirements; public information campaigns; restrictions on internal movements; and 

international travel controls.in four dimensions. Estimated levels of stringency of German 

policy are on display in Figure 1, on a scale from 0 to 100 %.  
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Figure 1. Government Stringency. 

3.2. Public mobilities 

Public mobilities measured in percentage change from the baseline in the six categories (Table 

1) are in Figure 2.  

 

Figure 2. Public mobilities. 

Activity at workplaces, retail and recreation, and public transit stations was well below 

ordinary levels through the period, while parks rose during the Summer and residential 

mobilities was higher due to more work from home arrangements.  

3.3. Correlations Analysis 

To compare the efficiency of the implemented policy measures and evaluate what sectors had 

the most impact on virus propagation, an attempt to quantify the association between government 

stringency, R-value, and each of the six mobilities. Spearman correlations between daily values 

of overall stringency and public mobilities are presented in Figure 3 and Figure 4, respectively.  
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Figure 3. Correlations Stringency – Mobility. 

 

Figure 4. Correlations sector mobilities and reproduction. 

A higher amount of stringency had the strongest negative impact primarily retail and transit 

sectors, while more restrictions also were associated with more time spent at home. The clearest 

associations were between mobilities in the retail and transit sectors, respectively, where 

increased levels of mobility led to higher R-values. More time spent in the residence slowed virus 

reproduction, while especially parks and workplaces had a rather small impact.  

3.5. GPR Model Fit 

An evaluation of the model fits of GPR compared to linear regression on the test set is presented 

in Table 2 and the prediction accuracy plot is given in Figure 5.  

Table 2. GPR Model fit results 

RMSE MAE MSE R2 

0.14 0.093 0.018 0.83 
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RMSE=Root Mean Squre Error; MAE=Mean Absolute Error; MSE = Mean Square Error; 

R2=Coefficient of Determination 

 

 

Figure 5 Model fit  of GPR model. 

The GPR with an exponential kernel captures the modeled relationship more accurately than the 

conventional method as it leads to a closer fit and lower prediction errors, along with a coefficient 

of determination above 80 %.  

3.4 Mobility Thresholds 

The reproduction rate was associated primarily with variations in mobilities for (i) retail and 

recreation (ii) transit stations. Based on this, it was possible to estimate the probability for an R-

value under one for each range of mobility reductions. The results are displayed in Figure 6 and 

Fig. 7, respectively.  

 

Figure 6. Estimated probability of R below spread levels based on retail mobility. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.11.22270865doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270865
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

 

Figure 7. Estimated probability of R below spread levels based on transit station mobility. 

 

 

Both graphs indicate a 30% reduction of mobility as a threshold for a higher than 50 % probabilit y 

of R being at levels below 1 preventing further spread.  

4. Discussion 

The highest correlation between mobility and reproduction was identified for retail and transport, 

as these sectors seem to be the most pivotal for containing the virus. These would be perceived 

as non-essential and tend to gather considerable amounts of human beings in small inside spaces, 

especially during peak hours. These results still need to be confirmed beyond the German 

example, where other behavioral patterns might be more prevalent. The goal of restricting 

community spread by containing R-values below one with at least 50% chance required a 

reduction of 30% in retail or transit mobilities, similar to previous results [36].  

It was expected that higher mobilities would lead to more reproduction and that vaccination 

would drive the number in the opposite direction, matching common theories on virus 

propagation. The negative association with temperature was also in line with anticipations, as the 

virus is known to spread at higher rates in lower temperatures. As indicated by the high rise in 

parks mobility in the Summer months, people are also spending a higher share of their time 

outdoors during warmer periods, making them less prone to infect other members of the public.    

5. Conclusions 

Understanding the relationship between stringency, mobility, and infection rates have been 

crucial for coping with the worldwide outbreak of COVID-19, and data from Germany for the 

period from March 2020 to May 2021 served as an example.  Higher correlation between activity 

at retail/recreation and transit locations and virus propagation points to public transport and 

cultural meeting points as areas of high importance for mitigating the pandemic. It appears that 

the German official strategy to contain these by closing a large number of cultural and 

recreational establishments and reducing utilization of public transport through stay-at-home 

orders was well-founded, while activities at workplaces, parks, and grocery stores had less 
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impact.The targeted level of 30% should serve as a benchmark threshold for necessary mobilit y 

reductions in future similar outbreaks.   

Data Availability 

Government Stringency Index values are publicly available through Our World in Data at 

https://ourworldindata.org/covid-stringency-index .  

Public Mobility values can be found through the Imperial Yougov behavioral tracker data 

repository at https://github.com/YouGov-Data/covid-19-tracker . 

Nowcasting values of the reproduction number R were obtained through the Robert Koch Institut 

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/Nowcasting.ht

ml . 
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