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1. Abstract 

Polygenic risk scores (PRS) are proposed to be used in clinical and research settings for risk 

stratification. However, there are limited investigations on how different PRS diverge from 

each other for risk prediction of individuals. 

We compared two recently published PRS for each of three conditions, breast cancer, 

hypertension and dementia, to assess the stability of running these algorithms for risk 

prediction in a single large population. We used imputed genotyping data from the UK 

Biobank (UKB) prospective cohort, limited to the White British subset.  

We found that: 

1. Only 65%-79% of SNPs in the first PRS were represented in the more recent PRS 

for all three diseases, after having taken linkage disequilibrium (LD) into account 

(R
2
>0.8). 

2. Although the difference in the area under the received operator curve (AUC) 

obtained using the two PRS is hardly appreciable for all three diseases, there 

were large differences in individual risk prediction between the two PRS. 

We found substantial discordance between different PRS for the same disease, indicating 

that individuals could receive different medical advice depending on which PRS is used to 

assess their genetic susceptibility. It is desirable to resolve this uncertainty before using PRS 

for risk stratification in clinical settings. 
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2. Introduction 

Genome-wide association studies (GWAS) have revealed that the inherited genetic 

component of most traits not due to variations in a single gene is highly polygenic. Dozens 

or thousands of single nucleotide polymorphisms (SNPs) can be combined to produce a 

polygenic risk score (PRS) representing an individual's genetic propensity for a given trait or 

disease.  

There is much enthusiasm for the use of PRS to inform individuals about their risk of future 

health conditions, either as stand-alone information, or combined with non-genetic data in 

integrated risk scores [1], [2]. PRS have been proposed in a wide variety of settings such as 

prioritizing people for disease screening, informing the prescription of preventive medicines, 

and even in embryo selection [3]. Variations in single genes associated with diseases are 

already utilised in a clinical setting, however, recent large-scale studies have found that PRS 

could potentially identify a greater proportion of at risk individuals [4].   

Early in the development of PRS, researchers [5], [6] quantified the degree to which a PRS 

with a limited number of SNPs would misclassify people, when compared with future PRS 

with many additional variants. At the time it was thought that once dozens, or even 

hundreds of SNPs were included, diminishing returns would set in and the PRS would be 

relatively stable. This perception appeared to be supported by the fact that in many large 

multi-study consortia, additional SNPs now being identified have very small odds ratios (OR; 

as low as 1.02 per allele or less) and the area under the curve (AUC) for Receiver Operator 

Characteristic (ROC) curves of newer versions of the PRS are only minimally higher than that 

of previous versions. 

Recent discussion on the use of PRS in the clinic has largely focused on the reporting 

standards for the derivation and archiving of PRS [7], [8], the health economic value of PRS, 

the potential contribution of PRS to health disparities given the limited databases available 

for non-European ancestry populations [9], the most appropriate way for benefiting the 

patients [10], [11], and the means of communicating PRS to patients or members of the 

public.   

During the construction of PRS, there are multiple design options for deciding the number of 

SNPs to include and for assigning an appropriate weight to each SNP. Consequently, 

multiple sets of SNPs exist, resulting in multiple PRS for the same trait. For example, the 

313-SNP PRS for breast cancer [12]  was developed using hard-thresholding stepwise 

forward regression, whereas the 118k-SNP PRS [13] was selected by the penalised 

regression "lassosum" and the highest pseudo-R
2
. However, these PRS are typically 

compared at a population level using metrics such as the AUC or OR, and limited attention 

has been paid to how they differ from each other for risk prediction of individuals. 

3. Materials and Methods 

3.1 Study populations 

We used the genetic data from the UK Biobank (UKB), a large-scale population-based 

prospective cohort study of approximately 500,000 individuals aged 40-69 years at 

recruitment across the United Kingdom between March 2006 and October 2010. The ethical 

collection of sample and full details of the genotyping and imputation are described 

elsewhere [14], [15]. 
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Our study populations for each of the three disease outcomes are defined as follows: 

• The breast cancer eligible population was women who had not had breast cancer, 

carcinoma in situ or mastectomy prior to baseline. 

• For the hypertension eligible population, we excluded individuals with missing or 

implausible systolic blood pressure (SBP) measurements (< 70 or > 270 mmHg) at 

baseline, and those with prior Major Adverse Cardiovascular Events (MACE). 

• The dementia eligible population was restricted to individuals without prior 

diagnosis of dementia or Alzheimer’s disease. 

Disease ascertainment of UKB during the following-up period utilised linkage to death 

registry, cancer registry, and Hospital Episode Statistics (HES). Hypertension is defined as 

SBP>=140 at baseline; the International Classification of Diseases (ICD) code for breast 

cancer and dementia can be found in Supplementary Tables 13-15. 

3.2 Calculating PRS 

We computed PRS of an individual � by the weighted sum of trait-associated SNPs, 

���� ���� � 	
�����
�

�

 

where N is the total number of SNPs, ��  is the effect size (or beta) of SNP �, and 	
����� is 

the number of effect alleles (usually encoded as 0, 1 or 2  in SNP � for individual � for the 

effect allele). 

We used published effect size of SNPs, and applied genetic quality control (QC) pipelines for 

both SNPs and samples. During SNP QC, we removed ambiguous SNPs (A/T or C/G SNPs with 

MAF > 0.49) and rare variants with MAF < 0.005; we only retained SNPs with high 

imputation quality (imputation information score > 0.4) (Supplementary Table 1). During 

sample QC, we excluded participants who were sex-discordant, outliers for missingness or 

heterozygosity, or related at 3
rd

 degree or higher, using UKB Data Field 22020.  

For each of the three disease outcomes, we selected a pair of recently published PRS within 

two years of each other for each disease, where the sample sizes for PRS derivation are 

large. Our PRS for breast cancer and dementia are from the polygenic score (PGS) Catalogue 

(www.PGSCatalog.org) [16], while PRS for hypertension are from the literature [17], [18]. 

The earlier PRS is denoted as PRS-A (typically contains fewer SNPs), while the more recent 

one is PRS-B with more SNPs. For each pair of PRS, we compared the total number of SNPs 

and the overlap between scores by checking the number of SNPs in common between the 

scores or in high LD (R
2
>0.8).  

We then computed PRS for those within the defined study population of each condition, 

restricting to genetically White British individuals using UKB Data Field 22006. This yields the 

final size N of each study population.  

• For breast cancer, our “baseline” PRS-A (313 SNPs, PGS ID: PGS000004) [12] has 

been widely validated and is included in the current implementation of the 

BOADICEA breast cancer risk model [19], [20]. For the “comparison” PRS-B, we used 

a score containing (118,388 SNPs, PGS ID: PGS000511) [13] which was largely 

developed from the same Breast Cancer Association Consortium (BCAC) GWAS data 

as PRS-A [21]. 
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• For hypertension, we selected PRS for SBP from the literature. SBP PRS-A contains 

267 SNPs [22], which we compared to a later SBP PRS-B containing 884 SNPs [23] 

with effect sizes from the International Consortium of Blood Pressure-Genome Wide 

Association Studies (ICBP), Million Veteran Program (MVP) and Estonian Genomic 

Centre of the University of Tartu (EGCUT). 

• PRS-A for dementia originally contained 22 SNPs (PGS ID: PGS000334) [24]; we 

subsequently removed the two APOE SNPs (rs429358 and rs7412) to avoid the APOE 

genotype dominating the PRS, leaving us with 20 SNPs.  Our 39-SNP PRS-B [25] (PGS 

ID: PGS001775) used effect sizes from the International Genomics of Alzheimer’s 

Project (IGAP) GWAS [26]; we retained all the 39 SNPs since they do not include the 

two APOE SNPs. 

3.3 Quantifying the stability of PRS 

In each disease-specific study population, we calculated the correlation coefficient between 

each pair of PRS and the age- and sex-adjusted odds ratios (ORs) between various cut-points 

compared with the middle quintile of the PRS distribution. We then used predictions from a 

multivariable logistic regression model containing age, sex, the continuous PRS, genetic 

array, and first 5 PCs to compute the area under curve (AUC) for each PRS (Table 1). The 

continuous Net Reclassification Index (NRI) was used to compare PRS-A with PRS-B in 

multivariable logistic models (Table 1), whereas the categorical NRI was used in cross-

classification of PRS percentile risk categories (Percentage reclassification for participants 

who experienced the outcome are shown in Supplementary Tables 4-6 and 10-12, for top 

1% and top 5% risk categorisations, respectively). 

4. Results 

Our study populations were N=171,490 (cases=6,347) for breast cancer, N=317,581 

(cases=137,649) for hypertension, and N=335,689 (cases=4,460) for dementia. For 

comparing different PRS, we focused on two aspects: firstly, the consistency of the selected 

SNPs and performance metrics. Then we assessed the correlation between each pair of PRS, 

and the extent to which PRS-B gave the same predictions for individuals as PRS-A.  

We found that only 65%-79% of SNPs in PRS-A were represented in PRS-B for all three 

diseases, after having taken linkage disequilibrium (LD) into account (R
2
>0.8). This is 

somewhat surprising, as one might expect a newer score (PRS-B) to incorporate most of the 

previously identified SNPs from PRS-A. 

Table 1 presents the performance characteristics of each PRS against the corresponding 

disease outcome in UKB.  In each case the more recent PRS-B was associated with a slightly 

higher OR than the earlier PRS-A. For example, the OR of breast cancer among women in 

the top 1% compared to those in the middle quintile was 3.41 for PRS-A and 3.94 for PRS-B. 

Their corresponding AUCs were only minimally different (0.638 vs 0.641), and the ROCs 

looked almost identical (Error! Reference source not found.Figure 1).  Similar results were 

obtained for hypertension (PRS-A OR=1.83, AUC=0.69; PRS-B OR=2.18, AUC=0.70) and 

dementia (PRS-A OR=1.78, AUC=0.80; PRS-B OR=2.30, AUC=0.80). 

Despite similar AUCs, PRS-A and PRS-B were not highly correlated for any outcome, with 

their Pearson correlation coefficient � only in the range of 0.65 to 0.73. Compatible with 

these correlation coefficients, there was substantial reclassification of predicted risk 
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according to percentiles of PRS-A and PRS-B for all three diseases, as shown for breast 

cancer in Table 2. For women in the top 1% of breast cancer risk by PRS-A, only 23.1% were 

in the top 1% risk of PRS-B. The equivalent percentage was 22.9% and 22.7% for 

hypertension and dementia, respectively (Supplementary Tables 2-3). We focused on the 

top 1% of risk because of the widely-promulgated concept that these risks approximate 

those of the risks for monogenic traits [4]. 

Using a more relaxed risk category, participants in the top 5% of risk for breast cancer by 

PRS-A, only 35.7% were in the top 5% risk by PRS-B.  The equivalent percentage was 35.8% 

and 40.0% for hypertension and dementia, respectively (Supplementary Tables 7-9). 
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Figure 1: ROC plots obtained from predictions from multivariable logistic regression of age, sex, 

continuous PRS, genotyping array and first 5 PCs against disease outcome 
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Table 1: PRS compared for each outcome and their performance characteristics in the UK Biobank. N: 

number of participants whose PRS score was obtained. nSNPs: number of SNPs in PRS prior to genetic 

quality control. OR: odds ratio for top 1% vs middle quintile of PRS from multivariable logistic 

regression model adjusted for age, sex, genotyping array and first 5 PCs. AUC: area under receiver-

operating curve using predicted risk from multivariable logistic regression model containing age, sex, 

continuous PRS, genotyping array and first 5 PCs. NRI: continuous net reclassification index using 

predicted risks from two multivariable logistic regression models containing age, sex, continuous PRS 

for this disease, genotyping array and first 5 PCs. The model containing PRS-B is considered the 

“updated” model. �: Pearson correlation coefficient between the two continuous PRS for this disease. 

LD: number (%) of SNPs in PRS-A which either appear in or are in linkage disequilbrium (R
2
 > 0.8) with 

SNPs in PRS-B. Breast cancer models are not adjusted for sex because its population is restricted to 

females. 

Disease (N) PRS nSNPs OR (95% CI) 
AUC (95% 

CI) 

NRI (95% 

CI) 
� 

LD: R
2
> 

0.8 (% 

overlap) 

Breast 

cancer 

(171,490) 

A 313 
3.41  

(2.89, 4.03) 

0.64  

(0.63, 0.64) 0.03  

(0.00, 0.05) 
0.65 225 (72%) 

B 118388 
3.94  

(3.36, 4.61) 

0.64  

(0.63, 0.65) 

Hypertension 

(317,581) 

A 267 
1.83  

(1.70, 1.98) 

0.69  

(0.69, 0.69) 0.16  

(0.16, 0.17) 
0.66 210 (79%) 

B 884 
2.18  

(2.02, 2.35) 

0.70  

(0.70, 0.70) 

Dementia 

(335,689) 

A 20 
1.78  

(1.40, 2.26) 

0.80  

(0.79, 0.80) 0.09  

(0.06, 0.12) 
0.73 13 (65%) 

B 39 
2.30  

(1.85, 2.87) 

0.80  

(0.79, 0.81) 
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Table 2: Cross-classification of predicted risk of breast cancer, according to the percentiles of each 

PRS. Number of participants are shown as n (col%, row%, cell%). Higher percentiles of PRS indicate 

increased risk of breast cancer; “≥ 99%” percentile corresponds to the top 1% risk. 

Percentiles 

of PRS-A 

Percentiles of PRS-B 

< 1% 1-20% 20-40% 40-60% 60-80% 80-99% ≥ 99% 

< 1% 345  

(20.1,  

20.1,  

0.2) 

1140  

(66.5,  

3.5,  

0.7) 

176  

(10.3,  

0.5,  

0.1) 

44  

(2.6,  

0.1,  

0.0) 

9  

(0.5,  

0.0, 

0.0) 

1  

(0.1,  

0.0,  

0.0) 

0  

(0.0, 

0.0, 

0.0) 

1-20% 1117  

(3.4,  

65.1,  

0.7) 

15409  

(47.3,  

47.3,  

9.0) 

8818  

(27.1,  

25.7,  

5.1) 

4696  

(14.4,  

13.7,  

2.7) 

2052  

(6.3, 

6.0,  

1.2) 

490  

(1.5,  

1.5,  

0.3) 

1  

(0.0,  

0.1,  

0.0) 

20-40% 198  

(0.6,  

11.5,  

0.1) 

8788  

(25.6,  

27.0,  

5.1) 

9989  

(29.1,  

29.1,  

5.8) 

8053  

(23.5,  

23.5,  

4.7) 

5210  

(15.2,  

15.2,  

3.0) 

2051  

(6.0,  

6.3,  

1.2) 

9  

(0.0,  

0.5,  

0.0) 

40-60% 43  

(0.1,  

2.5,  

0.0) 

4648  

(13.6,  

14.3,  

2.7) 

7998  

(23.3,  

23.3,  

4.7) 

8908  

(26.0,  

26.0,  

5.2) 

8050  

(23.5,  

23.5,  

4.7) 

4607  

(13.4,  

14.1,  

2.7) 

44  

(0.1,  

2.6,  

0.0) 

60-80% 11  

(0.0,  

0.6, 

0.0) 

2098  

(6.1,  

6.4,  

1.2) 

5296  

(15.4,  

15.4,  

3.1) 

7988  

(23.3,  

23.3,  

4.7) 

10047  

(29.3,  

29.3,  

5.9) 

8688  

(25.3,  

26.7,  

5.1) 

170  

(0.5,  

9.9,  

0.1) 

80-99% 1  

(0.0,  

0.1,  

0.0) 

497  

(1.5,  

1.5,  

0.3) 

2006  

(6.2,  

5.8,  

1.2) 

4574  

(14.0,  

13.3,  

2.7) 

8736  

(26.8,  

25.5,  

5.1) 

15674  

(48.1,  

48.1,  

9.1) 

1095  

(3.4,  

63.8,  

0.6) 

≥ 99% 0  

(0.0,  

0.0,  

0.0) 

3  

(0.2,  

0.0,  

0.0) 

15  

(0.9,  

0.0,  

0.0) 

35  

(2.0,  

0.1,  

0.0) 

194  

(11.3,  

0.6,  

0.1) 

1072  

(62.5,  

3.3,  

0.6) 

396  

(23.1,  

23.1,  

0.2) 

 

5. Discussion 

The clinical utility of PRS depends on the clinical validity of the predictions. Clinical validity is 

not only dependent on the information PRS give on the risk of future events, but also on the 

stability of these estimates.  Here we show that for three common conditions (breast 

cancer, hypertension and dementia), the risk estimates derived from different PRS would 

result in very different information being given to a high proportion of people. Choice of the 

PRS may also influence the use of PRS as covariates or effect modifiers in epidemiologic 

analyses. 

We found that the more recent PRS-B had minimal increase in AUC compared to the older 

PRS-A, in line with the small improvement measured by net reclassification index (NRI). 

However, the PRS differed substantially in how they assigned participants into risk 

categories with a substantial proportion of individuals classified at high risk by one PRS, not 
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so classified by the other PRS. This suggests a major potential problem for the use of these 

PRS in clinical practice, given the changes in clinical recommendations associated with 

labelling a person in the same category of risk as a monogenic disorder. Our results 

demonstrated large differences across all percentiles of risk; although the clinical 

consequences at the lower percentiles may not be as extreme as at the higher percentiles, 

the clinical utility will still be reduced by incorrect classification. 

While UKB data was used in the development of some of these PRS, since our interest is in 

comparing the classification of individuals by each score and not in developing a prediction 

model, we expect this to have little impact on the results. 

We note that we have not established the reasons for the extent of misclassification 

between different PRS.  It does not appear to be attributable solely to the number of SNPs 

included in the PRS – we show this for PRS comprised of over 100 thousand versus several 

hundred SNPs (breast cancer), for PRS composed of hundreds of SNPs (systolic blood 

pressure), and for PRS composed of <50 SNPs (dementia).  The surprisingly small number of 

SNPs held in common by different PRS for the same condition published only a year apart 

indicates that different analytical methods used to derive the PRS may account for some of 

the discrepancies in classification, but understanding this phenomenon is clearly important 

for PRS selection in broad clinical practice.  The correlations we observed between PRS for 

the same condition are in the same range as is seen for variation in risk predictors measured 

several years apart such as blood pressure and serum cholesterol, far from the “fixed” or 

“one-time” value at birth that is often assumed for PRS. 

We are not the first to notice this phenomenon.  For instance, Läll [27] compared the 

performance of four PRS in breast cancer prediction, noted that some of the correlations 

between them were as low as �=0.3, and observed that a “metaGRS” of the PRS performed 

better than any of the individual PRS [28].  However, the issue does not seem to be widely 

appreciated, and most publications comparing a new PRS with previous versions assert the 

superiority of the new PRS and do not address the issue of misclassification of risk between 

PRS. Our observation shows two PRS that only minimally differ in predictive performance on 

a population level may substantially differ in terms of individual risk classification, even 

among individuals with the same continental ancestry. This issue requires careful 

consideration before utilising PRS in real-world settings, because such an arbitrary element 

in health care is obviously undesirable. A person's genetic profile is generally considered 

fixed at birth, leading to the widely held conviction that genetic susceptibility is an 

immutable value; however, our findings show that such assertions may be premature in the 

context of PRS which are still a developing area of research.  While it is reasonable to expect 

incremental improvements in any risk prediction algorithm over time, these results suggest 

there is still considerable uncertainty associated with estimates of risk derived from 

different PRS for the same disease. It will be important to develop guidelines on best 

practice in constructing PRS to minimize the extent to which people will be given 

contradictory information over short periods of time. 

6. Declarations 

6.1 Ethics approval and consent to participate 

The UK Biobank study (https://www.ukbiobank.ac.uk) received ethical approval from the 

North West Multi-center Research Ethics Committee (REC reference: 11/NW/03820). All 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 26, 2022. ; https://doi.org/10.1101/2022.02.09.22270719doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.09.22270719
http://creativecommons.org/licenses/by-nc-nd/4.0/


______________________________________          

   Version: 0.8 (19Apr2022)     Authors: LC, JAC, XL, TJL, DJH  Page 10 of 12 

participants gave written informed consent before enrolment in the study, which was 

conducted in accordance with the principles of the Declaration of Helsinki. This study has 

been conducted under the UK Biobank application ID 33952. 

6.2 Patient and community involvement 

The analyses presented here are based on existing data from the UK Biobank cohort study, 

and the authors were not involved in participant recruitment. To the best of our knowledge, 

no patients were explicitly engaged in the design or implementation of the UK Biobank 

study. No patients were asked to advise on interpretation or writing these results. Results 

from UK Biobank are routinely disseminated to study participants via the study website and 

social media outlets. 

6.3 Consent for publication 

Yes. 

6.4 Availability of data and material 

Further summary data can be found in the Supplementary Materials; the authors are happy 

to provide further information upon the request of individual members of the public. Please 

note that the UK Biobank does not permit researchers to provide the raw data reported in 

this paper. However, interested readers are able to request the raw data via application 

directly to the UK Biobank (https://www.ukbiobank.ac.uk). 
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