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ABSTRACT 

 

Genome-wide association studies (GWAS) have identified hundreds of genetic variants 

associated with body weight but the biological relevance of most remains unexplored. Given the 

critical role of the brain in multiple biological processes associated with body weight regulation, 

we set out to determine whether genetic variants linked with body mass index (BMI) could be 

mapped to brain proteins. Using genetic colocalization, we mapped 23 loci from the largest BMI 

GWAS (n=806,834) to brain proteins (obtained from a dataset of >7000 dorsolateral prefrontal 

cortex proteins measured by mass spectrometry in >400 individuals). We also performed a 

proteome-wide Mendelian randomization analysis followed by genetic colocalization, which 

allowed us to identify an additional 48 brain proteins linked with BMI. Multi-trait colocalization 

suggested that more than 75% of the protein quantitative trait loci (pQTL)-BMI associations are 

mediated via protein expression and not via RNA expression. Single-cell sequencing from the 

human brain cortex revealed that the genes expressing the proteins associated with BMI may be 

predominantly expressed in oligodendrocytes. In the Québec Family Study, a genetic risk score 

(GRS) including these brain pQTLs was associated with higher dietary carbohydrate intake and 

lower lipid intake whereas a GRS including the 67 variants most strongly associated with BMI 

was not associated with dietary intake. In conclusions, we identified 71 proteins expressed in the 

prefrontal cortex that may be critical regulators of body weight and possibly dietary intake in 

humans.  
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INTRODUCTION 

 

Identifying the genetic and biological determinants of body weight is critically important from an 

evolutionary and public health perspective. Over the past 40 years, changes in the food 

environment have undoubtedly contributed to the observed rapid increase in mean body mass 

index (BMI) in almost all countries. However, several lines of evidence suggest that genetic 

factors have shaped the individual response to the “obesogenic environment” as genetic 

susceptibility to an elevated body weight may be more penetrant in more modern environments 1. 

Twin and family-based studies revealed that genetic variations may account for 50–75% of BMI 

variance 2,3. Genome-wide association studies (GWAS) have identified hundreds of genetic loci 

influencing BMI 4. However, the biological function of the majority of these variants remains 

unexplored, highlighting the need for post-GWAS analyses. Using RNA-based technologies, 

many studies have suggested that most BMI-associated variants are located nearby genes 

enriched or exclusively expressed in the brain 5,6.  

 

Studies using multi-omic technologies to facilitate the translation of genetic information into 

biological understanding of body weight regulation have been mostly limited to tissue RNA 

expression levels. Studying protein concentrations in addition to gene expression levels is 

critical, especially in light of recent studies describing a rather poor correlation between gene 

expression and protein levels, for instance in the brain 7,8. Since proteins are frequently the 

primary effector of biological function, their inclusion in post-GWAS analyses could improve 

our understanding of the neurobiological mechanisms influencing body weight regulation.  

 

According to the prefrontal cortex model of obesity 9, genetic factors may influence food reward 

sensitivity and self-control, thereby influencing dietary self-regulatory abilities. The prefrontal 

cortex integrates appetite and satiety signals from the hypothalamus and the insula and could 

override these signals and suppressing the impulse to eat or planning and coordinating food 

acquisition. Neuroimaging studies have identified lower activation in response to a meal in a 

prefrontal cortex region, the left dorsolateral prefrontal cortex (DLPFC), in individuals with 

obesity compared to individuals without obesity 10. The DLPFC is a critical brain region 

involved in body weight regulation as it is associated with appetite control, food craving, food 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.11.22270813doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270813
http://creativecommons.org/licenses/by/4.0/


Gagnon et al.    

 

4

decisions, inhibition of eating and executive functioning (Gluck, Viswanath, and Stinson 2017). 

However, it is unknown if BMI genetic susceptibility loci influence brain protein concentrations, 

especially in the DLPFC or if proteins of this brain region are causally implicated in body weight 

control and/or dietary behaviour.  

 

Here, we explore whether genetic variants associated with BMI could influence brain protein 

concentrations in a translational Mendelian randomization (MR) framework. We combine 

genome-wide data from 7,581 brain proteins measured in the DLPFC and BMI to map protein 

concentrations in the brain to known genetic variants associated with BMI. We also perform a 

brain proteome-wide MR (PWMR) study to identify brain proteins associated with body weight. 

We finally integrate the result of the mapping and PWMR approach to shed light on the 

biological mechanism of body weight control and dietary intake. The schematic overview of our 

analytical approach is presented in Fig. 1. 

 

 

RESULTS 

 

Genome-wide mapping of the body mass index susceptibility loci to the brain proteome 

We extracted 543 genome-wide significant and independent (LD R2 < 0.001) BMI susceptibility 

loci from the largest BMI GWAS (806,834 participants of European ancestry) 12. We evaluated 

evidence of genetic colocalization between these variants and brain pQTLs from the Banner and 

ROS/MAP datasets 7. These two GWAS studies report on 7,581 brain protein levels measured by 

mass spectrometry from the DLPFC of 330 and 140 participants, respectively. Genetic 

colocalization is a Bayesian method evaluating the posterior probability of two traits sharing the 

same causal variant. Proteins with posterior probability of colocalization >0.80 were deemed to 

colocalize. Altogether, 23 BMI loci were mapped to brain proteins (Fig 2a and Supplementary 

Table 1). 

 

 

Brain proteome-wide Mendelian randomization analysis of the body mass index 
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We used two strategies to determine whether brain proteins could be associated with BMI, an 

approach using one instrument only (uni-cis approach) and another one using more than one 

genetic instrument (multi-cis approach). In the uni-cis PWMR framework, we undertook two-

sample MR and colocalization analysis to evaluate evidence for causal effects of 990 brain 

proteins on BMI (Fig. 2b). We evaluated proteins with at least one genome-wide significant 

(p<5e-8) cis-acting genetic instrument irrespective of their distance to BMI loci in the three brain 

pQTL datasets (Banner, ROS/MAP and Yang). We evaluated the effect of each brain protein on 

BMI using the Wald ratio method. We additionally performed colocalization analysis or, 

alternatively, linkage disequilibrium (LD) check (Methods) when colocalization was not feasible, 

to evaluate whether the brain proteins and BMI shared the same causal variant. A Bonferroni 

multiple testing correction was useed with the number of proteins (7607) as the number of tests. 

A total of 41 causal associations on 33 distinct proteins were identified (coloc PPH44 > 0.80 and 

p-value < 0.05/7607=6.6e-6) (Supplementary Table 2). No proteins in the Yang et al. 8 study 

passed the LD check. All associations exhibited evidence of protein to BMI directionality as 

tested with Steiger method. All associations had strong genetic instruments (F-statistic >10). All 

associations had genetic instruments located outside a 1 Mb window of the MHC, APOE and 

ABO gene regions, which are known to exhibit wide ranging pleiotropy. Results were 

homogenous when investigated separately in the UK Biobank and the GIANT BMI GWASes 

(Supplementary Table 3). Results also did not significantly differ when comparing Banner and 

ROS/MAP cohorts (Supplementary Table 4).  

 

We next sought to identify additional brain proteins associated with BMI using a multi-cis MR 

analysis. This approach can yield more precise estimates (Gkatzionis et al., 2021). We fine 

mapped all genetic regions of brain proteins using the Sum of Single Effects (SuSiE) regression 

framework to prioritize multiple cis-acting causal variants 14. We used the selected variants as 

genetic instruments in an inverse variance-weighted MR analysis correcting for the LD matrix. 

We evaluated directionality with Steiger filtering and evaluated the heterogeneity of the 

estimates as a test for pleiotropy with Cochran’s Q test. Finally, we used colocalization analyses 

allowing for multiple causal variants to filter out linkage disequilibrium-contaminated 

associations using SuSiE 15. We defined evidence of genetic colocalization when all independent 

signals colocalized at PPH4 > 0.80. SuSiE finemapping revealed two likely causal variants for 
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the Gamma-Aminobutyric Acid Type A Receptor Subunit Beta3 (GABRB3). GABRB3 is one 

the subunits of the receptor for gamma-aminobutyric acid, a major inhibitory neurotransmitter in 

humans. There was strong evidence of colocalization with BMI for both variants (0.99 and 0.99 

respectively). The variants were in strong LD (R2=0.7) which can explain why colocalization 

with a single variant assumption failed. In total, 26 additional associations were identified (p-

value < 0,05/7607; Cochran's Q >0.05 (less heterogeneity than expected by chance); number of 

variants prioritized by SuSiE > 1; at least one instrument with p-value < 1e-3, all instruments 

Steiger filtering test p < 0.05 (no evidence for reverse causality), and all genetic instruments 

PPH4 > 0.8 (no evidence for bias by LD)) (Fig. 2c and Supplementary Table 5). Therefore, 

relaxing the single causal variant assumption allowed to find additional associations, where 

classic colocalization failed.  

 

Fig 2d presents a Venn Diagram depicting the proteins identified by the genome-wide mapping, 

uni-cis and multi-cis approaches, respectively, and the overlap between these three methods that 

aimed at identifying brain proteins causally implicated in the regulation of body weight. 

Altogether, results of this analytical framework identified 71 brain proteins that may be causally 

implicated in the regulation of body weight in humans. Fig 2e presents the chromosomal location 

of these proteins. 

 

Brain expression levels of genes encoding body weight-regulating brain proteins  

Many studies pinpointing the brain’s role in the genetic regulation of body weight have relied on 

RNA-based methods 5,6. However, Yang et al. 8 revealed that only 20% of genetic variants 

affecting protein levels affect also brain RNA levels in the brain. Therefore, we performed multi-

trait colocalization analysis to evaluate whether gene expression lays in the causal pathway 

linking brain pQTLs to BMI. As multi-trait colocalization does not allow for multiple causal 

variants, we included proteins identified in the mapping and uni-cis PWMR approach but not 

those identified from the multi-cis PWMR approach. We performed multi-trait genetic 

colocalization using the gene expression levels in the Broadman area 9 from GTEx, the pQTL 

from the DLPFC and BMI. The Broadman area 9 was chosen because it contributes to the region 

of the brain where protein expression was quantified (the DLPFC). This analysis revealed that a 

minority (11/45) of proteins had evidence of multi-trait genetic colocalization with BMI and 
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gene expression levels (Supplementary Table 6). Fig 3 illustrates this concept by depicting multi-

trait genetic colocalization at two genetic loci, ADCY3 (adenylate cyclase type 3) and DOC2A 

(double C2-like domain-containing protein alpha). These genes were selected to highlight a 

difference in multi-trait genetic colocalization with gene expression levels. ADCY3 had a 

posterior probability of multi-trait colocalization of 0.94 (Fig. 3a), meaning that the effect of the 

ADCY3 protein levels on BMI is consistent with higher gene expression levels. In contrast, no 

evidence of genetic colocalization with brain protein and gene expression levels were found in 

the case of DOC2A. This absence of genetic colocalization between brain protein and gene 

expression levels was found for the majority of body weight-regulating brain proteins. These 

results therefore suggest that relying solely on gene expression levels to identify novel brain 

factors associated with body weight regulation might be insufficient.  

 

Tissue and cell specificity of the body weight-regulating brain protein 

Having identified 71 candidate brain proteins linked with BMI, we next sought to identify the 

tissue and cell-type where these genes are preferentially expressed. We first evaluated brain 

tissue specificity for the 71 causal proteins using RNA expression from the GTEx-V7 database. 

We obtained the tissue-specific gene expression metric (tau). Genes with evidence of tissue-

specific expression have a tau value closer to 1 while ubiquitous genes have a tau value closer to 

0. The majority of genes were expressed ubiquitously across tissue (65/71 tau < 0.7) 

(Supplementary Table 7). Among genes with tissue specific expression (tau > 0.7) 4/6 had 

evidence of higher expression in the brain (HAPLN4, GPRIN3, GABRB3 and DOC2A). We then 

performed tissue and cell-type enrichment analyses to test the hypothesis that the 71 causal 

proteins were enriched in specific tissue and specific cell-types. Tissue expression enrichment 

using MAGMA software 16 revealed that the genes identified are preferentially expressed in key 

brain regions involved in the control of appetite (hypothalamus), reward (amygdala and 

hippocampus) and inhibition (brain frontal cortex and anterior cingulate cortex) (Fig.4-A). The 

genes are enriched exclusively in brain tissues. Cell-type enrichment analysis using FUMA 17 

and single-cell RNA sequencing of 333 cells from the human cortex revealed that the 71 

candidate causal genes are preferentially expressed in oligodendrocytes (Fig. 4-B).   

 

Eating and dietary traits linked with brain protein quantitative trait loci  
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In order to determine how brain pQTLs may influence body weight, we investigated the 

associations between a brain pQTL genetic risk score (GRS) and eating and dietary traits in 750 

participants of the Québec Family Study (QFS). In this study, eating behavioral traits were 

assessed using the three-factor eating questionnaire and dietary intakes were assessed using 3-

day dietary records. The brain pQTL GRS was built using all independent lead SNPs of the 71 

candidate causal genes and its predictive value was evaluated with linear regressions correcting 

for age, sex, and under and over-reporter status of total energy intake. Each SD increase in brain 

pQTL GRS was associated with an increase in the percentage of carbohydrate intake (1.04% 

95% CI=0.54-1.55, p=5.0e-05) and a decrease in the percentage of lipid intake (-0.74% 95% 

CI=-1.19-0.29, p=1.3e-03) (Fig. 5-left panel). By comparison, a GRS calculated with 67 BMI 

lead SNPs had no effect on the macronutrient composition of the diet (Fig. 5-right panel), but 

was associated with eating behaviors such as susceptibility to hunger and disinhibition 

(Supplementary Table 8b) as previously described 18. This providing support for the specificity 

of the brain pQTL GRS as a determinant of dietary intake and especially with high carbohydrate 

intake (Supplementary Table 8a). 

 

Shared genetic etiology between brain protein quantitative trait loci and dietary habits in the UK 

Biobank 

Having established the association between brain protein expression with higher carbohydrate 

intake, we next sought to establish which specific proteins could be linked with dietary habits. 

Colocalization analysis between all causal proteins and 63 dietary habits derived in participants 

of the UK Biobank 19 revealed dietary habits as potential mediator between certain brain protein 

and BMI (Fig. 6). This analysis identified 11 proteins sharing genetic etiology with at least one 

dietary habits (Supplementary Table 9). When proteins colocalized with more than one dietary 

habit, multi-trait colocalization identified 4 proteins affecting clusters of dietary habits. Notably, 

DOC2A and ADCY3 had a multi-trait colocalization with a cluster of five and ten dietary habits 

respectively. For six proteins, ACTR1B, ADCY3, BCL2L13, GBA2, RAB27B and ULK3, 

>60% of the posterior probability of colocalization of the primary genetic association with BMI, 

dietary habits and the respective protein levels were explained by a single variant (rs11692435, 

rs1018218, rs11538, rs3750434, rs8085272 and rs936227 respectively). 
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DISCUSSION 

 

Given the critical role of the brain in body weight regulation, we set out to explore whether 

genetic variants associated with BMI could be linked to brain protein concentrations. Using a 

combination of genetic colocalization and Mendelian randomization analyses, we identified 71 

brain proteins that may be involved in the control of body weight. About three quarter of the 

pQTLs affected BMI via protein levels and not via RNA levels. Although the majority of the 

genes encoding the 71 brain proteins are ubiquitously expressed, the expression of these genes 

appears to be enriched in brain regions involved in the regulation of body weight and further 

enriched in oligodendrocytes within the cortex. Presumably, part of the effect of these proteins 

on body weight is mediated by dietary habits as shown by multi-trait colocalization with dietary 

intake in the UK Biobank and the Québec Family Study. Altogether, these results support that 

brain proteins may play a central role in regulating body weight and identify plausible biological 

and behavioral mechanisms implicating the human brain proteome and dietary habits in the 

regulation of body weight. 

 

While most of the proteins that we identified are potentially new candidate genes regulating body 

weight, some of them had already been identified. First, ADCY3 was identified concurrently by 

three different studies as a susceptibility locus for obesity 20–22. Second, DOC2A is a brain 

specific protein involved in Ca(2+)-dependent neurotransmitter release located in the 16p11.2 

gene region. The number of genomic copies in this region is inversely correlated with body mass 

index (BMI) and a deletion of this locus has been associated with a highly penetrant form of 

obesity 23. Third, the catechol-O-methyltransferase (COMT) enzyme breaks down dopamine 

terminating its function in the prefrontal cortex. Individuals with low COMT activity are more 

likely to report binge eating behaviors 24 and to have higher BMI 25. Finally, CaMKK2 

expression is positively associated with BMI and food intake in rodents. Acute pharmacologic 

inhibition of CaMKK2 in wild-type mice, but not CaMKK2 null mice, inhibits appetite and 

promotes weight loss 26. The biological significance of the identified proteins and the 

mechanisms by which they contribute to the regulation of body weight require further 

investigation.  
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In this regard, follow up analyses performed on the 71 proteins identified allowed us to confirm 

plausible biological mechanisms of body weight regulation. Using multi-trait colocalization 

analyses, we showed that a large proportion of brain pQTL-BMI associations are not mediated 

by differences in gene expression levels. This finding is in line with recent evidence showing that 

a large proportion of pQTL are not eQTL in the brain 7,8. We showed that the 71 candidate genes 

are enriched in brain regions involved in appetite control such as the amygdala, hypothalamus, 

hippocampus, and anterior cingulate cortex. Similarly, RNA-based studies have shown that 

genes located nearby BMI loci are primarily expressed in the brain 6. Using single-cell 

sequencing in the brain cortex, we provide evidence that these 71 genes are enriched in 

oligodendrocytes. The main function of this cell type is to support axon myelination in the 

central nervous system. Although the role of oligodendrocytes in the regulation of body weight 

has yet to be studied in depth, a recent cross-sectional study reported differential patterns of 

myelination in individuals with versus without obesity 27. A novel finding is the potential role for 

some of the identified proteins in influencing food choices specifically high carbohydrate intake. 

How proteins expressed in the human prefrontal cortex specifically drive different food choices 

will need to be further explored in functional and interventional studies.  

 

Our results extend those recently reported from a similar PWMR study focused on neurological 

disorders. Wingo et al. recently performed a proteome-wide association study on depression and 

used BMI as negative control 28. Their PWMR analysis revealed 217 candidate proteins linked 

with BMI. However, genetic colocalization analyses were not performed so the authors could not 

rule out confounding by LD. Confounding by LD occurs when the top associated cis-pQTL is in 

LD with two distinct causal variants, one affecting protein expression and the other affecting trait 

variation. Recent evidence have suggested that even when a protein-disease association has 

strong evidence from MR (p<5e-6), up to 38% of the associations do not have evidence from 

colocalization 29. This highlights the need for colocalization analyses in preventing confounding 

by LD for PWMR analyses. Using an analytical framework that combines genome-wide 

mapping of known BMI loci, uni- and multi-cis PWMR and genetic colocalization analyses, we 

replicated 30 of Wingo et al. hits and further identify 41 new hits. Only a minority (49/217) of 

the proteins identified by Wingo et al., colocalized with BMI. The reported brain pQTLs 
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associated with BMI in our study are therefore less prone to confounding by LD and our list of 

proteins is more conservative and more likely to be causally linked with BMI.  

 

Our approach has limitations that we believe may have led to an underestimation of the impact of 

the brain proteome on body weight control. First, although 7606 proteins were measured, the 

small sample size of the brain pQTL datasets led to only 703 proteins with a genome-wide 

significant pQTL available for analysis. Second, analysis was limited to the DLPFC and parietal 

lobe cortex as protein expression GWAS of other relevant brain regions, such as the 

hypothalamus or the insula, have yet to be performed. Third, due to the small sample size of the 

GWAS on proteins, only common variants (MAF > 0.05) were included, although it is known 

that BMI is also influenced by less frequent and rare variants 30.  

 

 

The heritability of BMI has been estimated to reach 50-75% and several hundred genetic loci 

have been suggested to contribute to the differences in body weight across individuals. This 

study identifies the human brain proteome as a potentially important contributor to the 

heritability of BMI and lend support to a potential interaction between the human brain proteome 

and the evolving food environment that may influence food preferences such as sugar intake. 

Taken together, the results of this study suggest that inter-individual differences in the human 

brain proteome might explain to a certain extent why food preferences and food choices vary 

considerably from one individual to another and why the genetic susceptibility to an elevated 

body weight may be more phenotypically expressed in the modern food environment.  

 

 

METHODS 

 

Study populations 

Main study exposures 

We performed colocalization analyses and two-sample Mendelian randomization investigations 

using GWAS summary-level data. There was no sample overlap between data sets. All 

participants were of European ancestry. A total of three brain pQTL datasets were used 1) 
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ROS/MAP dataset: We extracted brain pQTL from a GWAS on protein concentrations in the 

dorsolateral prefrontal cortex of 330 older adults (age median 89 range [71–106.5]) 7. 

Participants were drawn from the Religious Orders Study (ROS) and Rush Memory and Aging 

Project (MAP) cohorts. The ROS and MAP Project are ongoing longitudinal clinical-pathologic 

cohort studies 31. Both studies recruited participants without known dementia. Proteomic 

profiling was performed using liquid chromatography coupled to mass spectrometry and isobaric 

tandem mass tag peptide labelling. Genotyping was performed by whole genome sequencing or 

genome-wide genotyping by either Illumina OmniQuad Express or Affymetrix GeneChip 6.0 

platforms. Reads were aligned to the GRCh37 human reference panel. Brain pQTL were derived 

using linear regression adjusted for age at death, sex, batch, post-mortem interval, dementia 

status at death and first ten principal components; 2) Banner dataset. We extracted brain pQTL 

from a GWAS on protein concentrations in the dorsolateral prefrontal cortex of 140 older adults 

(median age 86 range [66–103]) 7. Participants were drawn from the Banner Sun Health Brain 

and Body Donation Program (Banner). Banner has banked more than 1600 brains from 

cognitively normal volunteers in Phoenix, Arizona. Proteomic profiling was performed with a 

similar approach as described for ROS/MAP. Genotyping was performed with Affymetrix 

Precision Medicine Array. Reads were aligned to the GRCh37 human reference panel. Brain 

pQTL were derived using linear regression adjusted for age at death, sex, batch, dementia status 

at death, post-mortem interval and first ten principal components. 3) Yang dataset. We extracted 

brain pQTL from a GWAS on protein concentrations in the parietal lobe cortex of 458 

participants of European ancestry from the Washington University 8. Among the 458 

participants, there were 345 with Alzheimer’s disease, 12 cognitively normal controls and 102 

with unknown or other statuses (e.g., dementia or other neurological diseases). The age was 

normally distributed with a mean of 83.3 years and standard deviation of 10 years (57% women). 

In this study, there was an extremely high correlation (Pearson’s r >0.98), between the pQTL of 

Alzheimer cases and healthy cases indicating that the association of the genetic variants with 

protein levels does not depend on disease status. Proteomic profiling was performed with a 

multiplexed, aptamer-based approach to measure the relative concentrations of proteins. After 

QC, 1079 proteins and 380 samples were kept. Samples were genotyped on multiple genotyping 

platforms from Illumina. Reads were aligned to hg19/GRCh37. Genome-wide summary statistics 
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were not available in this dataset. Only genome wide significant pQTLs (p<5e-8) were available 

when these analyses were conducted. 

 

Main study outcome 

We used GWAS summary statistics from a meta-analysis of the Genetic Investigation of 

Anthropometric Traits (GIANT) consortium and the UK Biobank totalling 806,834 participants 

of European ancestry 12. Measures of BMI were self-reported, measured in a laboratory or 

measured in a healthcare setting. Measures were corrected for age, age squared, sex, principal 

components and study site. The resulting residuals were transformed to approximate normality 

with SD of 1 using inverse normal scores. 

 

Statistical Analyses 

Brain protein quantitative trait loci mapping of body mass index 

We performed genome-wide mapping of BMI susceptibility loci to the brain proteins of the 

Banner and ROS/MAP datasets. We included genes that were at +/- 100Kb from one of 543 

independent (LD R2 = 0.001) and genome wide significant top hits. We performed genetic 

colocalization analysis with a single causal variant assumption using the coloc R package with 

default priors. Proteins with posterior probability of colocalization over 0.80 were deemed as 

colocalized signals, meaning that the protein and phenotypes likely share the same causal 

variant. 

 

Brain proteome-wide Mendelian randomization analysis of the body mass index 

We performed single SNP MR using the genome-wide significant cis-acting pQTL with the 

lowest p-value. MR estimate on each pQTL and BMI association were obtained with the Wald 

ratio. The Wald ratio is calculated by dividing the SNP-outcome effect by the SNP-exposure 

effect. We also used a multi-cis MR approach where we selected multiple independent cis-acting 

variants as genetic instruments. Multi-cis MR analysis, that is, using multiple genetic variants 

from a single locus even if the variants are correlated can result in more precise estimates 

(Gkatzionis et al., 2021). For this analysis, we included as genetic instruments all cis-acting SNP 

prioritized by fine mapping with SuSiE. We used a generalized inverse-variance weighted model 

taking into account the LD correlation matrix between the multiple cis-acting instrument 32. We 
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used the MendelianRandomization R package to calculate the MR estimates 33 and obtained the 

correlation matrix from the 1000 Genomes European ancestry reference samples. To assess 

instrument strength, we used the F-statistic 34, and to quantify the variance explained, we used 

the R2 value 35. We corrected for multiple testing with a Bonferroni procedure using the number 

of different proteins as the number of tests. 

 

Sensitivity analyses of the proteome-wide Mendelian randomization studies 

We performed a range of sensitivity analyses on the associations that survived the multiple 

testing correction procedure to remove spurious associations. Spurious association can occur 

because of reverse causality, horizontal pleiotropy, or linkage disequilibrium. We assessed bias 

by reverse causality with Steiger filtering, horizontal pleiotropy with Cochran’s Q tests and 

linkage disequilibrium with colocalization analyses. First, to distinguish causality from reverse 

causality, we used Steiger filtering 36. The Steiger filtering test tags variants when their 

association with the outcome is stronger than with the exposure 37. The test was implemented in 

the TwoSampleMR R package. Genetic instruments with nominally significant test (p <0.05) 

were kept as it indicated evidence for an exposure to outcome direction of association. Second, 

to evaluate if the associations were due to horizontal pleiotropy, we performed Cochran’s Q test. 

Excluding horizontal pleiotropy is challenging, but the use of multiple instruments can indirectly 

address the issue. Classically employed robust MR methods (MR Egger regression, Weighted 

Median, etc.) require at least three independent genetic instruments. Due to the low number of 

independent pQTLs, performing these sensitivity analyses was not possible. For multi-SNP MR 

analyses, we performed instead Cochran’s Q test to evaluate the heterogeneity of the estimates 38. 

Cochran’s Q evaluates the null hypothesis that all genetic variants estimate the same causal 

parameter. When the null was rejected at p-value <0.05, the association was categorized as 

pleiotropic. Third, to evaluate bias due to linkage disequilibrium, we performed a series of 

genetic colocalization analyses. We evaluated the posterior probability that both the protein and 

the BMI shared a single variant using a Bayesian model implemented in coloc R package 39. We 

used the default priors for the analysis. We used a posterior probability H4 > 0.80 as a threshold 

to suggest that the two associations shared the same causal variant within the pQTL cis region. 

We also performed colocalization relaxing the single causal assumption to evaluate if 

associations showed evidence of colocalization at multiple loci. Classical colocalization makes 
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the assumption that only one causal variant is shared between traits. However, multiple causal 

variants located in close proximity can influence protein expression. SuSiE regression 

framework is an approach that allows the evaluation of multiple causal variants simultaneously. 

We evaluated all SNPs in a 200 kb window of the gene and interpreted posterior probability H4 

> 0.80 as evidence for colocalization. The Yang dataset reported only pQTLs with a p-value <5e-

8, therefore not allowing us to perform colocalization analyses due to insufficient genetic 

coverage. For pQTL analyses in the Yang study, we conducted a LD check instead 29. We 

estimated if the genetic instrument proxying protein levels were in LD with the 30 more robust 

BMI SNPs in a 1Mb window of the genetic instrument. When any of the 30 BMI genetic variants 

were in strong LD (R2> 0.8) with the sentinel variant of the Yang study, we considered the two 

studies to share the same causal variant. 

 

 

Multi-trait colocalization with gene expression levels 

We investigated shared genetic etiology across brain eQTL, brain pQTL and BMI using multi-

trait colocalization analyses with the HyPrColoc R package 40. GWAS summary statistics of 

brain RNA expression was derived from the Broadman area 9, which was available for 156 

participants from the Genotype-Tissue Expression (GTEx-V8) database. HyPrColoc extends the 

coloc methodology by estimating posterior probability of more than two traits sharing the same 

causal variants. If the traits do not share a causal SNP, a branch-and-bound selection algorithm is 

employed to discover subsets of traits that colocalize. We used the default uniform prior for the 

analysis. Prior.1 (the prior probability of a SNP being associated with one trait) was set to 1e-4 

and prior.c (the probability of a SNP being associated with an additional trait given that the SNP 

is associated with at least one other trait) was set to 0.02. Colocalization analyses are sensitive to 

the choice of prior. We therefore iteratively varied the choices of prior to assess the stability of 

clusters as a sensitivity analysis. The colocalization events were visualized with regional stack 

lot created with the gassocplot package. 

 

Tissue specificity, tissue enrichment and cell-type enrichment 

We evaluated tissue specificity, tissue enrichment and cell-type enrichment for the causal 

proteins. First, we evaluated tissue specificity of the genes expressing these proteins by 
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calculating transcripts per million (tpm) from all available tissues in GTEx-V7 except sex-

specific tissue and tissue from the urinary system. All tissues with genes tpm <1 were 

categorized as not expressing the gene. We then calculated tau as a measure of tissue specificity 

(Yanai et al., 2005). The values of tau ranges from 0 to 1, where zero indicates a ubiquitous gene 

expression and one indicates specific gene expression. It has been shown that tau is the best 

choice for calculating tissue specificity 42. Second, we performed tissue enrichment analysis 

using MAGMA 16. Briefly, the algorithm obtains tissue-specific gene expression measured in 

average RPKM (Reads per Kilobase of transcript, per million mapped reads) from 53 tissue from 

GTEx-V7. Theses gene expression measures are then log2 transformed and winsorized at 50. 

Finally, gene-property analysis is performed using average expression of genes per tissue type as 

a gene covariate. Third, we performed cell type enrichment analyses in the brain cortex using 

FUMA’s web-based CELL TYPE tool. We used the RNA sequencing dataset GSE67835 of 

human cerebral cortex. This dataset is comprised of 19,749 genes measured in 331 cells from 

adult human brain samples 43. First, a regression analysis was performed in the selected dataset 

to select significant cell types. Second, a stepwise conditional analysis to distinguish between 

correlated cell types was performed. These analyses allowed to test the hypothesis that the genes 

were enriched in a specific cell type.  

 

A brain protein quantitative trait loci genetic risk score and eating behaviors and dietary intakes 

in the Québec Family Study. 

We computed a brain pQTL genetic risk score in participants of Québec Family Study 

(NCT03355729) from which we had complete data on macronutrient intake and genetic data (n = 

750). Dietary intake was assessed with a 3-day food record on 2 weekdays and 1 weekend day 44. 

A total of 602 participants also completed the three-factor eating questionnaire, as previously 

described 18. Genotyping of participants was performed using the Illumina 610-Quad Chip, as 

previously described 45. A brain pQTL GRS was calculated by including the candidate causal 

variant prioritized by colocalization analysis for each causal protein directly measured or 

imputed in QFS [67 independent (LD R2 < 0.01) variants]. Weight for each SNP was calculated 

using the effect size and standard error of the summary statistics of largest BMI GWAS 12. We 

included as covariates under- and overreporters of energy intake status, as defined using the 

method described by Huang et al. 46. The effect of the brain pQTL GRS on macronutrient intake 
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was assessed with linear regression correcting for age, sex, and overreporter and underreporter 

status. For comparison, we calculated a second GRS using the 67 BMI lead SNPs from the 

GWAS by Locke et al., 6. Similarly, we used the effect size and standard errors from the Pulit et 

al. GWAS as weight to construct this top BMI GRS. 

 

Shared genetic etiology between brain protein quantitative trait loci and dietary habits in the UK 

Biobank 

We performed multi-trait colocalization analyses including GWAS summary statistics on 53 

heritable dietary habits derived from a shortened food frequency questionnaire in participants of 

the UK Biobank 19. Given the correlation between the different items of the questionnaires, we 

also included the ten first principal components, resulting in 63 dietary habits exposures 

evaluated 19. We first performed colocalization analysis using the same parametrization as 

described above between all causal proteins and 63 dietary habits exposures. When proteins 

colocalized with more than one dietary habits, we performed multi-trait colocalization analyses 

using the same parametrization as described above to evaluate shared genetic etiology across 

multiple traits.  

 

Code Availability  

Code was performed in the R V.4.0.0 computing environment using publicly accessible 

functions from the TwoSampleMR V.0.5.6 https://github.com/MRCIEU/TwoSampleMR, the 

MendelianRandomization V.0.5.1 

https://cran.rproject.org/web/packages/MendelianRandomization/index.html and the data.table 

V.1.14.0 https://github.com/Rdatatable/data.table packages. The coloc package V.5.1.0 

https://github.com/chr1swallace/coloc. The hyprcoloc package V.1.0 

https://github.com/jrs95/hyprcoloc. The susieR package V.0.11.93 

https://github.com/stephenslab/susieR. The tidyverse V.1.3.1 collection of R packages (Wickham 

et al. 2019), the gwasglue package V.0.0.0.9000 and the gwasvcf V.0.1.0 package was also used 

for data wrangling. 

Data Availability 
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All genome-wide summary statistics used in this study are in the public domain. Data described 

in the manuscript from the QFS will be made available upon request pending approval from the 

authors as well as the funding bodies. 
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FIGURE LEGENDS 

 

Figure 1. Schematic overview of the current study design. The study included a mapping 

approach, two types of proteome-wide Mendelian randomization approach, multi-trait 

colocalization analyses, a brain pQTL genetic risk score as well as tissue and cell-type 

enrichment analyses. 

 

Figure 2. Brain proteins associated with the body mass index.  A) Manhattan plot of body-

mass index highlighting genetic regions with evidence of genetic colocalization with the human 

brain proteome. Genes highlighted on this plot include those with strong evidence of genetic 

colocalization (PPH4>0.80) B) Volcano plot representing the results of the brain proteome-wide 

Mendelian randomization study using the uni-cis approach. C) Volcano plot representing the 

results of the brain proteome-wide Mendelian randomization study using the multi-cis approach. 

D) Venn diagram reporting genetic regions with evidence of genetic colocalization with the 

humain brain proteome and the results of the brain proteome-wide Mendelian randomization 

study across the three methods. NS indicates not significant. E) PhenoGram representing the 71 

identified proteins, their chromosomal location and the methods that identified them. 

 

Figure 3. Mutli-trait colocalization for RNA levels, protein levels and BMI. A) ADCY3 as 

an example of multi-trait colocalization between brain RNA, brain protein and BMI. B) DOC2A 

as an example of multi-trait colocalization between protein levels and BMI, but not brain RNA 

levels. 
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Figure 4. Tissue and cell-type enrichment of the 71 causal genes. A) MAGMA tissue 

enrichment analysis using GTEx RNA-seq data on 53 specific tissue types. B) FUMA’s cell-

type enrichment analysis in the cerebral cortex. The red dashed line is the significance 

threshold with multiple testing correction and red bars pass this threshold. The blue dashed line 

is the significance threshold at 0.05 and blue bars pass this threshold. Grey bars are tissues that 

display no enrichment. 

 

Figure 5. Association between a genetic risk score (GRS) based on brain protein 

quantitative trait loci (pQTL) linked with the body mass index (BMI) and a GRS based on 

the most significant BMI susceptibility loci on macronutrient intake in the Québec Family 

Study. Left panel) Impact of the brain pQTL GRS on carbohydrate and lipids intake. Right 

panel) Impact of the top BMI GRS effect on carbohydrate and lipids intake.  

 

Figure 6. Multi-trait colocalization for brain protein levels, dietary habits, and body mass 

index in the UK Biobank. Stack association plot depicting the association of the 100Kb 

upstream and downstream at the A) ADCY3 and B) DOC2A loci. The annotated genetic variants 

are the prioritized causal variants by HyPrColoc. Prior sensitivity heatmaps are also presented. 

We iteratively varied choice of priors to verify the stability of the cluster as a sensitivity analysis. 

Values closer to one are less sensitive to variation of priors.  
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