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Abstract 

Depression is a common psychiatric disorder with substantial recurrence risk. Accurate 

prediction from easily collected data would aid in diagnosis, treatment and prevention. 

We used machine learning in the Generation Scotland cohort to predict lifetime risk of 

depression and, among cases, recurrent depression. Rank aggregation was used to 

combine results across ten different algorithms and identify highly predictive variables. 

The model containing all but the cardiometabolic predictors had the highest predictive 

ability on independent data. Rank aggregation produced a reduced set of predictors 

without decreasing predictive performance (lifetime: 20 out of 154 predictors and 

Receiver Operating Characteristic area under the curve (AUC)=0·84, recurrent: 10 out 

of 180 predictors and AUC=0·76). Here we develop a pipeline which leads to a small set 

of highly predictive variables. This information can be easily collected with a 

smartphone ‘application’ to help diagnosis and treatment, while longitudinal tracking 

may help patients in self-management. 

Keywords: machine learning, prediction, psychiatry, depression  

Significance 

Depression is the most common psychiatric disorder and a leading cause of disability 

worldwide. Patients are often diagnosed and treated by non-specialist clinicians who 

have limited time available to assess them. We present a novel methodology which 

allowed us to identify a small set of highly predictive variables for a diagnosis of 

depression, or recurrent depression in patients. This information can easily be collected 

using a tablet or smartphone application in the clinic to aid diagnosis. 
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Introduction 

Major depressive disorder (MDD) is one of the most common mental disorders with a 

lifetime prevalence of around 15% (1), and it is also frequently recurrent (2-5) or 

persistent. The World Health Organization predicts that by 2030 13% of the total global 

disease burden will be accounted for by depression (6). Reducing the burden of MDD is 

a key public health challenge for the 21st century (7), with accurate diagnosis and 

prediction of recurrence of critical importance in reducing the disease burden. However, 

algorithms to predict incident and recurrent MDD that include data above that obtained 

on the basis of a structured clinical interview have contributed to improved prediction 

accuracies and may also improve diagnosis (8-10), especially when many patients see 

non-specialist clinicians such as general practitioners for diagnosis and treatment, 

where structured clinical interviews are impractical due to time constraints.  

 

Prediction algorithms using standard statistical methodology have been developed 

previously for incident and/or recurrent MDD (7-12). These algorithms generated 

nominal to fairly high discriminative accuracy up to a C-statistic or AUC value of 0·79 (8-

10). In these previous studies, the number and type of available predictors were limited 

to a small number of clinical features and applied standard statistical methodologies to 

develop prediction algorithms. However, in the age of “Big Data” – large-scale 

biobanking efforts with large sample sizes and hundreds to thousands of potential 

predictors – these standard statistical methodologies may be limited in their ability to 

advance personalized medicine in high-dimensional data. However, for clinical utility it is 
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crucial to identify a concise and easily measured set of predictors with high predictive 

ability which can be used to determine a patient’s risk for lifetime or recurrent MDD. 

Ideally, these data could be combined with electronic health records to improve 

prediction and increase clinical utility. Indeed, advanced approaches such as machine 

learning have been successfully applied to prediction of treatment outcome in MDD 

(13).  

 

We applied a set of modern “Big Data” approaches – a set of state-of-the-art machine 

learning methodologies – to the Generation Scotland: Scottish Family Health Study 

(GS:SFHS) cohort to predict lifetime and recurrent MDD. The predictors in GS:SFHS 

include cognitive function, personality, health and family history, socio-demographic, 

biometric, clinical and genomic data (14-15). We sought to apply these algorithms to a 

set of nested models to assess (a) algorithm performance and (b) to define a sparse set 

of predictors that may be useful in prediction in clinical practice by using a novel 

approach: the Markov Chain 4 (MC4) algorithm, which was developed for rank 

aggregation of Internet search engine rankings (16).  
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Results 

Design Framework 

We employed an array of machine learning algorithms, including tree-based, 

regression-based, neural networks and support vector machines (Methods). Data was 

divided into training and test sets (Fig. 1a). The training data was used to optimise 

hyperparameters for each algorithm using ten-fold cross validation and build prediction 

models (Fig. 1b). We assessed the performance of four nested models, described in 

detail in the Methods. Rank aggregation was used on the variable importance measures 

from the training data to select the top variables across methods. We performed 

independent replication on the test data using the models built on the training data with 

the area under the ROC curve as an outcome of interest. 

Demographics 

For lifetime MDD, in both the training and test data, individuals with MDD were 

significantly younger, more likely to be female, to not be living as a couple, to live alone, 

to report lower income and live in areas that are more socioeconomically deprived than 

controls (all p-values < Bonferroni-corrected threshold of 0·005; SI Appendix, Table S1). 

There were no significant demographic differences between single and recurrent cases 

in the training or test sets using the Bonferroni p-value threshold.  
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Predictive Performance 

The predictive performance across the four models and machine learning algorithms for 

lifetime and recurrent MDD are summarised in Table 1 for lifetime MDD and Table 2 for 

single versus recurrent MDD. In both study designs, model one performed the poorest, 

model two increased predictive performance, and model three outperformed all other 

models. Model four, including cardiometabolic predictors, did not significantly improve 

upon model three; in fact, for some algorithms the inclusion of these additional variables 

led to significantly decreased predictive ability. For the best-performing algorithm in 

lifetime MDD, gradient descent boosting (GDB), model three increased the AUC versus 

model two from approximately 0·71 to 0·84, which is a more than threefold increase in 

information for discrimination, from 0.4 bits to 1.4 bits, although AUC values were 

slightly lower than what is commonly used for biomarkers (17). This improvement was 

also observed for recurrent MDD, although AUC values for Model two were smaller, 

less than 0·6. The increase in AUC for Model three for the best model, random forest 

(RF), increased the AUC from Model two of 0·58 to around 0·76. 

 

After adjusting for 45 tests within each model and focusing on Model three as the best 

performing model, the GDB AUC was significantly higher than both C5.0 and conditional 

inference forest (CIF; p-values 0·00017 and 0·000028, respectively; SI Appendix, Table 

S2); other algorithms performed as well as GDB. For single versus recurrent MDD, C5.0 
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and linear support vector machine (SVM-L) showed significantly poorer performance 

versus the best-performing algorithms (SI Appendix, Table S3). 

 

Ranked Variable Importance and MC4 Analysis 

The MC4 aggregate-ranked variable importance measures were used to calculate AUC 

for both lifetime and recurrent MDD, selecting ten, 20, 30…N of the ranked list to 

determine the minimum number of variables required to attain maximum AUC values for 

prediction of MDD in the independent test set. For lifetime MDD, this value was reached 

after the addition of the top 20 variables. The top ranked variables included (in order): 

neuroticism, General Health Questionnaire (GHQ) total score, GHQ depression, GHQ 

somatic symptoms, age, family history of depression, income, live as a couple, sex, 

mother with depression, whether the participant owned their home, GHQ anxiety, ever 

smoked, Mood Disorder Questionnaire (MDQ) score, Schizotypal Personality 

Questionnaire (SPQ) total score, educational qualification, pain intensity, GHQ social 

dysfunction, whether they ever had chronic pain, and if they live with someone else or 

live alone (Fig. 2a). For recurrent MDD, the maximum AUC was achieved after including 

only ten of the top-ranked variables. The top-ranking variables included (in order of 

rank): age at MDD onset, neuroticism, GHQ total score, digit symbol substitution 

(processing speed), GHQ somatic symptoms, GHQ depression, age, GHQ social 

dysfunction, whether they own their home and age when starting smoking (Fig. 2b). We 

observed considerable overlap between the two sets of predictors, including GHQ total 

and subscale depression, somatic symptoms and depression scores, neuroticism, age, 

and whether the participant owns their home. However, there were interesting 
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differences, where for lifetime MDD family history of depression, MDQ and SPQ scores 

were critical predictors that were not included in the models predicting recurrent 

depression; and for recurrent depression processing speed was ranked highly by MC4, 

which was not included in the set of predictors for lifetime depression.  

 

A comparison of the MC4-ranked variables and variables ranked by individual 

algorithms (Fig. 2a and 2b) showed that, with the exception of CIF in recurrent 

depression, none of the methods were fully consistent with the aggregated ranking. In 

fact, EN only ranked three predictors in the top 20 for lifetime depression and none in 

the top ten for recurrent depression. However, using the MC4-ranked subset of 20 

variables for lifetime MDD and ten variables for single episode versus recurrent MDD 

led to equal – if not improved – performance across all methods. In lifetime MDD, the 

MC4-based model AUC values did not differ from those using the full set of 154 

variables (Table 2). In single versus recurrent MDD, the reduced set of ten variables 

produced from MC4 improved predictive performance at the p-value < 0·05 level across 

six of the ten methods, for example, increasing the AUC for SVM-L from 0·695 using 

180 variables in Model three to 0·771 using the MC4 set of ten.  

 

Leave-One-Out Analysis of MC4 Sets 

To assess the relative contribution of predictors in the MC4 sets, we performed leave-

one-variable-out analysis of these subsets, holding the random number seed constant. 

For lifetime MDD, only the removal of neuroticism showed a significant reduction in 

AUC values across machines (Δ AUC range = 0·024-0·034; p-values range = 0·00018 – 
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2·80 x 10-08; Supplementary Table 4). For single versus recurrent MDD, the removal of 

age at onset showed the largest reduction in AUC values across algorithms, with a 

change in AUC ranging from 0.052 for CIF to 0.088 for C5.0 (significant p-value range = 

0·00052 to 2·36x10-05). Other variables showed a variable pattern across methods 

when being removed; none showed a consistent increase or decrease, which was 

expected as MC4 aggregates rankings across methods. However, the change in AUC 

values were small for all other variables. 

 

Effect size of Model 3 and MC4 Models 

Hedges g was used to estimate effect sizes across different algorithms for Model three 

and the MC4 model in both study designs (Supplementary Table 6). Lifetime effect 

sizes were large, with all g values > 1·0 (Model three range = 1·06 to 1·41 MC4 range = 

1·05 to 1·26). For single versus recurrent MDD, the use of the MC4 set increased g 

values; in fact, for several algorithms the g values were within the range of “medium” 

(e.g., < 0·8) when using Model three, but all g values were large (ranging from 0·93 to 

1·13) using MC4 (Supplementary Table 6). 
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Discussion 

Using state-of-the-art machine learning methods combined with a novel usage of the 

MC4 algorithm, we have defined a set of predictive variables with AUC values that are 

larger than those observed in previous studies; for lifetime MDD, the AUC value is 

within the range of predictive ability for use in clinic. These algorithms were trained on a 

large biobank with deep phenotyping, in contrast to previous approaches, and may be 

easily applied to other similar “Big Data” applications.   

 

The most consistent demographic factors associated with lifetime MDD risk in previous 

studies have been female sex, younger age and low socioeconomic status (18-22). 

Psychosocial risk factors commonly associated with MDD include negative life events, 

traumatic experiences, work-related stress, financial strain, poor marital or interpersonal 

relationships, lack of social support and low self-esteem (10, 23-26). The number of 

previous episodes, the level of residual symptoms, and childhood maltreatment are 

consistent risk factors of recurrent MDD (27-28). We highlight that our findings suggest 

neuroticism is one of the top predictors of lifetime MDD and also recurrent MDD. 

Neuroticism is easily measured by a general practitioner in clinic and would be the best 

single measure for prediction of both types of depression.  

 

Using our algorithm, we provide descriptive characteristics of individuals who are at 

each quintile of our prediction engine, as an illustration of patients a general practitioner 

may see in clinic (Table 3). For example, versus individuals who would have the lowest 

predicted risk of lifetime MDD (Table 4), individuals at higher risk levels would be more 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.11.22270724doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270724
http://creativecommons.org/licenses/by-nd/4.0/


 Machine Learning for Personalised Medicine 12 

 

 
 

likely to score higher on measures of neuroticism, general psychological distress 

(GHQ), have a family history of depression, be a current smoker and live alone. For 

individuals with a higher predicted probability of having recurrent depression versus 

single-episode (Table 5), higher risk for recurrent MDD would be more likely observed in 

individuals with a lower age at MDD onset, higher neuroticism, higher psychological 

distress (GHQ), and poorer performance on digit symbol coding.  

 

The main strength of this study is that it has assessed the importance and contribution 

of well-known and novel predictors of MDD measured using standardised tests in a 

large population-based cohort; and further introduces the MC4 algorithm for rank 

aggregation of results. Generation Scotland is a large homogeneous population that to 

date is one of the few cohorts containing a clinical definition of MDD on a large-scale 

sample. The two study designs (lifetime MDD–healthy controls and single episode-

recurrent MDD) allow for insights into shared and differing risk factors. Limitations of this 

study are the sample size and the lack of replication in an independent large-scale 

cohort with a clinical definition of MDD. 

 

This study has shown that a combination of simple self-report measures can form the 

basis of models that provide excellent prediction of lifetime or recurrent MDD. Given that 

the measures identified through the MC4 algorithm are relatively easy to obtain, a 

possible implementation of the findings of this work could be to collect these measures 

at regular intervals, which would provide a basis for longitudinal assessment of change 

in individuals or groups of patients. Such evidence on patient outcomes would be useful 
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in tracking the impact of interventions, especially treatment response to antidepressants 

or psychological interventions such as cognitive behavioural therapy. If incorporated into 

clinical practice, the use of algorithms to predict a patient’s risk of MDD could have a 

substantial impact on the timeliness and effectiveness of diagnosis and treatment. The 

measures can be obtained outside of the clinic and the resulting data-based risk 

prediction can inform clinicians’ decisions, allowing more time during consultations to 

discuss issues specific to the patient to accommodate a personalised approach. 

Another exciting prospect for the implementation of the results of this study could 

therefore be to use the MC4 algorithm as the basis of a decision support tool that could 

be incorporated into a mobile application (app) for the benefit of patients, support 

workers and clinicians. Patients could enter their own data into the app and a built-in 

algorithm would be able to forewarn or reassure about lifestyle changes that might 

presage or mitigate recurrence. Apps are increasingly being developed and used 

successfully in health and social care to access treatment guidelines and to support 

decisions about patient screening, treatment options and drug dosage (29). In the 

current era of increased availability of data, new systems for linking and utilising 

healthcare and other records could provide crucial and timely information to support 

personalised healthcare. 
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Materials and Methods 

Generation Scotland: Scottish Family Health Study 

Our sample was drawn from the GS:SFHS, a large population-based study. A full 

description of the cohort and protocol for recruitment is described in detail elsewhere 

(14-15). Briefly, the GS:SFHS is a representative survey of the Scottish population, 

consisting of 23,960 individuals over 18 years of age recruited between the years 2006 

and 2011. All components of GS:SFHS received ethical approval from the NHS Tayside 

Committee on Medical Research Ethics (REC Reference Number: 05/S1401/89) and all 

participants gave written informed consent. Generation Scotland data are available 

under managed access by submitting a proposal to the Generation Scotland Data 

Access Committee.  

 

The selection criteria for participants included: Caucasian ethnicity, born in the UK and 

phenotype data available from attendance at a Generation Scotland research clinic (30). 

We further restricted the analysis to unrelated individuals, as the machine learning 

algorithms employed required independent observations. Cases were not matched to 

controls as doing so would remove the effect of the matching criteria from analysis; thus 

preventing assessment of potential interaction effects for those criteria. 

Assessment of MDD 

All participants in GS:SFHS were screened for psychiatric disorders and those who 

responded positively to screening questions were invited to continue with the MDD and 

bipolar disorder modules from the Structured Clinical Interview for Diagnostic and 
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Statistical Manual of Mental Disorders, Fourth Edition (SCID;31). The diagnostic 

interview was conducted in person by trained clinical research nurses.  

 

 

 

Predictors of MDD: Self-Report, Clinical, Cognitive and Demographic 

MDD Symptomology  

For analysis of single versus recurrent depression, we included 12 symptom predictors 

from the SCID interview, plus age at onset and a variable indicating which nurse 

conducted the interview. Missing values for SCID interview questions were controlled 

for by creating a binary vector indicating which values were not recorded. 

 

General Psychological Distress  

Psychological distress was measured using the 28-item General Health Questionnaire 

(GHQ; 32) at baseline by a trained clinical nurse. Fifty-seven percent of the study 

participants were also given the Mood Disorder Questionnaire (MDQ; 33) and 

Schizotypal Personality Questionnaire-Brief (SPQ-B; 34).  

 

Cognitive Performance 

Cognitive performance was assessed using measures of processing speed (Wechsler 

Digit Symbol Substitution Task; 35), verbal declarative memory (Wechsler Logical 

Memory Test; 36) both immediate and delayed, executive function measured with the 
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letter-based phonemic verbal fluency test using the letters C, F, and L, each for one 

minute (37) and vocabulary (Mill Hill Vocabulary Scale; 38).  

 

Demographic and Socioeconomic Status 

The Scottish Index of Multiple Deprivation (SIMD; 39) 2009, matched to each 

participant's postcode, was used to assess socioeconomic status. SIMD is a ranking 

based on seven domains: income, employment, health, education, geographic access, 

crime, and housing.  

 

Clinical Measurements, Personal and Family Medical History  

Clinical measures included height, weight, BMI, waist, hip, waist:hip ratio, percent body 

fat, systolic and diastolic blood-pressure (both mean of two measurements), respiratory 

function (forced expiratory volume in one second, forced vital capacity and forced 

expiratory flow; each measured three times) and blood sodium, potassium, urea, 

creatinine, glucose, total cholesterol and HDL-cholesterol levels (14). Participants were 

asked about whether they or their first-degree relatives had a history of depression, 

Parkinson disease, Alzheimer disease, diabetes, asthma, cardiovascular disease 

(including heart disease, hypertension and stroke), osteoarthritis, rheumatoid arthritis, 

hip fracture or common cancers (including breast, bowel, lung and prostate). 
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Alcohol and Tobacco Use 

Participants were identified as current drinkers, former drinkers (either stopping greater 

than or less than 12 months) or never drinkers. Current alcohol consumption was 

characterised as either more or less than usual for each participant. Total consumption 

was measured in self-reported units of alcohol consumed in the previous week. 

Participants were classified into two groups: ever-smokers (current smokers and former 

smokers) and never smokers, with ever-smokers also asked at what age they started 

smoking and amount of tobacco consumption. 

 

Chronic Pain   

A validated self-report chronic pain questionnaire was used to assess pain severity 

based on its intensity and impact of pain on daily functioning in the previous three 

months40.  

 

Analytic Methods 

Training and Test Datasets 

One thousand and nineteen randomly-selected unrelated participants who had at least 

one episode of major depressive disorder were randomly selected as cases. Randomly-

selected, healthy unrelated individuals (N = 3,994) with no lifetime diagnosis of 

psychiatric disorders served as controls. For analyses examining single versus 

recurrent major depressive disorder, we randomly resampled unrelated individuals from 
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GS:SFHS to increase sample size (as controls were excluded), leading to a total of 

1,198. 

 

The final data sets were divided into (a) training data for machine learning hyper-

parameter optimisation and model building and (b) test data (Fig. 1a). The test data 

were not used to develop any prediction models and formed an independent replication 

set. Many machine learning methods for binary classification require relatively equal 

numbers of cases and controls to assure optimised prediction (41). We performed a 

down-sampling procedure to balance the case-control ratio in the training data. The 

minority class (e.g., cases with MDD and recurrent MDD) were randomly split into a 

training set (63%) and an independent test set (37%). The majority class (e.g., controls 

and single episode MDD) was randomly under-sampled to make its frequency equal to 

the minority class for the training data (see Table 1 for Ns). Hedges g (42) was used to 

estimate effect sizes because of imbalance in the independent test sets. 

 

Machine Learning Algorithms and Hyper-Parameter Settings 

A panel of predictive machine learning algorithms was applied to the data. We applied 

the C5.0 tree-based algorithm (43-44), two tree-based ensemble algorithms (random 

forest, RF; 45-46) and conditional inference forest (CIF; 47-48), a gradient descent 

boosting algorithm (GDB; 49-50), elastic net, a regularised regression technique (EN; 

51-52), feed-forward neural networks (NN; 53-54), and support vector machines (SVM; 

55-57) with the following kernels: linear (SVM-L), polynomial (SVM-P) and radial basis 

function (SVM-R). We also used forward stepwise regression with Akaike’s Information 
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Criterion (58). These methods were selected as best examples of a range of machine 

learning methodologies commonly applied to biologic data.  

 

The R package caret (59) was used to perform ten-fold cross validation on the training 

data to set optimised values for the hyper-parameters for each algorithm (Fig. 1b; 

details about hyper-parameter selection in SI Appendix, Methods). All analyses were 

conducted in R version 3.2.4 (60).  

 

Receiver Operating Characteristic (ROC) area under the curve (AUC) and Variable 

Importance Measures (VIMs) 

The outcome of interest was the area under the ROC curve from the independent test 

data using models built on the training data. We used the nonparametric DeLong (61) 

method as implemented in pROC (62) to test for statistical differences between areas 

under the curve among independent test data.  We sought to find the largest ROC AUC 

whilst minimising the number of variables required such that a smaller set could 

potentially be used for prediction by general practitioners. We also report an alternative 

measure to the AUC to aid in interpretation, where to quantify differences in predictive 

performance we use the expected weight of evidence as measured in bits (63). Machine 

learning algorithms generate measures, or VIMs, of the relative contribution of 

predictors in classifier construction, or a measure of the strength of association between 

predictor and outcome. For C5.0 the VIM used was the percent of observations in the 

nodes directly under the split for that variable; for RF and CIF it was the permutation-
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based VIM; for EN and FSR it was the absolute value of the coefficients, for NN and all 

SVM we used caret’s internal VIM function, which is not dependent on the algorithm and 

simply measures the AUC increase when including the variable over a null model as 

these methods do not provide a direct measure of variable importance. 

 

Markov Chain 4 (MC4) Algorithm 

We took ranked variable importance measures from the training data using the optimal 

set of hyper-parameters for each algorithm and applied the Markov Chain 4 (MC4) 

algorithm (16, 64) to provide an aggregated variable ranking. To begin, the MC4 

algorithm considers a single set U that contains the union of the top k elements from all 

lists. For each pair i and j in the list (i ≠ j), set the Markov chain transition matrix M 

element mij to 1/|U| if > 50% of the lists rank j above i and 0/|U| otherwise. If i and j are 

never contained in the same list, then mij = mji = 0.5/|U|, and let mii = . If ε is a small 

positive constant, it creates an ergodic transition matrix M by ((1- ε)*m) + ε/|U|. The 

resulting stationary probabilities are then used to create an aggregate ranking of the 

variables, with higher probabilities denoting a higher rank (i.e., the Markov process 

spent longer time in those states). The proposed novel use of meta-ranking technology 

provides robust inferences about the relative contribution to risk for MDD across 

different machines. We then selected the top ten, 20, …, N ranked variables and fitted 

them in the best-performing model to assess the number of variables required to reach 

maximum predictive ability. Leaving one predictor out at a time, we assessed the 
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relative contribution of each predictor to the final model AUC values in the independent 

test set. 

 

Models Assessed 

We assessed performance of four nested models, where outcomek was either (1) 

lifetime MDD versus controls or (2) single versus recurrent depression: 

Model 1: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑘 =  𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒2 +  𝛽3𝑠𝑒𝑥 

Model 2: 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑘 =  𝛽1𝑎𝑔𝑒 + 𝛽2𝑎𝑔𝑒2 +  𝛽3𝑠𝑒𝑥 + ∑ 𝛽𝑖𝑠𝑜𝑐𝑖𝑜𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠18
𝑖=4  

Building upon model two, the third model included mood, schizotypy and cognitive 

variables; family and personal medical history (excluding stroke, metabolic and 

cardiovascular history); as well as smoking and alcohol consumption. In addition, for the 

analysis of single versus recurrent MDD, we added variables derived from the SCID 

interview; this led to a total of 154 variables for lifetime MDD and 180 for analysis of 

single versus recurrent MDD. We hypothesised that cardiometabolic predictors may not 

improve prediction in all MDD cases but instead particularly in those with a later age at 

onset (65). Model four included Model three plus cardiovascular and stroke medical and 

family history; obesity, diabetes, FEV and lab measurements as these are commonly 

co-morbid with depression (N predictors: lifetime MDD: 211; single versus recurrent 

MDD: 237).  

Hyperparameters were optimised using ten-fold cross validation on the training data.  

We used the nonparametric DeLong approach to test for statistical differences between 

areas under the curve among independent test data.   
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Fig. 1 Schematic of Study Design. (a). Training and test sample creation. (b). Overall 

schematic of the study design. First, the training data are put through 10-fold cross 

validation to estimate appropriate hyperparameters. Second, the correct 

hyperparameters are applied to the full training set to create a model for prediction, and 

the variable importance measure rankings are recorded. Finally, the models developed 

on the training data are used for prediction of either lifetime MDD or single versus 

recurrent MDD on the test data.  
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Fig. 2 

a 
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Fig. 2 Concordance of individual algorithm rankings versus MC4 overall ranking. (a) 

Top panel shows concordance in lifetime MDD. Darkest blue = individual methods 

ranked in top 10, next darkest blue = top 20, light blue = top half, lightest blue = bottom 

half. The number of predictors in C5.0 (52) and FSR (41) was less than the top half of 

predictors, so any predictor with a zero-valued VIM was set to dark blue. GHQ = 

General Health Questionnaire, MDQ = Mood Disorder Questionnaire, SPQ = 

Schizotypal Personality Questionnaire (b) Bottom panel shows concordance in single 

versus recurrent episode MDD. Darkest orange = individual methods ranked in top 10, 

next darkest orange = top 20, light orange = top half, lightest orange = bottom half. The 

number of predictors in C5.0 (40), EN (37) and FSR (30) was less than the top half of 

predictors, so any predictor with a zero-valued VIM was set to dark orange. GHQ = 

General Health Questionnaire. 
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Table 1. AUC Results for Predicting MDD on Independent Test Data: Lifetime MDD 
 

Algorithm 
M1 

AUC 
M1 95% 

CI M2 AUC 
M2 95% 

CI M3 AUC 
M3 95% 

CI M4 AUC 
M4 95% 

CI 

C5.0 0·652 
(0·625, 
0·679) 0·694* 

(0·666, 
0·723) 0·813** 

(0·789, 
0·837) 0·805 

(0·780, 
0·830) 

Conditional inference forest 0·670 
(0·642, 
0·697) 0·709* 

(0·681, 
0·737) 0·825**** 

(0·802, 
0·848) 0·829* 

(0·806, 
0·852) 

Elastic net 0·670 
(0·643, 
0·697) 0·705* 

(0·677, 
0·734) 0·835**** 

(0·812, 
0·858) 0·834 

(0·811, 
0·857) 

Forward stepwise regression 0·669 
(0·642, 
0·697) 0·711* 

(0·683, 
0·739) 0·829**** 

(0·805, 
0·853) 0·820 

(0·795, 
0·844) 

Gradient descent boosting 0·663 
(0·635, 
0·69) 0·712** 

(0·683, 
0·741) 0·839*** 

(0·816, 
0·861) 0·840 

(0·819, 
0·862) 

Neural networks 0·666 
(0·640, 
0·694) 0·709* 

(0·681, 
0·736) 0·824**** 

(0·801, 
0·847) 0·825 

(0·801, 
0·849) 

Random forest 0·660 
(0·632, 
0·688) 0·710* 

(0·681, 
0·739) 0·824**** 

(0·801, 
0·848) 0·828 

(0·804, 
0·851) 

SVM, linear 0·666 
(0·639, 
0·694) 0·704* 

(0·675, 
0·734) 0·833**** 

(0·809, 
0·856) 0·830 

(0·807, 
0·854) 

SVM, polynomial 0·670 
(0·639, 
0·694) 0·704* 

(0·675, 
0·733) 0·830**** 

(0·809, 
0·856) 0·831 

(0·807, 
0·854) 

SVM, radial basis function 0·652 
(0·623, 
0·680) 0·694* 

(0·665, 
0·722) 0·829**** 

(0·806, 
0·853) 0·830 

(0·806, 
0·853) 
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Table 2. AUC Results for Predicting MDD on Independent Test Data: Single versus Recurrent MDD 
 

 

Algorithm 
M1 

AUC 
M1 95% 

CI 
M2 

AUC M2 95% CI M3 AUC 
M3 95% 

CI 
M4 

AUC 
M4 95% 

CI 

C5.0 0·555 
(0·518, 
0·592) 0·536 

(0·487, 
0·585) 0·689** 

(0·644, 
0·734) 0·650* 

(0·584, 
0·681) 

Conditional inference forest 0·593 
(0·543, 
0·644) 0·603 

(0·554, 
0·653) 0·728** 

(0·686, 
0·770) 0·742* 

(0·701, 
0·783) 

Elastic net 0·584 
(0·532, 
0·636) 0·601 

(0·552, 
0·650) 0·742** 

(0·700, 
0·784) 0·739 

(0·696, 
0·782) 

Forward stepwise regression 0·589 
(0·537, 
0·640) 0·570 

(0·520, 
0·619) 0·699* 

(0·655, 
0·742) 0·651* 

(0·604, 
0·698) 

Gradient descent boosting 0·592 
(0·541, 
0·643) 0·600 

(0·549, 
0·648) 0·756*** 

(0·715, 
0·796) 0·735* 

(0·692, 
0·778) 

Neural networks 0·587 
(0·538, 
0·636) 0·557 

(0·507, 
0·606) 0·749*** 

(0·706, 
0·792) 0·713* 

(0·668, 
0·757) 

Random forest 0·544 
(0·495, 
0·594) 0·576 

(0·526, 
0·626) 0·759*** 

(0·718, 
0·800) 0·743 

(0·700, 
0·787) 

SVM, linear 0·587 
(0·535, 
0·639) 0·592 

(0·543, 
0·641) 0·695* 

(0·650, 
0·740) 0·667* 

(0·619, 
0·715) 

SVM, polynomial 0·584 
(0·531, 
0·636) 0·595 

(0·546, 
0·644) 0·709* 

(0·665, 
0·754) 0·697 

(0·652, 
0·742) 

SVM, radial basis function 0·557 
(0·507, 
0·606) 0·571 

(0·522, 
0·621) 0·705** 

(0·660, 
0·750) 0·692 

(0·646, 
0·738) 

 

M = Model, AUC = Receiving Operator Characteristic Area Under the Curve, CI = Confidence Interval. The best performing model 

is denoted in bold type. * p<0.05, ** p<1x10-05,*** p<1x10-10, **** p<1x10-15 versus previous model. 
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Table 3. AUC Results for Best Performing Model versus MC4 Model 

 

 

Lifetime MDD: M3 = 154 Variables, 
MC4 = 20 Variables 

Recurrent MDD: M3 = 180 
Variables, MC4 = 10 Variables 

Algorithm 
M3 

AUC 
M3 95% 

CI 
MC4 
AUC 

MC4 95% 
CI 

M3 
AUC 

M3 95% 
CI 

MC4 
AUC 

MC4 
95% CI 

C5.0 0·813 
(0·789, 
0·837) 0·808 

(0·784, 
0·833) 0·689 

(0·644, 
0·734) 0·735* 

(0·694, 
0·776) 

Conditional inference forest 0·825 
(0·802, 
0·848) 0·825 

(0·802, 
0·848) 0·728 

(0·686, 
0·770) 0·743* 

(0·702, 
0·784) 

Elastic net 0·835 
(0·812, 
0·858) 0·831 

(0·809, 
0·854) 0·742 

(0·700, 
0·784) 0·771* 

(0·733, 
0·809) 

Forward stepwise regression 0·829 
(0·805, 
0·853) 0·834 

(0·812, 
0·857) 0·699 

(0·655, 
0·742) 0·771* 

(0·733, 
0·809) 

Gradient descent boosting 0·839 
(0·816, 
0·861) 0·839 

(0·817, 
0·862) 0·756 

(0·715, 
0·796) 0·775* 

(0·736, 
0·813) 

Neural networks 0·824 
(0·801, 
0·847) 0·835 

(0·812, 
0·858) 0·749 

(0·706, 
0·792) 0·752 

(0·712, 
0·792) 

Random forest 0·824 
(0·801, 
0·848) 0·830 

(0·808, 
0·853) 0·759 

(0·718, 
0·800) 0·762 

(0·721, 
0·803) 

SVM, linear 0·833 
(0·809, 
0·856) 0·832 

(0·809, 
0·855) 0·695 

(0·650, 
0·740) 0·771* 

(0·732, 
0·809) 

SVM, polynomial 0·830 
(0·809, 
0·856) 0·832 

(0·809, 
0·854) 0·709 

(0·665, 
0·754) 0·740 

(0·698, 
0·782) 

SVM, radial basis function 0·829 
(0·806, 
0·853) 0·827 

(0·805, 
0·850) 0·705 

(0·660, 
0·750) 0·743 

(0·700, 
0·786) 

 
M = Model, AUC = Receiving Operator Characteristic Area Under the Curve, CI = Confidence Interval. The best performing models 

are denoted in bold type. * p<0.05, ** p<1x10-05,*** p<1x10-10, **** p<1x10-15 for comparison of model 3 to MC4 model. 
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Table 4. Examples of Individuals at Quintiles of Predicted MDD using MC4 Predictors: Lifetime MDD  

Prediction 
Quintile Neu 

GHQ 
Total 

GHQ-
Dep 

GHQ-
Som Age 

Fx 
Dep 

Income 
Level 

Live 
as 

Couple Sex 
Mother 

Depress 
Own 

House 
GHQ-
Anx 

Ever 
Smoke MDQ-C 

SPQ-
Total Ed/Qual 

Pain 
Inten 

GHQ-
Soc 

Pain 
Ever 

Number 
in 

House 

0% 0 7 0 0 65 No Lowest Yes M No Yes 0 No None 1 

School 
Leavers 

Certificate 40 7 No 2 

25% 0 5 0 1 61 No Highest No M No Yes 0 Current None 5 University 38 4 Yes 1 

50% 4 14 0 5 64 No 
Second-
Highest Yes F No Yes 2 No None 7 University 21 7 Yes 2 

75% 4 11 0 2 49 No Highest No M No Yes 6 No Serious 3 University 56 3 Yes 3 

100% 8 22 4 5 25 Yes Highest No F No No 10 Current Serious 12 University 33 3 Yes 1 
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Table 5. Examples of Individuals at Quintiles of Predicted MDD using MC4 Predictors :Single versus Recurrent MDD 

 

 

 

 

Prediction 
Quintile 

Age 
Onset Neu 

GHQ-
Total 

Digit 
Symbol 

GHQ-
Som 

GHQ- 
Dep Age 

GHQ-
Soc 

Own 
House 

Age 
Smoking 

0% 51 0 13 63 1 1 53 8 Yes 14 

25% 38 9 27 81 9 0 51 5 Yes 12 

50% 30 4 18 67 8 0 41 7 Yes 22 

75% 36 10 35 77 4 8 55 15 Yes 17 

100% 14 12 56 39 10 12 54 16 No 7 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.11.22270724doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270724
http://creativecommons.org/licenses/by-nd/4.0/


 Machine Learning for Personalised Medicine 40 

 

 
 

Supporting Information 

Supplementary Methods 

Machine learning optimisation 

The optimisation was set to a grid search for C5.0 (number of trials 1-20), CIF and RF (number of trees set to 

1000, number of variables selected at each split (mtry) set to a grid of 10-15 values up to the total number of 

variables), GDB (interaction depth grid set to 1-3, number of iterations grid set to between 1 000 and 5 000, 

shrinkage held constant at 0.001), EN (grid for alpha and lambda set between 0 and 1). For NN and SVM models, 

we used a random search as the number of hyper-parameters was large and a random search has been shown to 

have equal or improved performance versus a grid search for these methods (1). Data were centred and scaled 

before analysis using SVMs as different scales of measurement can lead to numerical difficulties during the 

calculation of the inner products of the variables. 

 

Imputation 

For variables with less than 5% missing data, multivariate imputation by chained equations (MICE; 2-3) was 

used to replace missing values. 

 

Supporting Information References 

1. Bergstra J, Bengio Y (2012) Random Search for Hyper-Parameter Optimization. J Mach Learn Res 

13(Feb):281–305. 

2.  van Buuren S, Groothuis-Oudshoorn K, van Buuren S, Groothuis-Oudshoorn K (2011) mice: 

Multivariate Imputation by Chained Equations in R. J Stat Softw 045(i03).  

3.  van Buuren S, et al. (2017) mice: Multivariate imputation by chained equations. R package version 

2.46.0. 
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Table S1.  Demographic and Socioeconomic Characteristics in Cases and Controls and Single vs. Recurrent MDD 

Outcome Lifetime MDD Recurrent vs Single MDD 

Data Training Test Training Test 

Sample Size 642 628 377 3862 274 273 160 588 

Group Case Control Case Control Recurrent Single Recurrent Single 

Scottish nationality (N, %) 580 (90.3) 550 (87.6) 343 (91.0) 3366 (87.2) 257 (93.8) 251 (91.9) 544 (92.5) 146 (91.3) 

Age (mean, SD) 49.6 (11.8) 56.7 (11.9) 50.4 (11.7) 56.9 (11.7) 47.2 (12.3) 49.9 (12.4) 48.7 (12.0) 51.8 (12.4) 

Female (N, %) 469 (73.1) 359 (57.2) 257 (68.2) 2162 (56.0) 202 (73.7) 195 (71.4) 417 (70.9) 106 (66.3) 

Living as a couple (N, %) 381 (59.3) 499 (79.5) 228 (60.5) 3026 (78.4) 166 (60.6) 180 (65.9) 326 (55.4) 106 (66.3) 

Living alone (N, %) 154 (24.0) 82 (13.1) 84 (22.3) 545 (14.1) 59 (21.5) 58 (21.2) 149 (25.3) 26 (16.3) 

Annual personal income                 

£0-£10 000 113 (17.6) 50 (8.0) 59 (15.6) 273 (7.1) 44 (16.1) 34 (12.5) 114 (19.4) 20 (12.5) 

£10 001-£30 000 243 (37.9) 181 (28.8) 127 (33.7) 1242 (32.2) 93 (33.9) 96 (35.2) 224 (38.1) 57 (35.6) 

£30 001-£50 000 126 (19.6) 169 (26.9) 95 (25.2) 987 (25.6) 65 (23.7) 76 (27.8) 115 (19.6) 32 (20.0) 

£50 001 + 126 (19.6) 175 (27.9) 82 (21.8) 1002 (25.6) 59 (21.5) 54 (19.8) 114 (19.4) 38 (23.8) 

Refused 34 (5.3) 53 (8.4) 14 (3.7) 358 (9.3) 13 (4.7) 13 (4.8) 21 (3.6) 13 (8.1) 

Worked in last 12 months (N, %) 393 (61.2) 420 (66.9) 242 (64.2) 2497 (64.7) 180 (65.7) 182 (66.7) 362 (61.6) 97 (60.6) 

Educational Qualification                 

Less than secondary 68 (10.6) 66 (10.5) 46 (12.2) 426 (11.0) 31 (11.3) 25 (9.2) 64 (10.9) 17 (10.6) 

Secondary 176 (27.4) 212 (33.8) 101 (26.8) 1171 (30.3) 79 (28.8) 79 (28.9) 163 (27.7) 46 (28.8) 

Tertiary 398 (62.0) 350 (55.7) 230 (61.0) 2265 (58.6) 164 (59.9) 169 (61.9) 361 (61.4) 97 (60.6) 

SIMD                  

1 - Most deprived 111 (17.3) 60 (9.6) 70 (18.6) 401 (10.4) 65 (23.7) 37 (13.6) 107 (18.2) 18 (11.3) 

2 112 (17.4) 73 (11.6) 63 (16.7) 440 (11.4) 40 (14.6) 36 (13.2) 111 (18.9) 23 (14.4) 

3 116 (18.1) 107 (17.0) 53 (14.1) 15.5 (599) 43 (15.7) 48 (17.6) 98 (16.7) 32 (20.0) 

4 144 (22.4) 148 (23.6) 87 (23.1) 1024 (26.5) 63 (23.0) 64 (23.4) 125 (21.3) 40 (25.0) 

5 - Least deprived 159 (24.8) 240 (38.2) 104 (27.6) 1398 (36.2) 63 (23.0 88 (32.2) 147 (25.0) 47 (29.4) 

Yellow: p<0.005, light green: p<0.01, dark green: p<0.05. Statistical significance was tested between cases/controls for lifetime MDD or between single versus recurrent 

MDD using χ2 tests for categorical and t-tests for continuous outcomes.  
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Table S2. ROC Curve Comparisons between Methods within Models for Lifetime MDD 

(a) Model 1 (above diagonal) and Model 2 (below diagonal) 

 C5.0 CIF EN FSR GDB NN RF SVM-L SVM-P SVM-R 

C5.0   0.019 0.17 0.036 0.17 0.068 0.33 0.13 0.010 0.98 

CIF 0.029   0.84 0.96 0.050 0.97 0.018 0.32 0.92 0.0066 

EN 0.0086 0.59   0.80 0.062 0.25 0.028 0.26 0.59 0.0055 

FSR 0.014 0.78 0.041   0.80 0.43 0.037 0.12 0.87 0.012 

GDB 0.0086 0.51 0.20 0.81   0.27 0.20 0.41 0.068 0.11 

NN 0.065 0.94 0.54 0.61 0.55   0.13 0.91 0.29 0.021 

RF 0.020 0.91 0.36 0.81 0.58 0.86   0.20 0.031 0.21 

SVM-L 0.17 0.46 0.46 0.0032 0.14 0.38 0.28   0.31 0.030 

SVM-P 0.14 0.38 0.49 0.0032 0.11 0.38 0.15 0.92   0.0064 

SVM-R 0.94 0.024 0.067 0.0079 0.0082 0.024 0.0073 0.12 0.043   

 

(b) Model 3 (above diagonal) and Model 4 (below diagonal)  

 C5.0 CIF EN FSR GDB NN RF SVM-L SVM-P SVM-R 

C5.0   0.12 0.0026 0.062 0.00017 0.21 0.17 0.014 0.028 0.039 

CIF 0.00081   0.039 0.62 0.000028 0.86 0.89 0.24 0.31 0.31 

EN 0.0011 0.41   0.26 0.37 0.080 0.035 0.41 0.072 0.15 

FSR 0.18 0.29 0.019   0.18 0.52 0.56 0.43 0.85 0.95 

GDB 8.65E-08 0.00010 0.22 0.012   0.012 0.0068 0.27 0.094 0.085 

NN 0.026 0.59 0.13 0.48 0.027   0.95 0.22 0.37 0.45 

RF 0.0089 0.69 0.22 0.37 0.014 0.75   0.20 0.16 0.32 

SVM-L 0.0081 0.87 0.35 0.030 0.13 0.44 0.70   0.54 0.45 

SVM-P 0.0037 0.71 0.16 0.10 0.13 0.44 0.70 0.85   0.81 

SVM-R 0.0082 0.94 0.15 0.13 0.054 0.49 0.66 0.88 0.52   

p-values < 0.05 after Bonferroni correction are in bold. 
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Table S3. ROC Curve Comparisons between Methods within Models for Single versus Recurrent MDD 

(a) Model 1 (above diagonal) and Model 2 (below diagonal) 

 C5.0 CIF EN FSR GDB NN RF SVM-L SVM-P SVM-R 

C5.0  0.041 0.13 0.086 0.049 0.095 0.65 0.10 0.17 0.93 

CIF 0.0062  0.28 0.57 0.28 0.68 0.017 0.46 0.27 0.015 

EN 0.020 0.85  0.47 0.14 0.88 0.11 0.43 0.96 0.11 

FSR 0.19 0.016 0.071  0.56 0.92 0.070 0.71 0.31 0.062 

GDB 0.0095 0.52 0.89 0.023  0.75 0.033 0.36 0.26 0.027 

NN 0.46 0.023 0.049 0.47 0.037  0.079 0.99 0.87 0.14 

RF 0.074 0.084 0.26 0.75 0.11 0.42  0.079 0.10 0.57 

SVM-L 0.031 0.24 0.42 0.025 0.57 0.047 0.39  0.32 0.083 

SVM-P 0.014 0.33 0.66 0.046 0.74 0.032 0.27 0.73  0.13 

SVM-R 0.098 0.036 0.15 0.90 0.086 0.45 0.79 0.17 0.036  

 

(b) Model 3 (above diagonal) and Model 4 (below diagonal)  

 C5.0 CIF EN FSR GDB NN RF SVM-L SVM-P SVM-R 

C5.0  0.050 0.0052 0.67 0.00017 0.0055 0.00019 0.78 0.36 0.47 

CIF 1.85E-07  0.24 0.18 0.0071 0.17 0.0053 0.10 0.36 0.25 

EN 4.82E-07 0.81  0.0086 0.17 0.64 0.18 0.00092 0.037 0.018 

FSR 0.54 0.00045 0.00012  0.0022 0.020 0.0036 0.80 0.57 0.74 

GDB 1.62E-06 0.54 0.72 0.00058  0.58 0.68 0.00025 0.0068 0.0023 

NN 0.00054 0.059 0.10 0.021 0.14  0.47 0.0049 0.038 0.024 

RF 2.26E-07 0.88 0.74 0.00030 0.22 0.047  0.00029 0.0022 0.00038 

SVM-L 0.20 0.00031 4.91E-06 0.45 0.00024 0.032 0.032  0.14 0.34 

SVM-P 0.014 0.020 0.023 0.077 0.054 0.47 0.014 0.054  0.55 

SVM-R 0.024 0.0094 0.0075 0.096 0.022 0.34 0.0043 0.054 0.52  

p-values < 0.05 after Bonferroni correction are in bold. 
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Table S4. AUC Differences between MC4 Full Model and Leave-One-Out Analysis of Top 20 Predictors in Lifetime Depression 

MC4 Top 20 C5.0 CIF EN FSR GDB NN RF SVM-L SVM-P SVM-R 

Neuroticism 

0.034 

(0.00018) 

0.032 

(3.56e-05) 

0.030 

(2.80e-08) 

0.031 

(1.08e-07) 

0.027 

(1.63e-05) 

0.030 

(2.63e-07) 

0.025 

(6.02e-06) 

0.031 

(4.27e-08) 

0.028 

(2.04e-07) 

0.024 

(3.07e-05) 

GHQ Total Score 0.004 -0.001 0.004 -0.004 -0.002 -0.010 -0.007 0.0009 -0.002 -0.004 

GHQ Depression -0.004 0.0009 0.0008 -0.0002 0.003 -0.010 -0.004 0.005 -0.006 0.0005 

GHQ Somatic Symptoms 0.0009 -0.003 0.004 -0.002 0 -0.0099 0 0.002 -0.002 -0.0003 

Age 0.008 0.003 0.009 0.0002 0.008 -0.006 0.002 0.006 0.003 0.001 

Family History: Depression -0.003 0.003 0.007 0.002 0.002 -0.006 -0.003 0.004 0.0008 -0.0003 

Income 0.001 -0.002 0.003 -0.004 -0.001 -0.0098 -0.007 -0.0004 -0.004 -0.004 

Live as a Couple 0.008 0.0004 0.006 -0.002 0.001 -0.0084 -0.005 0.003 -0.002 -0.003 

Sex 0.001 -0.002 0.004 -0.003 0 -0.010 -0.007 0.002 -0.001 -0.003 

Mother with Depression -0.007 -0.002 0.002 -0.002 0 -0.011 -0.006 0.001 -0.002 -0.003 

Own House -0.003 -0.002 0.004 -0.001 0 -0.0096 -0.007 0.002 -0.002 -0.003 

GHQ Anxiety 0.001 -0.002 0.004 -0.002 -0.001 -0.010 -0.002 0.0001 -0.003 -0.004 

Ever Smoke 0.0006 -0.002 0.006 -0.002 0.001 -0.0085 -0.005 0.001 -0.0001 -0.002 

MDQ Severity Score -0.002 0.0005 0.004 -0.002 0 -0.0087 -0.004 0.002 -0.002 -0.002 

SPQ Total Score -0.0004 -0.003 0.005 -0.002 -0.001 -0.011 -0.007 -0.002 -0.0004 -0.006 

Education/Qualifications 0.005 0.002 0.006 -0.002 0.002 -0.0088 -0.003 0.002 -0.0005 -0.003 

Pain Intensity -0.0007 -0.002 0.005 -0.002 0 -0.0093 -0.007 0.001 -0.002 -0.003 

GHQ Social Dysfunction -0.003 -0.002 0.004 -0.002 -0.001 -0.010 -0.0008 0.001 -0.002 -0.003 

Pain Ever -0.002 -0.003 0.002 -0.005 -0.001 -0.012 -0.006 -0.001 -0.007 -0.006 

Live with People 0.001 -0.001 0.003 -0.004 0 -0.010 -0.007 0.0001 -0.003 -0.005 

p-values included in parentheses for variables associated with a significant decrease in AUC values after removal, after Bonferroni correction. 
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Table S5. AUC Differences between MC4 Full Model and Leave-One-Out Analysis of Top 20 Predictors in Single versus Recurrent 

Depression 

MC4 Top 10 C5.0 CIF EN FSR GDB NN RF SVM-L SVM-P SVM-R 

Age at Onset 

0.088 

(0.00056) 0.052 

0.081 (4.29E-

05) 

0.081 (4.30E-

05) 

0.074 (5.32E-

05) 

0.081 

(0.00042) 

0.068 

(0.00014) 

0.079 (2.36E-

05) 

0.073 (5.96E-

05) 

0.067 

(0.00032) 

Neuroticism 0.023 0.004 0.012 0.012 0.014  0.012 0.014  0.015  0.008 0.018 

GHQ Total Score 0 0 0 0 0.003 -0.003 0 0.001 0.007 0.003 

Digit Symbol 

Substitution -0.020 -0.002 0 0 -0.002 -0.008 -0.004 0.001 -0.009 -0.006 

GHQ Somatic 

Symptoms 0.013 -0.003 -0.001 -0.001 -0.001 0 0.001 0.002 -0.001 0.005 

GHQ Depression -0.006 0.001 -0.001 -0.001 0.003 -0.005 0.001 0.001 -0.004 -0.001 

Age 0.031  0.001 0.006 0.015 0.012  0 0.005 0.005 0.002 0.007 

GHQ Social 

Dysfunction -0.008 0.001 -0.001 -0.001 0.006 -0.009 0.006 0.001 0 0.007 

Own House -0.007 0 0 0 0 -0.006 -0.002 -0.001 

-0.032 

(0.00047) -0.009 

Age Started Smoking -0.001 0.004 0.003 0.003 0.004 -0.009 0.004 0.005 -0.005 0.006 

p-values included in parentheses for variables associated with a significant decrease in AUC values after removal, after Bonferroni correction. 
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Table S6. Effect Size Given by Hedges g for Model 3 and MC4 Model in Lifetime and Single versus Recurrent MDD 

 

 

Lifetime MDD: M3 = 154 Variables, MC4 = 20 

Variables 

Recurrent MDD: M3 = 180 Variables, MC4 = 

10 Variables 

Algorithm M3 g 

M3 g 95% 

CI MC4 g 

MC4 g 95% 

CI M3 g 

M3 g 95% 

CI MC4 g 

MC4 g 

95% CI 

C5.0 1.26 (1.15, 1.37) 1.23 (1.12, 1.34) 0.70 (0.52, 0.88) 0.93 

(0.75, 

1.12) 

Conditional inference forest 1.20 (1.09, 1.31) 1.14 (1.03, 1.25) 0.87 (0.69, 1.05) 0.99 

(0.80, 

1.17) 

Elastic net 1.41 (1.30, 1.52) 1.26 (1.15, 1.37) 0.94 (0.76, 1.12) 1.13 
(0.95, 
1.32) 

Forward stepwise regression 1.12 (1.01, 1.23) 1.26 (1.15, 1.37 0.62 (0.44, 0.80) 1.13 

(0.95, 

1.32) 

Gradient descent boosting 1.25 (1.14, 1.35) 1.23 (1.12, 1.34) 1.04 (0.85, 1.22) 1.16 

(0.98, 

1.34) 

Neural networks 1.23 (1.12, 1.34) 1.21 (1.10, 1.32) 0.97 (0.78, 1.15) 1.02 

(0.85, 

1.21) 

Random forest 1.10 (0.99, 1.21) 1.05 (0.94, 1.16) 1.02 (0.84, 1.20) 1.04 

(0.86, 

1.22) 

SVM, linear 1.14 (1.03, 1.22) 1.16 (1.06, 1.28) 0.71 (0.53, 0.89) 1.12 

(0.93, 

1.30) 

SVM, polynomial 1.13 (1.02, 1.24) 1.15 (1.05, 1.26) 0.80 (0.62, 0.98) 0.96 
(0.77, 
1.14) 

SVM, radial basis function 1.06 (0.95, 1.17) 1.12 (1.01, 1.23) 0.76 (0.59, 0.94) 0.94 

(0.76, 

1.12) 

 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2022. ; https://doi.org/10.1101/2022.02.11.22270724doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.11.22270724
http://creativecommons.org/licenses/by-nd/4.0/

