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Abstract 

Background. Endometriosis is a common, complex disorder which is underrecognized and 

subject to prolonged delays in diagnosis. It is accompanied by significant changes in the eutopic 

endometrial lining. 

Methods. We have undertaken the first single cell RNA-sequencing (scRNA-Seq) comparison 

of endometrial tissues in freshly collected menstrual effluent (ME) from 33 subjects, including 

confirmed endometriosis patients (cases) and controls as well as symptomatic subjects (who 

have chronic symptoms suggestive of endometriosis but have not been diagnosed). 

Results. We identify a unique subcluster of proliferating uterine natural killer (uNK) cells in ME-

tissues from controls that is almost absent from endometriosis cases, along with a striking 

reduction of total uNK cells in the ME of cases (p<10-16). In addition, an IGFBP1+ decidualized 

subset of endometrial stromal cells are abundant in the shed endometrium of controls when 

compared to cases (p<10-16) confirming findings of compromised decidualization of cultured 

stromal cells from cases. By contrast, endometrial stromal cells from cases are enriched in cells 

expressing pro-inflammatory and senescent phenotypes. An enrichment of B cells in the cases 

(p=5.8 x 10-6) raises the possibility that some may have chronic endometritis, a disorder which 

predisposes to endometriosis. 

Conclusions. We propose that characterization of endometrial tissues in ME will provide an 

effective screening tool for identifying endometriosis in patients with chronic symptoms 

suggestive of this disorder. This constitutes a major advance, since delayed diagnosis for many 

years is a major clinical problem in the evaluation of these patients. Comprehensive analysis of 

ME is expected to lead to new diagnostic and therapeutic approaches to endometriosis and 

other associated reproductive disorders such as female infertility. 

 

Keywords: menstrual blood, menstrual effluent, inflammation, senescence, fibrosis, 

biomarkers, decidualization 
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Background 

Endometriosis is a common and heterogeneous disorder that is characterized by the growth of 

endometrial-like tissues outside of the uterus, most commonly in the peritoneal cavity and 

associated with inflammation (1). While the pathogenesis of endometriosis is not understood, 

retrograde menstruation of endometrial cells and tissues via the fallopian tubes is one accepted 

theory for the development of endometriosis lesions in the peritoneal cavity (2, 3). However, 

retrograde menstruation occurs in nearly all women (4), yet endometriosis occurs in 

approximately one in ten females in their reproductive years (3). Thus, other factors must 

contribute to the development of endometriosis. While there is a significant genetic component 

to endometriosis (5), very little is known about how these putative risk alleles function. On the 

other hand, the eutopic endometrium of patients with endometriosis is significantly different 

when compared to the endometrium of those without endometriosis, with inflammatory changes 

noted in the setting of endometriosis(6-9).  We have undertaken a detailed analysis of 

endometrial tissues and cells present in menstrual effluent (ME), since ME is the critical 

biological sample transferred to the pelvic cavity, where most endometriosis lesions grow.  

 

Most previous investigations of ME have involved the phenotypic analysis by 

immunofluorescence, flow cytometry, and/or in vitro culture of single cell suspensions collected 

using menstrual cups (10-14). Our previous flow cytometry studies showed that uterine natural 

killer (uNK) cells were relatively depleted in ME from endometriosis cases vs. controls (11). 

However, this study was limited by the analysis of relatively few cell types in ME, with no 

assessment of specific subsets of cells. In addition, we demonstrated a defect in decidualization 

capacity of endometrial stromal cells grown from the ME of patients with endometriosis when 

compared to ME-stromal cells grown from healthy controls (11, 15). While these earlier results 

potentially provided a basis for a screening test for endometriosis, these analyses relied on 
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laborious and expensive cell culture and in vitro assays, making them impractical for clinical 

application. 

 

Herein we investigated fresh ME as an unexplored and important biological specimen for the 

development of non-invasive diagnostics based on the direct analysis of endometrial tissue 

fragments. We show that ME contains large numbers of shed fragments from endometrial 

tissues. Using enzymatic digestion of ME and associated tissues followed by single cell RNA-

sequencing (scRNA-Seq) analysis, we compared the major cellular differences and gene 

expression profiles found in ME collected from healthy controls (without symptoms of 

endometriosis) and patients diagnosed with endometriosis (confirmed by laparoscopic surgery 

with positive confirmation by pathology), as well as patients with symptoms of endometriosis 

(e.g., recurrent dysmenorrhea, persistent abdominal bloating, dyspareunia, dysuria, and/or 

dyschezia) who are not yet diagnosed. In order to gain insight into the pathogenesis of 

endometriosis, we particularly focused on the phenotypes of stromal and uNK cells in ME 

through scRNA-Seq because these are abundant and have been previously shown to be 

abnormal in eutopic endometrium of patients. 

 

Methods 

Human subjects and menstrual effluent collections 

Menstrual effluent (ME) was collected as previously described (11, 15). Briefly, women of 

reproductive age (N=33, age 20-45 years, average age 33.6 years) living in North America who 

were not pregnant or breastfeeding, who were menstruating, and who were willing to provide 

ME samples were recruited mainly via social media and consented to the ROSE study (IRB#13-

376A)  

 (https://feinstein.northwell.edu/institutes-researchers/institute-molecular-medicine/robert-s-

boas-center-for-genomics-and-human-genetics/rose-research-outsmarts-endometriosis). 
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Women with histologically confirmed endometriosis (determined following excision laparoscopic 

surgery and documented in a pathology report without revised American Society for 

Reproductive Medicine (rASRM) staging/classification) were enrolled as ‘endometriosis’ 

subjects (N=11). Women who reported chronic symptoms consistent with endometriosis (e.g., 

recurrent dysmenorrhea, persistent abdominal bloating, dyspareunia, dysuria, and/or 

dyschezia), but not yet diagnosed with endometriosis (or not) were enrolled as ‘symptomatic’ 

subjects (N=13). Control subjects living in North America who self-reported no gynecologic 

history suggestive of a diagnosis of endometriosis (and the absence of polycystic ovarian 

syndrome, and pelvic inflammatory disease) were recruited mainly via social media and enrolled 

as ‘controls’ (N=9). 

 

Endometriosis, symptomatic, and control subjects collected their ME using an ‘at home’ ME 

collection kit for 4-8 hours on the day of their heaviest menstrual flow (typically day 1 or 2 of the 

cycle) with a menstrual cup (provided by DIVA International), except for one subject who 

collected ME using a novel menstrual collection sponge (as previously described (15)). After 

collection, ME was shipped priority overnight at 4◦C to the laboratory for processing. ME 

collected from menstrual cups was mixed 1:1 with DMEM for processing. For the saturated 

menstrual collection sponge, ME tissue was collected after rinsing the sponges with PBS to 

collect cells and tissue. Demographic and gynecologic/health data (including hormone usage, 

menstrual cycle information, and pain/pain medications) for controls, endometriosis subjects, 

and symptomatic subjects (and the total cohort) are shown in Table 1. 

 

Immunostaining of ME-derived tissue fragments 

ME-derived tissue fragments were obtained from controls, symptomatic subjects, and 

endometriosis patients (n=2 each); tissue fragments were collected by pouring ME over a 70µ 

filter, fixed, and transferred to the clinical pathology lab for paraffin embedding and hematoxylin 
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and eosin (H&E) staining. CD10 was chosen for immunohistochemical analysis because it is a 

sensitive marker of eutopic endometrial stroma (16) and because adjunctive use of CD10 

immunostaining with H&E staining enhances the histologic detection of endometriosis (17). 

CD56 was chosen because uNK cells stain brightly with CD56. H&E slides and immunostained 

slides were examined microscopically and imaged by a pathologist. Representative images are 

shown in Fig. 1. 

 

Processing menstrual effluent for scRNA-Seq analyses 

Whole (unfractionated) ME (2.5-10ml) was digested with Collagenase I (1mg/ml, Worthington 

Biochemical Corporation, Lakewood, NJ) and DNase I (0.25mg/ml, Worthington Biochemical 

Corporation) at 37°C for 10-30 min using the gentleMACSTM Tissue Octo Dissociator (Miltenyi 

Biotec, Cambridge, MA) using C tubes and Program 37CMulti_E_01 (31 min). After digestion, 

the sample was sieved over a 70µ filter and washed with DMEM 10% fetal bovine serum (FBS) 

to neutralize digestion enzymes; the flow through was sieved over a 40µ filter and washed with 

DMEM 10%FBS. After collecting the single cells (from the flow through) following centrifugation 

(350xg for 5 min), Neutrophils were removed using the EasySepTM HLA Chimerism Whole 

Blood CD66b Positive Selection Kit (STEMCELL, Cambridge, MA), according to the 

manufacturer’s protocol. The neutrophil pellet was frozen at -80°C and used as a source of 

subject DNA for genotyping (see below). The resultant cells were depleted of red blood cells 

using the EasySep™ RBC Depletion Reagent (STEMCELL), according to the manufacturer’s 

protocol, and then washed and subjected to density gradient centrifugation using Ficoll-Paque 

PLUS (Sigma-Aldrich, St. Louis, MO) to collect mononuclear cells, according to manufacturer’s 

directions. To collect ME-tissue, whole ME (2.5-10ml) was sieved over a 70µ filter and washed 

with DMEM; the ME-tissues trapped on the filter was collected and digested with Collagenase I 

(1mg/ml, Worthington Biochemical Corporation, Lakewood, NJ) and DNase I (0.25mg/ml, 

Worthington Biochemical Corporation) at 37°C for 10 min and processed as described above for 
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whole ME, except without a density gradient centrifugation step. The resultant whole ME cells 

were enumerated, and viability was assessed using ViaStain™ AOPI Staining Solution and the 

Nexcelom Cellometer (Lawrence, MA). Preparations with >80% viability were processed for 

scRNA-Seq. Cells were immediately fixed in methanol for scRNA-Seq, as described by Chen for 

peripheral blood mononuclear cells (18)). Briefly, cells were washed and resuspended in a 

200µl Ca++ and Mg++-free PBS, followed by dropwise addition of chilled 100% methanol (800µl, 

final 80% w/v). Fixed cells were stored at -20°C for 20min and then stored at -80°C until used 

for scRNA-Seq.   A pilot experiment was performed with a single ME sample, which was 

processed and either prepared immediately for scRNA-Seq (without methanol fixation and 

freezing) or was fixed in methanol and frozen, as described above to optimize our scRNA-Seq 

methods. The data showed almost identical scRNA-Seq results using both methods (see 

Additional File 1: Fig. S1). Thus, all ME samples were methanol fixed and frozen, allowing for 

cost-effective ‘batching’ in scRNA-SEQ.  

 

Processing of samples for single cell sequencing 

Methanol-fixed cells were removed from -80°C and placed on ice for 5 min before centrifugation 

(1000xg for 5 min). Methanol-PBS supernatant was completely removed and cells were 

rehydrated in 0.04% bovine serum albumin (BSA) + 1mM dithiothreitol (DTT) + 0.2 U/ul RNase 

Inhibitor in 3X SSC (saline sodium citrate buffer solution) Buffer (Sigma). An aliquot of fixed 

cells was stained with Trypan Blue and visualized under the microscope. The cells were 

counted and pooled from different donors at equal ratios, filtered using 35µ strainer (Falcon), 

recounted and brought up to a final conc. of 2,000 cells/µl and proceeded immediately for GEM 

generation and barcoding on a 10X Chromium using Next GEM 3’ v3.1 reagents (10X 

Genomics). Libraries were constructed following 10X Genomics’ recommendations and quality 

was assessed on a High Sensitivity DNA chip on a BioAnalyzer 2100 (Agilent) before loading 

(1.8 pM) and sequencing on an Illumina Nextseq 500 using a High Output kit v2.5 (150 cycles).  
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Five subjects were pooled together into a single 10x lane with at least one of each phenotype 

per run with a total of 8 runs for ME-tissue and 3 runs of whole ME. The ME-tissue runs had 

44,135 total cells, of which 5,147 had ambiguous calls in Demuxlet, 2,632 were doublets and 

36,356 were singlets; only the singlets were analyzed. The whole-ME runs had 30,090 total 

cells, of which 5,556 had ambiguous calls, 2,776 were doublets, and 21,758 singlets (and hence 

analyzed). A total of 43,054 cells were analyzed in this study  following filtering and QC  

(thresholds of > 10% mitochondrial reads < 500 nUMI (number of unique molecular identifiers) 

or > 50000 nUMI or > 6000 unique features per cell). 

 

Single cell RNA-Sequencing and analyses and statistics 

Samples were converted from raw bcl files to gene by cell matrices using CellRanger 6.0 

aligned to 10x Genomics' GRCh38-3.0.0 reference. Individuals were demultiplexed via 

Demuxlet (19) using genotypes taken from SNPs on the Illumina GSAv3 genotyping array, run 

on DNA prepared from neutrophils isolated from ME. The thresholds in Demuxlet were adjusted 

to the expected doublet rate and those marked as doublets were removed. Downstream 

analysis and visualization were done using Seurat 4.0 (20). Briefly, there were at least 25,000 

reads per cell on average per 10x run and the mean number of genes captured was 1,388 (± 

896 (mean ± standard deviation [SD]). There was no significant difference between the various 

clinical groups (controls, cases, symptomatic) in these values. Genes were filtered out if they 

were expressed in less than 3 cells while cells were filtered out if they had > 10% mitochondrial 

reads, 500 < nUMI < 50000 and > 6000 unique features. For the analysis of ME-tissue samples, 

only subjects with information on at least 500 cells per subject were retained. After filtering the 

cell yields were comparable in each group (mean ± SD: 1,256 ±732 and 1,319 ±767 in ME-

tissue and whole ME, respectively). Gene expression normalization and cell clustering was 
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done using the SCTransform pipeline (21) with percent mitochondrial reads regressed out and 

person specific batch effects corrected using Harmony (22). Identification of cell clusters was 

done using known marker genes (Additional File 2: Table S1) (23-30) with differential gene 

expression calculated using a Wilcoxon rank sum test. Enrichment of cell clusters of specific 

phenotypes was done using MASC (mixed-effects modeling of associations of single cells) 

(https://github.com/immunogenomics/masc), which essentially uses a percentage of cells per 

cluster while also taking into account technical covariates; 10x library batch, preparation (whole 

ME or ME-tissue),  nUMI per cell, percent mitochondrial reads and phase are accounted for. All 

datasets are deposited in the National Center for Biotechnology Information/Gene Expression 

Omnibus (GEO) accession number GSE203191.  

 

 

Results 

Endometrial tissue fragments are present in fresh menstrual effluent. 

We carried out histological assessment of fresh menstrual effluent (ME)-associated tissues 

isolated from ME. Representative H&E sections of ME-derived tissue fragments from four 

subjects (1 control, 2 laparoscopically/histologically confirmed endometriosis subjects, and 1 

symptomatic subject) show the presence of endometrial tissues with mucosal and glandular 

epithelium and areas of stroma. The endometrium had typical late secretory/menstrual 

morphology with expanded stroma containing scattered inflammatory cells, and secretory and 

inactive-type glands (Fig. 1A-D, upper panels). Immunostaining of ME-derived tissue sections 

reveals a range of stromal cells stained with antibodies to CD10, a clinically used marker of 

endometrial stroma (16, 17), and an abundance of uNK cells (stained with antibodies to CD56 

(NCAM), an archetypical marker of NK cells [Fig. 1A-D, lower panels]). 
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Single cell RNA sequencing (scRNA-Seq) of digested freshly processed ME reveals the 

presence of a heterogenous mixture of immune and non-immune cells. 

We have analyzed ME samples from 33 subjects, including age-matched healthy controls 

(N=9), endometriosis cases (N=11), and subjects with chronic symptoms suggestive of 

endometriosis but not yet diagnosed (N=13) (see Table 1). ME samples from either whole ME 

(unfractionated) or ME samples enriched for tissues (“ME-tissue”) were digested with 

collagenase I and DNase I, depleted of neutrophils, and processed for scRNA-Seq, as 

described in the methods. As shown in Fig. 2 a graph-based clustering approach using 

Seurat distinguishes multiple cell clusters shown on the UMAP (uniform manifold approximation 

and projection) plot. There is striking diversity of the cell types defined by the cluster analysis. A 

major group of uterine NK cells is designated cluster uNK1, with a small associated cluster 

designated uNK2. Sets of clusters related to CD8+and CD4+ T cells are shown in the central 

portion of the plot. Endometrial stromal cells and epithelial cells are identified in major clusters in 

the right side of the UMAP plot. Subclusters of endometrial stromal cells are described below in 

detail. Based on (31), Epithelial1 appears to be a mix of lumenal and glandular epithelial cells, 

Epithelial2 is comprised of ciliated epithelial cells, and Epithelial3 is a separate set of CD326-

expressing cells that do not overlap with Epithelial 1 or Epithelial2. Distinct clusters of B cells 

and myeloid cells can also be delineated, along with a small cluster of plasmacytoid dendritic 

cells (pDC). The positive gene markers used to generate the cell clusters shown in Fig. 2 are 

included in Additional File 2: Table S1. Overall, the various cell clusters are well represented 

whether unfractionated whole ME or tissue-enriched ME is processed for scRNA-Seq. Some 

differences in cell subset frequencies can be observed; in particular, epithelial cells  were 

enhanced when tissue-enriched ME was utilized for sample processing (see Additional File 3: 

Fig. S2). 
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Cell clusters from ME containing endometrial tissue differ between endometriosis cases and 

healthy controls; relative depletion of uterine NK cells and enrichment of B cells in 

endometriosis cases. 

We compared the relative frequency of the various cell clusters in the freshly processed ME 

obtained from the diagnosed endometriosis cases (N=11) compared with controls (N=9), as 

shown in Fig. 3. By inspection of Fig. 3, it is apparent that both clusters of uNK cells (uNK1 and 

uNK2) are markedly depleted in the cases vs. controls (average percentage of uNK 

approximately 8% in cases, 28% in controls), as well as an increase in the proportion of B cells 

in cases (~9%) vs. controls (~3%). The odds ratios and confidence intervals for these two cell 

enrichment patterns are shown in Fig. 4, along with the patterns of enrichment of all the other 

major cell clusters. While there is some variation among many of the different cell clusters, a 

formal analysis shows the most striking differences are observed for uNK cells, which are 

enriched in controls (and depleted in cases; uNK1, P <10E-16; uNK2, P <10E-16), along with a 

relative enrichment in the proportion of B cells in the cases diagnosed with endometriosis (and 

relatively depleted in controls; P <10E-16). Note that the stromal cell cluster is not significantly 

different between cases and controls (P > 0.05). 

 

We also explored whether the various proportions of cell clusters of the ME preparations from 

the “symptomatic” but undiagnosed group of subjects (N=13) are different from ME preparations 

from controls. This is clearly the case, as shown in Additional File 4: Fig. S3. Here, we show the 

relative enrichment of uNK cells is maintained in controls in comparison to the symptomatic 

group (uNK1, P <10E-16; uNK2, P = 0.0025), similar to that observed with ME from cases. B 

cells also show a significant relative enrichment in symptomatic as well as diagnosed cases, 

compared with controls (Additional File 4: Fig. S3) (symptomatic vs. control, P = 5.8 x10-6), 

similar to that observed with ME from cases. Perhaps not surprisingly, these significant 
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differences in symptomatic cases vs. controls are less striking than the differences in 

endometriosis cases vs. controls, given the likely heterogeneity of the symptomatic group. 

 

Decidualized stromal cell subclusters are reduced in endometriosis. 

Previous studies have reported reduced decidualization capacity in endometrial stromal cells 

grown from biopsies of patients with endometriosis (32). We have also observed impaired 

decidualization using stromal cells grown directly from ME (11, 15). Therefore, we examined 

whether this trend could be observed in fresh stromal cells analyzed by scRNA-Seq. The 

stromal cell numbers or percentages did not significantly differ between the control and 

endometriosis groups, as shown in Fig. 3 and Fig. 4. However, subclustering of the stromal cell 

cluster clearly identified 5 subclusters of interest within the stromal cell population (Fig. 5A). We 

have designated these subclusters based on the dominant transcripts expressed in each of 

these subclusters, as shown in the violin plots in Fig. 5B. Two of the five subclusters (2 and 4) 

are not different between cases and controls (the top genes of subclusters 2 and 4 are 

described in Additional File 5: Table S2). The subclusters showing significant enrichment in 

either cases or controls (subclusters 1, 3, and 5) are indicated by the Log2 (odds ratios, [OR]) 

below the UMAP plot (Fig. 5C). 

 

It is striking that an apparently decidualized stromal cell subcluster (expressing IGFBP1 mRNA) 

is significantly enriched in controls compared with endometriosis cases (Fig. 5A-B). In addition 

to IGFBP1, the top differentially expressed genes in this subcluster (compared to other stromal 

cell subclusters) include LEFTY2, DCN, LUM, MDK, C1QTNF6, APOE/D, DCN, and other 

progesterone sensitive and decidualization/fertility gene markers (see left panel (subcluster 3) in 

Fig. 6 and Additional File 6: Table S3). (33-41) (42-46, 47 , 48-103) (104-108) (109-113). This 

suggests that a phenotype of “decidualization” can be measured directly in stromal cells derived 

from fresh ME and is associated with control vs. disease phenotype. A modest enrichment of a 
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subcluster expressing IL11 was observed in cases, as indicated in Fig. 5A-C. In addition to IL11, 

this subcluster is associated with transcripts for MMP3, MMP1, MMP9, SERPINB2, S100A6, 

and CXCL8, among other genes associated with inflammation, fibrosis and senescence, as well 

as endometriosis, as shown in the middle panel (subcluster 1) of Fig. 6 (and Additional File 6: 

Table S3). A third subcluster, designated by high expression of the gene encoding matrix Gla 

protein (MGP), is also enriched in the stromal cells of cases (Fig. 5A-C). This subset expresses 

numerous extracellular matrix genes that have been associated with presence of perivascular 

stromal cells, senescence, and cell adhesion/cell spreading, including FN1 (which encodes 

fibronectin-1), a known risk locus for endometriosis (114). Fig. 6 (right panel (subcluster 5) and 

Additional File 6: Table S3) also shows the list of top genes expressed in this subset. Additional 

File 7: Fig. S4 demonstrates that the IGFBP1+ and MGP+ subclusters map to stromal cells 

subsets defined in the decidua found in the first trimester of pregnancy by Vento-Tormo et al 

(26). 

 

Finally, we examined the differences between cases and controls in the two uNK subclusters 

present in digested endometrial tissues in ME (uNK1 and uNK2, see Fig. 2). We noted a distinct 

subcluster of uNK cells (uNK2) that is characterized by the expression of genes associated with 

cell proliferation such as MKI67 (which encodes Ki67) and TOP2A (which encodes 

topoisomerase 2A) (see Additional File 8: Fig. S5 for a full uNK subcluster analysis). As 

discussed below, this cluster also mapped nearly exactly (97%) with a proliferative subset of 

uNK cells that has been defined by scRNA-Seq in decidua obtained during the first trimester of 

pregnancy (26). This is consistent with the proliferation of uNK cells and overall accumulation of 

uNK cells in the course of decidualization in control subjects vs. cases, as shown in Fig. 3 and 

Fig. 4. 
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Discussion 

These studies show for the first time that the phenotype of eutopic endometrial tissue shed into 

the menstrual effluent is distinct in patients with endometriosis compared to control subjects. 

There are three major observations. First, the endometrial stromal cells show a relative 

deficiency of progesterone-sensitive gene markers associated with endometrial stromal cell 

decidualization in patients with endometriosis (e.g., IGFBP1, LEFTY2, LUM, DCN, etc). This is 

consistent with previous studies showing impaired decidualization of cultured endometrial 

stromal cells obtained from endometrial and ectopic endometriosis biopsies (32, 115), as well as 

from menstrual effluent (11, 15). Secondly, there is a striking reduction in the proportion of uNK 

cells in the ME-derived endometrial tissue of patients with endometriosis compared with 

controls. This was suggested by our previous studies of free cells present in ME using flow 

cytometry methods [11], but it is clearly a major distinguishing feature of the eutopic 

endometrium of endometriosis patients. Thirdly, our data suggest an enrichment of B cells in the 

eutopic endometrium of patients with endometriosis, a finding that is consistent with the 

hypothesis that chronic inflammation and/or chronic endometritis is a predisposing factor in the 

development of endometriosis (116). 

 

A deficiency in the decidualization capacity of stromal cells cultured from biopsies of the eutopic 

endometrium has been reported previously (32), and is also found in ME-derived stromal cells 

collected at the time of menstruation (11, 15). Our scRNA-Seq data clearly shows the reduction 

of the IGFBP1+-expressing decidualized stromal cell subclusters in endometriosis cases vs. 

controls (Fig. 5C). The relationship of this finding to the pathogenesis of endometriosis is not 

established. One possibility is that this differentiation deficiency leaves behind non-decidualized 

endometrial stromal cells that exhibit proinflammatory, pro-fibrotic, and/or senescent 

phenotypes. These ‘pathogenic’ cells may then initiate or promote lesions following retrograde 

transfer into the peritoneal cavity. The enrichment of an IL11-expressing stromal cell subcluster 
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in the endometriosis ME samples that express many estrogen-responsive, pro-inflammatory, 

pro-fibrotic and senescence gene markers (shown in Fig. 6 and Additional File 6: Table S3) 

provides some support for this possibility, but this needs confirmation in larger datasets. The 

significant increase in the MGP+ stromal subcluster in endometriosis (Fig. 5C) is also of 

potential interest. As shown in Fig. 6 (right panel), the MGP+ stromal cell subcluster expresses 

many genes that are associated with the extracellular matrix, including FN1 (encoding 

fibronectin-1) which has been associated with an increased risk for endometriosis in GWAS 

studies (117). Interestingly, most of the top markers found in the IL11+ and the MGP+ 

subclusters are either associated with senescence or induce senescence (e.g., IL11 and 

SERPINB2 [Fig. 6 and Additional File 6: Table S3]). Inflammation and senescence are key 

features of endometriosis and reduced uterine receptivity and infertility (118-120). 

 

Another possibility is that the overall environment of the eutopic endometrium predisposes to 

reduced stromal cell decidualization, independent of any direct role or effect on stromal cell 

subsets in the disease. A chronic inflammatory endometrial environment might lead to, or be 

associated with, other changes that put individuals at risk for endometriosis. For example, the 

presence of chronic endometritis has been reported to be a significant risk factor for 

endometriosis (116, 121); chronic endometritis is also associated with reduced stromal cell 

decidualization (122). Interestingly, the presence of B cells in endometrial tissue, particularly 

plasma cells, is a requirement for the clinical diagnosis of chronic endometritis (116). We note 

the significant increase in B cells in shed endometrium of endometriosis patients (Fig. 3 and 4) 

and symptomatic subjects (Additional File 4: Fig. S3) when compared to controls. This may 

reflect an inflammatory state, as B cells play an important role in mediating or regulating 

inflammatory and autoimmune diseases (123). The numbers of B cells available for detailed 

analysis have not allowed us to fully understand the phenotype of these cells; this is an area for 

future study. 
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We have  demonstrated that uNK cells are remarkably depleted in the ME-derived endometrial 

tissues of patients with endometriosis (Fig. 3 and Fig. 4 and Additional File: Fig. S3). This may 

reflect compromised decidualization in these subjects. uNK cells are a characteristic feature of 

decidualizing tissues (124) and are also prominent in the decidua of early pregnancy (26). To 

our knowledge, this is the first report of proliferating uNK cells found in ME. Crosstalk between 

stromal cells and uNK cells is a feature that promotes decidualization and uterine 

receptivity/placental vascular remodeling (125). uNK cells do not appear to play a major role in 

decidualization in uNK deficient IL15 knockout mice (126). It remains unclear whether uNK cells 

or stromal cells are the primary driver of the decidualization impairment in endometriosis. 

However, uNK cells do play a role in the maintenance of decidual integrity as reported by 

Ashkar et al (127). Brighton and co-workers emphasized the important role of uNK cells in 

clearing senescent decidual cells in the cycling human endometrium and their clearance is 

proposed to be important for optimal fertility (128). A lack of uNK cells in the endometrium may 

contribute to increased numbers of senescent cells observed in the stromal subclusters among 

endometriosis subjects and may contribute to endometriosis-associated infertility. However, it is 

plausible that a lack of decidualizing endometrial stromal cells (with concomitant reduced 

production of IL-15 and uNK chemoattractants) reduces the infiltration and proliferation of uNK 

in decidualizing zones. Defective uNK cell function has recently been proposed in the setting of 

endometriosis with infertility (129). We did not observe IL15 expression by ME-stromal cells; this 

is not surprising as IL-15 expression by stromal cells peaks before the mid-secretory phase. 

Interestingly, we did observe enhanced expression of IL2RB (which encodes a component of 

the IL-15 receptor) in the uNK cells of controls compared with the endometriosis group. Since 

uNK cells are reported to play a role in infertility (124, 130), and infertility is a common feature of 

endometriosis, further analysis of the uNK subset will clearly be of interest. 
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Taken together, these observations suggest a set of interactions that may drive the 

development and/or progression of endometriosis at several levels, as summarized in Fig. 7. 

Stromal cell decidualization may be inhibited by a number of factors, including chronic 

inflammation, stress and/or progesterone resistance. This may divert stromal cells into a more 

proinflammatory/senescent state. Furthermore, deficient decidualization may also compromise 

the infiltration of uNK cells into the decidua, and therefore reduce the clearance of senescent 

cells. Clearly, host genetic variation may influence these processes at every level of these 

interactions. 

  

It is encouraging that many of our findings in patients with pathologically confirmed 

endometriosis are also present in a proportion of subjects with chronic symptoms that are 

suggestive of endometriosis, even in the absence of a confirmed tissue diagnosis. The delay in 

diagnosis of endometriosis is widely recognized as a major barrier in the management of this 

disease, with delays of up to a decade in some subjects before the disease is recognized (131). 

We recognize the limitation that the symptomatic group lacks a diagnosis and therefore, we 

cannot assess the predictive ability of our results. To address this limitation, a clinical trial is 

underway to enroll symptomatic subjects who are being evaluated by diagnostic laparoscopy as 

part of their standard care by collaborating surgeons; scRNA-Seq profiles of their ME collected 

prior to surgery will be validated based on the results of their laparoscopic diagnosis. Such a 

study design will be required to establish the positive and negative predictive value of menstrual 

tissue analysis in a real-world clinical setting where an endometriosis screening test might be 

applied. 

 

Due to the cost and complexity of the analysis, an scRNA-Seq approach is unlikely to become a 

diagnostic test for endometriosis. However, we propose that the data obtained from scRNA-Seq 

can be leveraged to develop future diagnostic and/or screening tests.  What should such  
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screening tests involve? It will likely include an assessment of gene expression patterns among 

ME-derived stromal cells or uNK cells (or specific stromal cell and uNK subsets). An initial 

analysis of stromal cell clusters suggests several potentially useful gene expression differences 

among cases vs. controls (Additional File 9: Fig. S6). Differences are also observed in uNK cells 

(Additional File 10: Fig. S7) or indeed may be found in other cell types as well. . On the other 

hand, if it can be adapted to a clinical diagnostic test, scRNA-Seq of these tissues is likely to be 

the most informative approach, perhaps having more global utility to establish complex and 

heterogenous disease subtypes, as well as predicting or following response to therapy. 

Additional phenotypes that can be uncovered using scRNA-Seq analysis on larger populations 

may yet yield additional biomarkers that can be incorporated into a more targeted multivariate 

biomarker analysis for diagnostic purposes. 

 

In any case, the integration of our findings into a unified picture of the pathogenesis of 

endometriosis will require additional scRNA-Seq studies of larger heterogenous populations, at 

different stages of disease development and include deeper analysis of T cells, B cells, myeloid 

cells, and epithelial cells. Abnormalities of the eutopic endometrium are widely recognized 

features of endometriosis [6-9, 18, 34] and this can provide diagnostic value, regardless of 

whether retrograde menstruation plays a causative role. In addition, it is likely that scRNA-Seq 

approaches of the endometrium via ME may allow for improved classification of clinically 

meaningful disease subsets and as a means for assessing patients’ responses to therapies, as 

well as uterine-associated fertility status. For example, many of the genes that exhibit changes 

in the stromal cell subclusters are associated with either estrogen or progesterone 

responsiveness (Fig. 6), and these differences could be used to guide or assess responses to 

hormonal therapies and for assessing aspects of uterine receptivity/fertility. 
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On the other hand, if disease causation is due to retrograde menstruation of abnormal 

endometrial tissues, ME analysis provides an opportunity to explore new therapies. For 

example, based on the enrichment of pro-senescent genes in endometriosis endometrial stomal 

cells (vs. control cells) and the deficit of uNK cells in endometriosis subjects, we propose 

investigating senescence as a central feature of endometriosis. Once demonstrated, this may 

have important potential therapeutic implications, since various senotherapeutics (senolytic and 

senomorphic agents) have now been shown to improve chronic inflammatory diseases in pre-

clinical models and human clinical trials (132, 133). This is significant since none of the current 

medical therapies for endometriosis have been shown to alter disease progression. 

 

Conclusions 

In summary, these scRNA-Seq data of ME collect from endometriosis cases and healthy 

controls represent a first attempt to globally characterize the cellular diversity of endometrium 

that is shed at the time of menstruation. More detailed studies in larger datasets are clearly 

required, particularly regarding diversity in T cells, B cells and myeloid cells, as well as epithelial 

cells. We propose that a comprehensive assessment of cellular phenotypes in ME tissues will 

open a new window on both diagnosis as well as preventive treatment for patients at risk for 

endometriosis as well as other uterine and reproductive disorders. 
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Figures 

 

Fig. 1. ME contains endometrial tissues. Histological analysis of endometrial tissues isolated 

from the menstrual effluent (ME) from 4 separate subjects: A) control subject, B-C) two subjects 

with pathologically confirmed endometriosis, and D) subject chronic symptoms of endometriosis 

(not yet diagnosed). Upper panels for A-D: H&E staining is shown in two panels at two 

magnifications for each individual: A) 40X (left) and 200X (right); B) 100X and 200X; C) 100X 

and 200X; and D) 40X and 200X; arrowheads point to glandular epithelium. Sections show 

typical late secretory/menstrual endometrium with expanded stroma containing scattered 

inflammatory cells and secretory and inactive type glands. Lower panels for A-D: 

immunostaining with anti-CD10 and anti-CD56 antibodies to detect stromal cells (left) and 

uterine NK (uNK) cells (right), respectively, at 100X. Scale bars are shown in each image.  
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Fig. 2. Cellular composition of digested ME based on scRNA-Seq. UMAP plot for all 33 digested 

menstrual effluent (ME) samples (controls=9; endometriosis cases=11; symptomatic cases=13). 

Several well-delineated cell clusters include a large cluster of uterine NK cells (uNK1), as well 

as clearly separated stromal cells, epithelial cells, and B cells. Several clusters each of T cells 

and myeloid cells are also defined, as well as a small cluster of plasmacytoid dendritic cells 

(pDC). A small cluster of approximately 60 unknown cells is in the lower right corner. The 

positive gene markers used to generate the cell clusters shown are included in Additional File 2:

Table S1. 
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Fig. 3. Distinct cellular composition differences in digested ME from endometriosis cases vs. 

controls are revealed by scRNA-Seq. The data taken from the UMAP plot in Fig. 2 is separated 

into two groups: controls (n=9, providing 14,327 cells) and endometriosis cases (n=11, providing

11,924 cells). The most striking difference is the increased fractions of uterine NK cells (uNK1 

and uNK2) in the endometrial tissues of controls as compared to cases. In contrast, B cells are 

significantly enriched in cases. A formal analysis of enrichment is given in Fig. 4 and confirms 

the significant enrichment of uNK cells and B cells in controls and cases, respectively. The 

positive gene markers used to generate the cell clusters shown are included in Additional File 2: 

Table S1. 
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Fig. 4. Analysis of enrichment of cell subsets in ME comparing endometriosis cases and 

controls. These data are taken from data shown in Fig. 3. The Log2 odd ratios (OR) with cell 

subsets enriched in controls on the left and cell subsets enriched in cases on the right. It is 

apparent that uterine NK (uNK) cells, both uNK1 and uNK2, are significantly enriched in 

controls, while B cells show the greatest enrichment in cases. Note: Epithelial cells are excluded 

from this analysis because their enrichment was affected by the tissue preparation method 

used.  
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Fig. 5. Analysis of the stromal cell subclusters. A) UMAP plot of the five stromal cell subclusters 

are shown. B) Violin plots showing the defining gene expression per subcluster for subclusters 

1-5. C) Log2 (Odds Ratio) shows that subcluster 3 (IGFBP1+) is significantly enriched in controls 

(Log2 OR = -1.3, case vs. control). In contrast, subcluster 1 (IL11+) and subcluster 5 (MGP+) 

are enriched in diagnosed subjects. The top transcripts characterizing these three distinct 

stromal cell subclusters are summarized in Fig. 6 and emphasize the enrichment of the 

decidualized stromal cells – subcluster 3 (IGFBP1+) – in controls. 
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Fig. 6. Distinct subclusters of decidualized stromal cells and pro-inflammatory stromal cells 

distinguish ME from controls and endometriosis cases. Upper panel: A summary of genes 

enriched in the stromal cell subclusters which are significantly enriched in cases (subclusters 1 

[IL11+] and 5 [MGP+]) or controls (subcluster 3 [IGFBP1+]). Note: Subclusters 2 and 4 were not 

significantly different in cases vs. controls; see Additional File 6; Table S3 for the listing of genes 

differentially expressed in these clusters. Lower panel: Characteristic features of stromal cell 

subcluster gene markers. The decidualized stromal cell subcluster (IGFBP1+, subcluster 3) is 

prominently enriched in genes that are associated with decidualization and uterine receptivity 

and are progesterone responsive. In contrast, the non-decidualized stromal cell subsets that are 

enriched in cases (MGP+ [subcluster 5] and IL11+ [subcluster 1]) are variably enriched in 

estrogen responsive genes, and remarkably enriched in genes associated with inflammation, 

fibrosis, and cellular senescence. Note: MGP+ (subcluster 5) is also enriched in cell adhesion 

and cell spreading gene markers. 
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Fig. 7. A disease model for endometriosis. Defective endometrial stromal cell decidualization 

may be driven by multiple factors including inflammation, chronic endometritis, stress, and/or 

progesterone resistance. This, in turn, may direct stromal cell differentiation in the direction of 

chronic inflammation and senescence, with accompanying senescence associated secretory 

phenotypes (SASPs), which include pro-inflammatory mediators and proteases. The 

senescence phenotype may also impair decidualization. Reduced decidualization may also 

compromise the infiltration and proliferation of uNK cells, which are likely to be important for 

senescent cell removal. Further analysis of other cells in menstrual effluent will be important to 

provide further support for this model. 
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Table 1. Subject Group Characteristics – Control (CTRL), Dx (Diagnosed), Sx (Symptomatic) 

CTRL  Dx  Sx  TOTAL         P value (CTRL vs Dx) 
Age (years)   33.4±5.4 35.2±4.4 32.3±8.2 33.6±6.3  0.42  
(mean±SD 
 
BMI (kg/m²)   24.2±7.1 28.4±5.4 26.8±7.6 26.5±6.8  0.15 
(mean±SD) 
 
Age at menarche (years) 12.0±0.9 11.6±1.6 12.6±1.7 12.0±1.5  0.51 
(mean±SD) 
 
Race/ethnicity           0.34 
 Caucasian  7/9 (78%)  0/11 (91%) 13/13 (100%) 30/33 (91%) 
 Black   1/9 (11%) 0/11 (0%) 0/13 (0%) 1/33 (3%) 
 Mixed   1/9 (11%) 0/11 (0%) 0/13 (0%) 1/33 (3%) 
 Other   0/9 (0%) 1/11 (9%) 0/13 (0%) 1/33 (3%)  
 Hispanic  0/9 (0%) 0/11 (0%)  1/13 (8%) 1/33 (3%) 
 
Typical cycle length (days)          0.52 
 21-25 days  0/9 (0%) 1/11 (9%) 3/13 (23%) 4/33 (12%) 
 26-31 days  8/9 (89%) 7/11 (64%) 8/13 (62%) 23/33 (70%) 
 32-39 days  1/9 (11%) 2/11 (18%) 2/13 (15%) 5/33 (15%) 
 >40 days  0/9 (0%) 1/11 (9%) 0/13 (0%) 1/33 (3%) 
 
Typical bleed time (days)          0.36 
 <3 d   0/9 (0%) 2/11 (18%) 0/13 (0%) 2/33 (6%) 
 3-5 d   5/9 (56%) 6/11 (55%) 8/13 (62%) 19/33 (58%) 
 6-8 d   4/9 (44%) 3/11 (23%) 5/13 (38%) 12/33 (36%) 
 
Typical flow            0.96 
 Light   1/9 (11%) 1/11 (9%) 0/13 (0%) 2/33 (6%) 
 Moderate  2/9 (22%) 2/11 (18%) 3/13 (23%) 7/33 (21%) 
 Moderately Heavy 3/9 (33%) 5/11 (45%) 9/13 (69%) 17/33 (52%) 
 Heavy   3/9 (33%) 3/11 (23%) 1/13 (8%) 7/33 (21%) 
 
Hormone use            0.35 
 Yes   0/9 (0%) 1/11 (9%) 1/13 (8%) 2/33 (6%) 
 
Pain in this cycle           0.06 
 Yes   5/9 (56%) 10/11 (91%) 13/13 (100%)* 28/33 (85%) 
  None  4/9 (44%) 1/11 (9%) 0/13 (0%) 5/33 (15%) 
  Mild  2/9 (22%) 3/11 (23%) 3/13 (23%) 8/33 (24%) 
  Moderate 3/9 (33%) 6/11 (55%) 4/13 (31%) 13/33 (40%) 
  Severe  0/9 (0%) 1/11 (9%) 6/13 (46%) 7/33 (21%) 
 
Pain medication in this cycle 
(Midol, Advil, Tylenol, Naproxen, Hydromorphone 2mg/Baclofen/diazepam/Ketamine 8/10/15mg)  
 Yes   1/9 (11%) 6/11 (55%) 10/13 (77%) 17/33 (52%)  0.04 
--------------------------------------------------------------------------------------------------------------------------------------------------- 
No comparisons  of CTRL vs. Sx  were significant for the above characteristics, except pain (yes/no): 
*P=0.008
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