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29 Abstract

30 We critically appraise the literature regarding in-flight transmission of a range of respiratory 

31 infections to provide an evidence base for public health policies for contact tracing 

32 passengers, given the limited pathogen-specific data for SARS-CoV-2 currently available. 

33 Using PubMed, Web of Science, and other databases including preprints, we systematically 

34 reviewed evidence of in-flight transmission of infectious respiratory illnesses. A meta-

35 analysis was conducted where total numbers of persons on board a specific flight was 

36 known, to calculate a pooled Attack Rate (AR) for a range of pathogens. The quality of the 

37 evidence provided was assessed using a bias assessment tool developed for in-flight 

38 transmission investigations.  We identified 103 publications detailing 165 flight 

39 investigations. Overall, 43.7% (72/165) of investigations provided evidence for in-flight 

40 transmission. H1N1 influenza A virus had the highest reported pooled attack rate per 100 

41 persons (AR= 1.17), followed by SARS-CoV-2 (AR=0.54) and SARS-CoV (AR = 0.32), 

42 Mycobacterium tuberculosis (AR= 0.25), and measles virus (AR= 0.09). There was high 

43 heterogeneity in estimates between studies, except for TB.  Of the 72 investigations that 

44 provided evidence for in-flight transmission, 27 investigations were assessed as having a 

45 high level of evidence, 23 as medium, and 22 as low. One third of the investigations that 
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46 reported on proximity of cases showed transmission occurring beyond the 2x2 seating area. 

47 We suggest that for emerging pathogens, in the absence of pathogen-specific evidence, the 

48 2x2 system should not be used for contact tracing. Instead, alternate contact tracing 

49 protocols and close contact definitions for enclosed areas, such as the same cabin on an 

50 aircraft or other forms of transport, should be considered as part of a whole of journey 

51 approach.

52
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53 Introduction

54 International travel has played a major role in the rapid global spread of SARS-CoV-2, the 

55 pathogen responsible for COVID-19. [1-3] The initial response to the pandemic involved 

56 restrictions on international travel, which has impacted airlines, commercial aviation, 

57 tourism and associated industries. The air travel industry has progressively put in place a 

58 variety of interventions to prevent infections occurring before, during and after flying. These 

59 interventions include: pre-testing of passengers, physical distancing, enhanced hygiene and 

60 cleaning within the aircraft, having passengers and crew wearing masks, leaving middle 

61 seats free, and regular screening and testing of crew.[4]  

62 Transmission of infectious respiratory pathogens in an aircraft setting is complex.  Some of 

63 the factors that influence transmission include infectiousness of the agent, timing and 

64 severity of a passenger’s illness, the nature of ventilation and filtration, space limitations, 

65 and the proximity and duration of interactions between passengers. [5-7] In Australia, the 

66 current public health approach is to contact trace passengers seated in the two rows in front 

67 of the case, the row of the case and the two rows behind the case, across the width of the 

68 fuselage, which is referred to as 2x2 contact tracing. Despite this, there have been reports of 

69 transmission events reported beyond this seating configuration. [8] Furthermore, physical 

70 distancing in-flight may not be sustainable or commercially viable as the demand for travel 

71 increases. The evidence for in-flight transmission can also be confounded by interactions 

72 elsewhere during the journey, for example in the airport terminal or in transit to or from the 

73 airport. It is not always clear within the papers reviewed what provision has been made to 

74 handle such confounders during an outbreak investigation.   
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75 Previous systematic reviews have evaluated the risk of in-flight transmission of various 

76 infectious respiratory pathogens, including influenza virus (seasonal and H1N1), 

77 Mycobacterium tuberculosis (TB) and measles virus. [5, 6, 9, 10] These previous reviews 

78 have contributed to the evidence, current policy decisions and frameworks that health 

79 agencies are using in the COVID-19 pandemic. More recently a number of SARS-CoV-2 

80 specific reviews have been published, which assess mitigation strategies or aim to estimate 

81 attack rates on passenger aircraft, both with conservative estimates from public data and 

82 estimates from industry. [11-14]

83 In this review, we critically appraise the literature regarding in-flight transmission of a range 

84 of respiratory infections to provide an evidence base for policy given the limited pathogen-

85 specific data for SARS-CoV-2 currently available. 

86 Methods

87 In this review, we sought to identify and aggregate the evidence for transmission of 

88 infectious respiratory illnesses on aircraft and assess the utility of 2x2 contact tracing.  The 

89 protocol of this review was registered with the international prospective register of 

90 systematic reviews (PROSPERO  CRD42020191261). [15]

91 Search Strategy

92 We searched PubMed, Web of Science and the Cochrane library for articles containing 

93 information on the transmission of respiratory illness on an aircraft or in-flight. MedRxiv and 

94 BioRxiv were searched for preprints regarding flight associated transmission of SARS-CoV-2. 

95 There was no language restriction on the search, however articles that were not published 

96 in English or did not have an adequate translation available were excluded. Further search 

97 details can be found in Appendix 1. The International Air Transport Association (IATA), the 
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98 Collaborative Arrangement for the Prevention and Management of Public Health Events in 

99 Civil Aviation (CAPSCA), WHO, ICAO, EASA, CDC and ECDC databases were searched to 

100 include all relevant studies and industry documents. We conducted the search on 20 May, 

101 2021.

102 Two reviewers screened titles and abstracts, with a third reviewer resolving conflicts for 

103 inclusion or exclusion. For full text screening, two reviewers reviewed each article, with 

104 conflicts resolved through discussion between reviewers. We conducted additional searches 

105 of outbreak investigation reports in the CDC, ECDC and CDI databases, to identify outbreak 

106 investigations where flight -associated and in-flight contact tracing was undertaken as part 

107 of an investigation but was not reported on separately. We included these where there was 

108 evidence of contact tracing and reported outcomes. 

109 We included studies detailing investigations into in-flight transmission. We excluded studies 

110 that were based on modelling and simulation, along with previous systematic reviews. 

111 Additionally, during the data extraction phase we excluded articles where there was 

112 inadequate data presented in the study and/or a lack of investigation of affected flights.  

113 Data were extracted in duplicate from each article to ensure consistency. Data extracted for 

114 analyses included the pathogen, number of passengers, number of persons on a flight 

115 (passengers and crew), number of infective cases, number of secondary cases, the index 

116 case definition, the secondary case definition, length of flight, proximity of secondary cases 

117 to the index case/s, contact tracing strategy, timeliness of contact tracing, and alternative 

118 exposures addressed. Extracted data are summarised in Appendix 3. 

119 During the data extraction process, references of all included articles were manually 

120 searched for additional relevant articles. We estimated attack rates for flights where the 
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121 total number of persons (or susceptible persons) aboard an aircraft were reported, 

122 regardless of the contact tracing strategy employed. The pooled attack rates by pathogen 

123 were estimated using the inverse variance heterogeneity model [16]. The double arcsine 

124 square root transformation was applied to stabilise the variance; results were reported after 

125 back-transformation for ease of interpretation. [17] All tests were two-tailed, and P ≤ 0.05 

126 was deemed statistically significant. Pooled analyses were conducted using MetaXL version 

127 5.3 (EpiGear International, Sunrise Beach, Queensland, Australia).

128 We used a bias assessment tool, developed by Leitmeyer et al. for influenza investigations, 

129 to evaluate the level of evidence for transmission aboard aircraft. [6] The bias assessment 

130 tool was modelled on the PRISMA statement and the Newcastle-Ottawa scale. Articles were 

131 assessed on the strength of evidence of each investigation and categorised as low, medium, 

132 or high evidence, based on factors relevant to contact tracing, such as methodology, 

133 timeliness and outcomes. 

134 We modified the bias assessment tool for tuberculosis investigations (changing timeframes 

135 from weeks to months) to account for the difference in transmission dynamics and the 

136 timeframe for contact tracing appropriate for this pathogen (Appendix 2). Tuberculosis 

137 studies were also complicated by the extended latency period and corresponding delays in 

138 investigations. Tuberculosis investigations commonly involved multiple flights, rather than 

139 being conducted on an individual flight basis as is typical of more acute pathogens such as 

140 SARS-CoV-2, SARS-CoV, Middle East Respiratory Syndrome (MERS) or H1N1, which have 

141 pandemic potential and rapid transmission. 
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142 Results

143 Study characteristics

144 We screened 425 titles, resulting in the inclusion of 103 articles in our review of which, 60 of 

145 these articles were identified during secondary searches (appendix 1)[18]. In total, there 

146 were 165 flight investigations detailed in 103 articles that we included in our review (figure 

147 1), after accounting for duplicate publications of investigations into H1N1, MERS, and SARS-

148 CoV-2.  

149 Figure 1: PRISMA 2009 Flow Diagram [18] 

150 Respiratory pathogens included in our review included SARS-CoV (n=5)[19-23], MERS virus 

151 (n=12) [24-35], Mycobacterium tuberculosis (n=20)[36-55], measles virus (n=27) [56-82], 

152 mumps virus (n=2)[83, 84], rubella virus (n=1)[85], Corynebacterium diphtheriae (n=1)[55], 

153 H1N1 influenza A virus (n=10)[10, 86-94], seasonal influenza virus or influenza like illness 

154 (ILI; n=2)[95, 96], Neisseria meningitidis (n=3)[97-99], and SARS-CoV-2 (n=19)[1, 100-118].

155 The two articles on MERS virus reported on the same flights and investigations in the United 

156 States and the United Kingdom, with complementary data presented in each paper [24, 25]. 

157 We have only counted the four flights presented in each of these papers once but have 

158 treated them as two investigations based on two different index cases. We identified other 

159 articles on H1N1 influenza A virus and measles virus that reported duplicate investigations, 

160 which were counted once for the purposes of data analysis. [56, 63, 77, 86, 90, 119] We 

161 identified two articles on the same flight outbreak for SARS-CoV-2 with contradictory 

162 conclusions about the number of secondary cases due to in-flight transmission. For the 

163 purposes this review, we included the investigation with greater epidemiological evidence 

164 and robust discussion around pre and post flight exposures. [106] We included an 
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165 unpublished Australian report detailing several investigations into flight-associated 

166 transmission of SARS-CoV-2.

167 Index case classification was based on laboratory confirmation in 89.1% (147/165) of 

168 investigations.  Of the remaining 18 investigations, either clinical presentation was used for 

169 index case classification or it was not reported. Investigators used various definitions for 

170 secondary cases due to the different pathogen characteristics and public health protocols. In 

171 total, 84.8% (140/165) of investigations used pathogen-specific testing criteria to define 

172 secondary cases, 5.5% (9/165) of investigations used clinical characteristics, while the 

173 remaining 9.7% (16/165) of investigations did not provide sufficient detail on how secondary 

174 cases were characterised. 

175 Of the investigations that reported in-flight transmission, 97.2% (70/72) considered 

176 alternative exposures when determining whether in-flight transmission may have occurred. 

177 Transmission and proximity

178 Overall, 43.7% (72/165) of investigations provided evidence for in-flight transmission of 

179 respiratory illness based on their epidemiological investigations. Of these, 21 were for SARS-

180 CoV-2 [1, 100, 102, 104, 106, 107, 109-113, 115, 116, 118], 13 for H1N1 influenza A virus [4, 

181 10, 86-90, 92-94], 22 for measles virus [57-65, 68-70, 72-76, 78-82], two for seasonal 

182 influenza virus and ILI [95, 96], four for SARS-CoV [21-23], seven for Mycobacterium 

183 tuberculosis [36, 40, 42, 44, 48, 120],  one for mumps virus [84], and two for Neisseria 

184 meningitidis [98, 99]. 

185 We calculated attack rates for 5 pathogens in 59 investigations (44 articles) where 

186 investigators provided data on the total numbers of passengers on board.  H1N1 influenza A 

187 virus had the highest pooled attack rate per 100 persons exposed (AR= 1.17, 82/6456, 95% 
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188 CI; 0.0000–0.82), followed by SARS-CoV-2 (AR=0.54, 63/7260, 95% CI; 0.00–1.71) and SARS-

189 CoV (AR = 0.32, 25/2835, 95% CI; 0.00–1.17), Mycobacterium tuberculosis (AR= 0.25, 

190 8/3212, 95% CI; 0.07–0.49), and measles virus (AR= 0.09, 17/11918, 95% CI; 0.00–0.82). 

191

192

193 Figure 2 Forest plot showing weighted pooled attack rates for H1N1

194

195 Figure 3 Forest plot showing weighted pooled attack rates for SARS-CoV-2

196

197 There was considerable heterogeneity amongst investigations included in our review, 

198 (I2>50%), except for Mycobacterium tuberculosis. We present the pooled attack rate meta-

199 analysis for all pathogens in Table 1, with forest plots for the remaining pathogens in 

200 Appendix 4.

201

202
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Table 1. Estimated attack rates of in-flight transmission of selected respiratory pathogens and number of investigations, reported index cases, 

and reported secondary cases, by pathogen

Pathogen Number of 

articles in  

meta 

analysis

Pooled attack 

rate (per 100 

persons 

exposed)

95% Confidence 

Interval

I2 % Number of unique 

investigations in 

review

Number of index 

cases@

Number of 

secondary cases

Measles virus 11 0.09 0.00– 0.82 80.7 31 228 62

SARS-CoV-2 14 0.54 0.00–1.71 88.3 29 204 87

H1N1 influenza A 

virus 

10 1.17 0.51–1.96 74.2 14 36 82

SARS-CoV 3 0.32 0.00–1.17 87.6 19 24 26

Mycobacterium 

tuberculosis 

6 0.25 0.07–0.49 20.0 51 667 31

MERS virus - - - - 12 14 0

Mumps virus - - - - 2 13 2

Rubella virus - - - - 1 1 0
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Neisseria mengitidis - - - - 3 3 3

Influenza virus (ILI) - - - - 2 2 53

Corynebacterium 

diptheriae

- - - - 1 1 0

* Number of articles included in pooled attack rate estimates

@Number of index cases not always reported
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Of the investigations where in-flight transmission was documented, 63.9% (46/72) reported 

on the proximity of secondary cases to the index case/s.  In 31.1% (14/46) of investigations, 

transmission was reported to have occurred exclusively within two rows of an index case. [1, 

10, 68, 69, 94, 100, 106, 109, 118] For the remaining 32 investigations, transmission 

occurred beyond this 2x2 area. Overall, in the 46 investigations where proximity to the 

index case was reported on, 48.7% (94/193) of reported secondary cases occurred outside 

of the 2x2 seating area around the index case. 

Of the 32 investigations reporting transmission outside the 2x2 zone, six were for SARS-CoV-

2 [102, 104, 110, 112, 115, 118], three for Mycobacterium tuberculosis [40, 44, 120], seven 

for H1N1 influenza A virus [4, 86-90], 11 for measles virus [58-60, 63, 65, 70, 72, 74-76, 79], 

two for SARS-CoV [21-23], one for ILI [96], and one for meningococcal meningitis [98]. 

For SARS-CoV-2, investigators reported proximity in 71.4% (15/21) of investigations and 

80.7% (46/57) of secondary cases occurred within the 2x2 seating area surrounding an index 

case. Proximity was reported in 77.0% (10/13) H1N1 investigations with 51.1% (23/45) of 

secondary cases occurring within the 2x2 zone. Proximity was reported in 13 of 22 measles 

investigations with 27.5% (11/40) of secondary cases occurring within the 2x2 zone. 

Proximity was reported in 3 of 4 SARS-CoV investigations with 24% (6/25) of secondary 

cases occurring within the 2x2 zone. Proximity was reported in 3 of 7 tuberculosis 

investigations, with 40% (4/10) of secondary cases occurring within the 2x2 zone. For the 

single ILI and influenza investigation reporting proximity, 40% (9/15) of secondary cases 

occurred within the 2x2 zone. For the single meningococcal investigation reporting 

proximity none of the secondary cases (n=1) occurred within the 2x2 area around an index 

case.
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Assessment of the evidence and bias

We evaluated that 46 investigations had a high level of evidence, 71 had medium, and 48 

had a low level of evidence demonstrating in-flight transmission. The median evidence score 

of 5 (range: -1–9). Eight investigations achieved the highest score of 9, with four of these 

being investigations for SARS-CoV-2. These are detailed in Appendix 3.

Of the 72 investigations providing evidence for in-flight transmission, 27 were assessed as 

having a high level of evidence, 23 as medium, and 22 as low. Breakdown by pathogen is 

detailed in Table 2. 

Table 2. Evidence assessment by pathogen, where in-flight transmission has been reported. 

Pathogen Number of investigations and evidence level

 Low Medium High

SARS-CoV-2 3 8 10

H1N1 influenza A virus 2 4 7

Mycobacterium tuberculosis 0 3 4

Measles virus 14 3 5

SARS-CoV 0 4 0

Mumps virus 1 0 0

Neisseria meningitidis 2 0 0

Seasonal influenza virus & ILI 0 1 1

Total 22 23 27
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Discussion

We found strong evidence for in-flight transmission of a range of respiratory pathogens, 

particularly for SARS-CoV-2. We found that 48.7% (94/193) of all respiratory pathogen 

transmission events, where proximity was reported, occurred outside of the standard 

arrangement that public health uses to contact trace a 2x2 seating area around an infected 

passenger. Pre and post flight information can be utilised within investigations into potential 

transmission in-flight, but this does not appear to be common practice. Integration of this 

information and may shift the focus towards flight-associated transmission as the primary 

outcome of interest rather than the current focus on the inflight period. 

All studies in our review focussed on the potential for transmission to occur on the aircraft 

during the flight. However, a flight is not a singular event. The logistically complex nature of 

air travel leads to passenger and crew interactions at all stages of the air travel process, i.e., 

pre-flight, in-flight, and post-flight. Potential transmission, for example, could occur at the 

airport terminal (check-in, baggage, customs and immigration, in a transit lounge or at the 

gate) or on public transport to or from the airport and has been demonstrated previously in 

the case of measles.[75]  When analysing seating maps, distant infections beyond the 

traditional 2x2 zone may be explained by these alternative pathways. Instances of in-flight 

transmission may be considered to have most likely occurred within the cabin environment, 

but this cannot be conclusively determined. Genomic evidence can link index and secondary 

infections who travelled on the same flight for many pathogens, including SARS-CoV-2, but 

cannot definitively determine the circumstances of transmission.[115]

Although measles virus is highly infectious, high vaccination rates internationally and the 

availability of post exposure prophylaxis is likely reflected in the low attack rate observed in 
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our review.[63] Treatment and post exposure measures are also applicable to 

Mycobacterium tuberculosis, with a similarly low attack rate (AR= 0.25). Due to the rapid 

spread of SARS-CoV-2 in 2020, investigations into in-flight transmission were likely to be 

more robust as a result of higher public awareness and intense public health response and a 

vaccine naïve population during the period included in this review. However, this also 

increases the potential for publication and confirmation bias. 

Just under half of the investigations that reported on proximity showed transmission 

occurring beyond the 2x2 area.  However, this does not mean that public health agencies 

should not use the 2x2 area for contact tracing. We suggest that, where circumstances 

require, public health agencies may wish 7to extend tracing beyond the 2x2 zone. These 

circumstances could include flights in regions with a pathogen elimination strategy, where a 

novel or highly infectious pathogen has emerged, or where there are multiple infectious 

passengers on the flight. In these scenarios, public health agencies could use alternate 

contact tracing protocols and definitions of close contacts for enclosed areas, such as the 

same cabin on an aircraft or other forms of transport. This is particularly true for highly 

infectious variants of SARS-CoV-2, such as the Delta variant. [121]

We observed considerable heterogeneity in attack rates between studies included in the 

meta-analysis. This is likely due to the stochastic nature of outbreaks, differences in 

outbreak investigation and logistical challenges presented by contact tracing on domestic 

and international flights. In addition, it is likely that the many instances where infectious 

cases transmitted to one or fewer persons were not published. Our review does not indicate 

how commonly cases did not transmit outside the 2x2 zone, but does indicate that it occurs 
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from time to time. In addition, many published reports of investigations involved multiple 

infectious cases on the same flight, which would lead to a higher infection pressure.

We recommend that where public health investigators are alerted to infectious cases 

travelling on a flight, they should conduct a risk assessment of the characteristics of the 

flight including relevant infection controls utilised, as well as that of the airport transit 

locations when investigating transmission of highly transmissible or high-consequence 

pathogens. Public health authorities should conduct potential outbreak investigations in 

conjunction with airlines and airports where practical, noting the current challenges with 

contact tracing surrounding international travel. Additionally, where there is more than one 

index case on a flight, the 2x2 area may be inappropriate and a cabin or whole-of-plane 

contact tracing strategy should be undertaken after adequate risk assessment and 

consideration of available resources, in line with current public health strategies in their 

jurisdiction. 

Limitations

This review is subject to several limitations including the massive emerging literature on 

SARS-CoV-2; difficulties in defining secondary cases as having been acquired in-flight; the 

heterogeneity of included studies; and the variable quality of included studies. Within the 

first year of the World Health Organization declaring the SARS-CoV-2 pandemic, more than 

200,000 journal articles and preprints on SARS-CoV-2 were published. [122] The high 

volume of SARS-CoV-2 publications may well result in studies being missed due to the 

confines of the search strategy and the dynamic nature of publications. We did search CDC, 

ECDC and IATA databases, however, we are mindful that there would have been many 
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instances where flight contact tracing was undertaken as part of outbreak investigations but 

never published.

Our review included investigations into SARS-CoV-2 prior to roll-out of vaccines in countries, 

widespread immunity due to either natural infection or vaccination, and the emergence of 

variants of concern with known increases in transmissibility and reduction in incubation 

period. As such, some of our findings may not be applicable to the current circulating strains 

of SARS-CoV-2 and public health control measures in place at the time of publication, but 

our findings do highlight that the 2x2 system of contact tracing itself is not specific enough 

for contact tracing management of SARS-CoV-2 in all circumstances. 

We assessed the level of evidence using a bias and assessment tool that we adapted from 

Leitmeyer et al. [6]  This allowed us to assess each investigation to determine the evidence 

level. We used the tool to assess the methods used in each investigation, which identified a 

high degree of heterogeneity. The methodological issues identified highlight the weakness 

of many investigations within this review, contributing to the overall median rating of 

medium evidence level in this review. The high proportion of investigations with low and 

medium evidence scores is attributable to the majority of investigations using the narrow 

2x2 contact tracing strategies, the time between flight and commencement of contact 

tracing (often attributed to delays in clinical presentation and subsequent diagnosis), and 

the incomplete nature of contact tracing. All of these factors would lead to potentially 

missed secondary cases, introducing bias into the studies.

Contact tracing investigations from air travel are complicated and are often incomplete, 

although this has changed with greater use of electronic data for tracing. Close contact 

follow up is particularly difficult for international travel. The ability of any one public health 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.09.22270715doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.09.22270715
http://creativecommons.org/licenses/by/4.0/


19

unit to undertake a thorough contact tracing investigation to determine if in-flight 

transmission has occurred is limited due to multiple jurisdictions, international travel and 

lack of contact details for passengers who are in transit. This is highlighted in a number of 

multi-national investigations included in this review, where the same flights or cases were 

reported by different jurisdictions, such as a MERS virus outbreak that was investigated in 

the UK and the US [24, 25] and an international flight with a H1N1 investigation that was 

investigated by multiple jurisdictions. [86, 90]

Asymptomatic infections may also be underreported as testing may only be conducted on 

symptomatic individuals. For SARS-CoV-2, many countries, including Australia and New 

Zealand, have required all incoming passengers to undertake mandatory quarantine in 

hotels or other purpose-built facilities where they are routinely tested  therefore providing 

opportunities for more complete follow-up.[123]

Case studies of in-flight outbreaks detail secondary cases that are identified with an 

epidemiological link and investigated further. As case studies do not assist in quantifying the 

risk of in-flight transmission, they should not solely be relied on as an evidence base, but 

rather provide an exploratory tool to prompt further study. The relevance of case studies 

decreases after the initial stages of pathogen emergence once robust epidemiological 

investigations have occurred. Furthermore, contact tracing investigations are undertaken 

for the purpose of implementing public health measures, rather than for research.  During 

an epidemic or pandemic, contact tracing capacity may be overwhelmed and robust tracing 

may not occur. Consequently, we cannot determine the frequency of transmission outside 

the 2x2 zone of seating, other than it does occur. Public health agencies may choose to use 
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wider contact tracing strategies depending on their local disease control priorities and 

resource constraints.

Investigations using routine surveillance data are only appropriate for notifiable diseases 

resulting in health outcomes that require presentation to medical services. Otherwise, 

investigations are likely underreporting the occurrence of potential in-flight transmission. 

However, for the pathogen SARS-CoV-2, some countries have high levels of testing, 

including asymptomatic testing, meaning that there is high ascertainment of cases. 

Therefore, the use of surveillance systems may be adequate to evaluate potential in-flight 

transmission events for SARS-CoV-2 but is limited for other pathogens. In particular, the use 

of 2x2 contact tracing may reinforce the belief that it is effective if no tracing and testing 

occurs outside this zone. Surveillance systems are likely to underrepresent cases for 

notifiable diseases that are less common, cause mild illness, have no treatment, are 

relatively rare, or do not require a laboratory test for treatment and management. 

Retrospective analysis of surveillance data is not recommended as an investigative approach 

for public health action due to potential underreporting, inherent in surveillance systems, 

and lack of timeliness.  

Conclusion

In our review, we determined that air travel related transmission of pathogens responsible 

for many respiratory illnesses occurred outside of the standard 2x2 area for contact tracing. 

However, we have found overall that this evidence was only of a medium level of quality 

and raises questions about reliance upon a single 2x2 contact metric. In contrast, our 

findings indicate that in certain circumstances, a whole-of-flight or whole-of-journey 

approach may be necessary for contact tracing persons infected with emerging pathogens 
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until pathogen-specific transmission dynamics are understood or most travellers have 

immunity. Consideration of the utility of contact tracing of this nature in reducing 

transmission within a country or community is vital to preserve resources. Case studies of 

outbreaks provide valuable initial insights into the in-flight transmission of SARS-CoV-2. The 

low level of evidence is attributable to under detection and subsequent underreporting of 

cases across public health units, multinational investigations and lack of airline cooperation 

rather than a reflection of the public health investigators methods. It is important to 

recognise that accounts of in-flight or flight associated transmission are uncommon in 

medical literature, and that the publication of case studies do not reflect the majority of 

flights where transmission does not occur. 

The entire air travel process, from travel to an airport to departing the terminal at the end 

destination, needs to be considered in terms of infection control and interaction during 

public health investigations. This style of multilayered, approach has been recommended by 

the International Civil Aviation Organisation and IATA, and should be considered by public 

health authorities when investigating infectious respiratory diseases in the context of flight  

[124]. This multilayered approach will help protect public health and enable containment of 

infectious respiratory pathogens as international travel resumes. 
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Appendix 1 – Search Strategy

Pubmed and Web of Science search

¬¬(“communicable diseases” OR “infectious diseases” OR “disease outbreaks” OR 

“influenza” OR “fomites” OR “coronavirus” OR “coronavirus infections” OR “severe acute 

respiratory syndrome” OR “respiratory tract infections” OR “middle east respiratory 

syndrome” OR “common cold”) 

AND 

("Air travel" OR "inflight" OR "Flight" OR "Aircraft" OR "Air travel" OR “Flying") 

AND

(“Pilots” OR “cabin crew” OR “Crew” OR “Passengers”)

Cochrane search

(‘communicable diseases’ OR ‘infectious diseases’ OR ‘disease outbreaks’ OR ‘influenza’ OR 

‘fomites’ OR ‘coronavirus’ OR ‘coronavirus infections’ OR ‘severe acute respiratory 

syndrome’ OR ‘respiratory tract infections’ OR ‘middle east respiratory syndrome’ OR 

‘common cold’) in Title Abstract Keyword AND ‘Air travel’ OR ‘inflight’ OR ‘Flight’ OR 

‘Aircraft’ OR ‘Air travel’ OR ‘Flying’ in Title Abstract Keyword AND ‘Pilots’ OR ‘cabin crew’ OR 

‘Crew’ OR ‘Passengers’ in Title Abstract Keyword - (Word variations have been searched)
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Appendix 2 – Quality assessment tool, adapted from Leitmeyer, et al. [6] 

Criteria Points Awarded or Withdrawn

Index case classification   

Laboratory confirmation 1

Unspecific clinical presentation or data not 

provided

0

Secondary case ascertainment 

Laboratory confirmation of all cases 2

Syndromic (e.g., influenza-like illness) or no 

comprehensive confirmation of all 

secondary cases

1

Not provided 0

Contact tracing strategy   
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Comprehensive 2

Other (two rows, compartment, class, area, 

retrospective identification)

0

Timeliness of contact tracing

Within 1 week (1 month for TB) 2

Within 3 weeks (3 months for TB) 1

After 3 weeks or more (3 months for TB) 0

Completeness of contact tracing: 

proportion of passengers followed up

More than 80% were followed up 2

Between 80% and 50% were followed up 1

Less than 50% were followed up or 

retrospective identification

0

Limitations

alternative exposure not addressed -1

0 −1 Resulting evidence levels: 0–3 low, 4–6 medium, 7–9 high.
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Appendix 3 

Table 1: Supplementary data and evidence assessment

Pathogen Study (First Author and year 

(investigation #) [reference]

# 

passengers 

to be 

traced

# of 

passengers 

traced

# 

index 

cases

# 

2ndry 

cases

2ndry 

cases 

within 2 

rows

# of 

people 

on 

board

Index Case 

classification

Secondary case 

ascertainment

Contact 

tracing 

Strategy

Timeliness 

of contact 

tracing

Completeness of 

contact tracing: 

proportion of 

passengers followed 

up

Limitations Total Evidence 

Level

Diptheria Berger, 2016 (1)[55] 19 16 1 0 - - 1 0 0 2 2 0 5 Medium

H1N1 Baker, 2010 (1)[10] 112 102 12 4 4 379 1 2 0 2 2 0 7 High

H1N1 Foxwell, 2011 (1) [94] 445 145 6 8 8 445 0 2 0 2 0 0 4 Medium

H1N1 Foxwell, 2011 (2)[94] 293 131 1 1 1 293 1 2 0 2 0 0 5 Medium

H1N1 Han, 2009 (1)[91] 114 114 1 0 - 115 1 2 2 0 2 0 7 High

H1N1 Han, 2009 (2) [91] 110 110 1 1 0 111 1 2 2 0 2 0 7 High

H1N1 Han, 2009 (3) [91] 110 110 2 7 1 112 1 2 2 0 2 0 7 High

H1N1 Kim, 2010 (1)[88] 337 199 1 1 0 338 1 2 2 0 1 0 6 Medium

H1N1 Neatherlin, 2013 (1) [89] 225 146 1 8 3 226 1 1 2 0 1 0 5 Medium

H1N1 Neatherlin, 2013 (2) [89] 167 133 1 4 3 168 1 1 0 0 0 0 2 Low

H1N1 Ooi, 2010 (1) [87] 596 23 1 5 2 596 1 2 2 2 0 0 7 High

H1N1 Pang, 2011 (2) [89] 1846 1846 1 8 - 1854 1 2 2 2 2 0 9 High

H1N1 Pang, 2011, (1) [89] 1283 1283 1 20 - 1303 1 2 2 2 2 0 9 High

H1N1 Young, 2014 & Shankar, 2014 

(1) [86, 90]

278 232 6 6 1 278 1 2 0 2 2 0 7 High

H1N1 Zhang, 2013 (1) [93] 274 168 1 9 - 274 0 0 2 0 1 0 3 Low

ILI Marsden, 2003 (1)[96] - - 1 15 9 - 0 0 2 2 2 0 6 Medium

Influenza Moser, 1979 (1)[96] 54 53 1 38 - 54 1 2 0 2 2 0 7 High
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Measles Amornkul, 2004 & Lasher, 2004 

(1) [56, 77]

336 276 1 0 - 337 0 0 2 2 2 0 6 Medium

Measles Barret, 2018 (1) [57] - - 1 1 - - 1 2 0 0 0 0 3 Low

Measles Barret, 2018 (2) [57] - - 1 2 - - 1 2 0 0 0 0 3 Low

Measles Barret, 2018 (3) [57] - - 1 1 - - 1 2 0 0 0 0 3 Low

Measles Barret, 2018 (4) [57] - 250 1 0 - - 1 2 0 0 0 0 3 Low

Measles Beard, 2011 (1) [58] 56 - 1 4 1 - 1 2 0 0 0 0 3 Low

Measles Bitzegeio, 2020 (1) [59] - - 1 2 0 - 1 2 0 0 0 0 3 Low

Measles Bitzegeio, 2020 (2) [59] - 476 1 3 - - 1 2 0 1 0 0 4 Medium

Measles CDC, 1983 (1) [61] - - 1 1 - - 1 2 0 0 0 0 3 Low

Measles CDC, 2006 (1) [64] - 6 1 0 - - 1 1 0 0 2 0 4 Medium

Measles CDC, 2006 (2) [64] 118 - 1 0 - 118 1 1 0 0 2 0 4 Medium

Measles CDC, 2011 (1) [65] - - 1 2 0 - 1 2 0 1 0 0 4 Medium

Measles CDC, 2012 (1) [66] - - 1 0 - - 1 2 0 1 0 0 4 Medium

Measles Chen, 2010 (1) [68] - - 1 1 1 - 1 2 0 0 0 0 3 Low

Measles Chen, 2011 (1)[67] 145 145 1 0 - 145 1 2 2 0 0 0 5 Medium

Measles Cocoros, 2010 (1) [69] 31 29 1 1 1 - 1 2 0 2 2 0 7 High

Measles Coleman, 2009 (1) [70] 42 42 1 2 0 - 1 2 0 2 2 0 7 High

Measles Colier, 2013 (1)[71] 72 32 1 0 - - 1 1 1 0 0 0 3 Low

Measles Cotter, 2010 (1)[72] 321 169 3 2 0 - 1 2 2 2 1 0 8 High

Measles Dayan, 2005 & CDC, 2005  

&CDC, 2006 (1) [63, 73, 119]

- - 117 4 2 10000 1 0 0 0 0 0 1 Low

Measles CDC, 2011 (1) [60] - - 3 8 3 - 1 1 0 0 0 0 2 Low

Measles Huang, 2018 (1) [75] - - 1 2 0 180 1 2 0 0 0 0 3 Low

Measles Kantele, 2012 (1) [76] 580 580 3 1 0 580 1 2 2 2 0 0 7 High

Measles Lu, 2020 (1) [78] 22 - 1 1 - - 1 2 1 2 2 0 8 High

Measles Lu, 2020 (2) [78] 164 - 1 0 - - 1 2 1 2 2 0 8 High
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Measles Nelson, 2013 (1)[79] 3399 952 74 9 3 - 0 0 0 0 0 0 0 Low

Measles Ribiero de Barros, 2006 (1) [74] 334 118 1 2 0 334 1 2 0 0 0 0 3 Low

Measles Slater, 1995 (1) [80] - - 1 8 - 350 1 2 0 0 0 0 3 Low

Measles Thole, 2019 (1)[81] 155 155 1 0 - - 1 2 2 2 1 0 8 High

Measles Thole, 2019 (2) [81] - - 1 2 - - 1 2 2 0 0 0 5 Medium

Measles van Binnendijk RS, 2008 (1)[82] - - 3 3 - - 1 2 0 0 0 0 3 Low

Meningococcal CDC, 2001, (1)[97] 2 1 1 0 - - 1 0 0 2 1 0 4 Medium

Meningococcal O'Connor, 2005 (1)[98] - - 1 1 0 - 1 2 0 0 0 0 3 Low

Meningococcal Riley, 2006 (1)[99] - 200 1 2 - - 1 2 0 0 0 0 3 Low

MERS Devi, 2014 (1) [31] 24 21 1 0 - - 1 2 0 2 2 0 7 High

MERS Kang, 2015 (1) [26] 27 27 1 0 - - 1 2 0 2 2 0 7 High

MERS Kraaij - Dirkzwager, 2014 (1) 

[27]

18 18 2 0 - - 1 2 0 2 2 0 7 High

MERS Kwok-ming, 2015 (1) [28] - 42 1 0 - - 1 2 0 2 0 0 5 Medium

MERS Mollers, 2015 (1) [29] 17 17 2 0 - - 1 2 0 2 2 0 7 High

MERS Parry-Ford, 2015 & Lippold, 

2017 (1) [24, 25]

173 154 1 0 - - 0.75 2 1 0.75 0.5 0 5 Medium

MERS Parry-Ford, 2015 & Lippold, 

2017 (2) [24, 25]

574 541 1 0 - - 1 2 1 0.75 1.25 0 6 Medium

MERS Plipat, 2015 (1) [30] 26 26 1 0 - - 1 2 0 2 2 0 7 High

MERS Puzelli, 2013 (1) [32] 9 9 1 0 - - 1 2 0 2 2 0 7 High

MERS Racelis, 2015 (1) [33] 237 85 1 0 - - 1 2 0 2 0 0 5 Medium

MERS Tsiodras, 2014 (1)[34] - 12 1 0 - - 1 2 0 2 0 0 5 Medium

MERS Wu, 2015 (1)[35] 6 6 1 0 - - 1 2 0 2 2 0 7 High

Mumps CDC, 2006 (1)[84] 575 132 11 2 - - 1 2 0 0 0 0 3 Low

Mumps Nelson, 2012 (1) [83] 166 21 2 0 - - 1 0 0 0 0 0 1 Low

Rubella Kim, 2012 (1) [85] 250 215 1 0 - - 1 0 0 0 2 0 3 Low
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SARS Breugelmans, 2010 (1) [20] 250 36 1 0 - - 1 0 0 2 2 -1 4 Medium

SARS Desenclos, 2004 (1) [21] 7 7 1 2 1 402 1 2 0 1 2 0 6 Medium

SARS Olsen, 2003 (1) [22] 315 74 1 0 - 315 1 0 2 0 0 0 3 Low

SARS Olsen, 2003 (2) [22] 120 65 1 22 5 120 1 1 2 0 1 0 5 Medium

SARS Olsen, 2003 (3) [22] 246 166 4 1 - 246 1 0 2 1 1 0 5 Medium

SARS Vogt, 2006 (1) [19] 334 108 1 0 - 334 1 2 2 0 0 -1 4 Medium

SARS Vogt, 2006 (2) [19] 296 46 1 0 - 296 1 2 2 0 0 -1 4 Medium

SARS Vogt, 2006 (3) [19] 374 47 1 0 - 374 1 2 2 0 0 -1 4 Medium

SARS Vogt, 2006 (4) [19] 133 73 1 0 - 133 1 2 2 0 1 -1 5 Medium

SARS Vogt, 2006 (5) [19] 212 25 1 0 - 212 1 2 2 0 0 -1 4 Medium

SARS Vogt, 2006 (6) [19] 32 8 1 0 - 32 1 2 2 0 0 -1 4 Medium

SARS Vogt, 2006 (7) [19] 385 32 1 0 - 385 1 2 2 0 0 -1 4 Medium

SARS Wilder-Smith, 2003 (1) [23] - - 3 0 - - 0 2 0 2 0 0 4 Medium

SARS Wilder-Smith, 2003 (2) [23] - - 1 1 0 - 0 2 0 2 0 0 4 Medium

SARS Wilder-Smith, 2003 (3) [23] - - 1 0 - - 0 2 0 2 0 0 4 Medium

SARS Wilder-Smith, 2003 (4) [23] - - 1 0 - - 0 2 0 2 0 0 4 Medium

SARS Wilder-Smith, 2003 (5) [23] - - 1 0 - - 0 2 0 2 0 0 4 Medium

SARS Wilder-Smith, 2003 (6) [23] - - 1 0 - - 0 2 0 2 2 0 6 Medium

SARS Wilder-Smith, 2003 (7) [23] - - 1 0 - - 0 2 0 2 0 0 4 Medium

SARS-CoV-2 Bae, 2020 (1) [102] 287 287 6 1 0 299 1 2 2 2 2 -1 8 High

SARS-CoV-2 Bae, 2020 (2) 202 202 3 1 - 205 1 2 2 2 2 -1 8 High

SARS-CoV-2 Bernard Stoecklin, 2020 

(1)[103]

13 - 1 0 - 234 1 2 0 1 0 0 4 Medium

SARS-CoV-2 Blomquist, 2021 (1) [104] 425 79 55 5 4 2368 1 2 0 2 2 0 7 High

SARS-CoV-2 Bohmer, 2020 (1) [105] - - 1 0 - - 1 2 0 0 0 -1 2 Low

SARS-CoV-2 Bohmer, 2020 (2) - - 1 0 - - 1 2 2 2 2 0 9 High

SARS-CoV-2 Burke, 2020 (1) [101] 13 13 1 0 - - 1 2 0 2 2 0 7 High
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SARS-CoV-2 Chen 2020 (1)[106] 330 330 11 1 1 342 1 2 2 2 1 0 8 High

SARS-CoV-2 Choi, 2020 (2)[107] 294 0 2 2 - 294 1 2 2 0 2 0 7 High

SARS-CoV-2 Draper, 2020 (1)[108] 389 326 14 0 - - 1 2 2 1 2 0 8 High

SARS-CoV-2 Eichler, 2021 (1)[100] 148 148 1 2 2 149 1 2 0 2 2 0 7 High

SARS-CoV-2 Eichler, 2021 (2) - - 2 1 1 94 1 2 2 2 2 0 9 High

SARS-CoV-2 Eldin, 2020 (1) [116] - - 1 1 - - 1 2 0 2 0 0 5 Medium

SARS-CoV-2 Eldin, 2020 (2) - - 1 0 - - 1 2 0 2 2 0 7 High

SARS-CoV-2 Hoehl, 2020 (1) [109] 95 95 7 2 2 102 1 2 2 1 0 0 6 Medium

SARS-CoV-2 Khanh, 2020 (1) [110] 216 184 1 15 11 217 1 2 2 2 2 0 9 High

SARS-CoV-2 Murphy, 2020 (1) [111] 60 48 1 13 - 61 1 2 2 2 2 0 9 High

SARS-CoV-2 Nir-Paz, 2020 (1) [117] 9 9 2 0 - 11 1 1 0 0 0 0 2 Low

SARS-CoV-2 Nye, 2021 (1) [118] - - 1 3 3 - 1 2 0 0 2 0 5 Medium

SARS-CoV-2 Nye, 2021 (2) [118] - - 2 2 2 - 1 2 0 0 2 0 5 Medium

SARS-CoV-2 Nye, 2021 (3) [118] - - 3 1 1 - 1 2 0 0 2 0 5 Medium

SARS-CoV-2 Nye, 2021 (4) [118] - - 6 1 0 - 1 2 0 0 2 0 5 Medium

SARS-CoV-2 Nye, 2021 (5) [118] - - 40 3 - - 1 2 0 0 2 0 5 Medium

SARS-CoV-2 Nye, 2021 (6) [118] - - 5 3 3 - 1 2 0 0 2 0 5 Medium

SARS-CoV-2 Pavli, 2020 (1) [112] - 981 21 5 4 2334 0 0 0 0 0 0 0 Low

SARS-CoV-2 Qian, 2020 (1) [113] - - 1 10 - - 1 0 0 0 0 0 1 Low

SARS-CoV-2 Schwartz, 2020 (1) [114] 25 25 1 0 - 350 1 2 0 0 0 0 3 Low

SARS-CoV-2 Speake, 2020 (1) [115] 241 - 11 11 8 241 1 2 1 2 2 0 8 High

SARS-CoV-2 Swadi, 2020 (1) [1] 84 84 2 4 4 86 1 2 0 0 0 0 3 Low

TB Abubakar, 2008 (1) [39] 28 3 1 0 - - 0 2 0 0 2 -1 3 Low

TB Abubakar, 2008 (2) [39] 28 3 1 0 - - 0 2 0 0 0 -1 1 Low

TB Abubakar, 2008 (3) [39] 22 7 1 0 - - 0 2 0 0 0 -1 1 Low

TB Abubakar, 2008 (4) [39] 32 4 1 0 - - 1 2 0 0 0 -1 2 Low

TB Abubakar, 2008 (5) [39] - 4 1 0 - - 1 2 0 0 0 -1 2 Low
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TB Abubakar, 2008 (6) [39] - 2 1 0 - - 1 2 0 0 0 -1 2 Low

TB Abubakar, 2008 (7) [39] - - 1 0 - - 1 2 0 0 0 -1 2 Low

TB Abubakar, 2008 (8) [39] 41 8 1 0 - - 1 2 0 0 0 -1 2 Low

TB Abubakar, 2008 (9) [39] 43 15 1 0 - - 1 2 0 0 0 -1 2 Low

TB Abubakar, 2008 (10) [39] 47 7 1 0 - - 1 2 0 0 0 -1 2 Low

TB Abubakar, 2008 (11) [39] - - 1 0 - - 1 2 0 0 0 -1 2 Low

TB an der Heiden, 2017 (1) [40] 162 135 1 1 0 163 1 2 0 2 2 0 7 High

TB Beller, 1996 (1) [37] 12 12 1 0 - 13 1 2 2 2 2 0 9 High

TB CDC, 1995 (1) [36] 274 266 1 6 - - 1 2 0 0 2 0 5 Medium

TB CDC, 1995 (2) [36] 343 79 1 0 - 344 1 2 2 0 0 0 5 Medium

TB CDC, 1995 (3) [36] 92 22 1 0 - 93 1 2 2 0 0 0 5 Medium

TB CDC, 1995 (4) [36] 219 142 1 0 - 220 1 2 2 0 1 0 6 Medium

TB CDC, 1995 (5) [36] 661 87 1 0 - 662 1 2 2 0 0 0 5 Medium

TB CDC, 1995 (6) [36] 925 802 1 4 - 926 1 2 2 0 2 0 7 High

TB CDC, 2012 (1) [38] 15 2 1 0 - - 1 2 0 0 0 0 3 Low

TB CDC, 2012 (2) [38] - 15650 390 0 - - 1 2 0 0 0 0 3 Low

TB Chemardin, 2007 (1) [41] 11 7 1 0 - - 1 0 2 0 1 -1 3 Low

TB Driver, 1994 (1) [42] 339 334 1 9 - - 1 2 0 2 2 0 7 High

TB Flanagan, 2016 (1) [43] 20 20 1 0 - - 1 2 0 1 2 0 6 Medium

TB Flanagan, 2016 (2) [43] 24 22 1 0 - - 1 2 0 1 2 0 6 Medium

TB Flanagan, 2016 (3) [43] 15 6 1 0 - - 1 2 0 1 0 0 4 Medium

TB Flanagan, 2016 (4) [43] 39 39 1 0 - - 1 2 0 2 2 0 7 High

TB Flanagan, 2016 (5) [43] 27 18 1 0 - - 1 2 0 1 1 0 5 Medium

TB Flanagan, 2016 (6) [43] 10 7 1 0 - - 1 2 0 2 1 0 6 Medium

TB Flanagan, 2016 (7) [43] 27 16 1 0 - - 1 2 0 1 1 0 5 Medium

TB Flanagan, 2016 (8) [43] 26 26 1 0 - - 1 2 0 2 2 0 7 High

TB Flanagan, 2016 (9) [43] 44 44 1 0 - - 1 2 0 0 2 0 5 Medium
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TB Kenyon, 1996 (1) [44] - 298 1 0 - - 1 2 2 2 0 -1 6 Medium

TB Kenyon, 1996 (2) [44] - 104 1 0 - - 1 2 2 0 1 0 6 Medium

TB Kenyon, 1996 (3) [44] - 109 1 0 - - 1 2 2 0 1 0 6 Medium

TB Kenyon, 1996 (4) [44] - 249 1 6 4 - 1 2 2 0 1 0 6 Medium

TB Kornylo-Duong, 2010 (1) [45] 35 22 1 0 - - 1 2 0 0 1 0 4 Medium

TB Kornylo-Duong, 2010 (2) [44] 42 29 1 0 - - 1 2 0 0 1 0 4 Medium

TB Kornylo-Duong, 2010 (3) [44] 25 11 1 0 - - 1 2 0 0 0 0 3 Low

TB Kornylo-Duong, 2010 (4) [44] 29 17 1 0 - - 1 2 0 0 1 0 4 Medium

TB Marienau, 2010  (1) [46] 4450 861 131 0 - - 1 2 0 0 0 0 3 Low

TB Mcfarland, 1993 (1) [47] 343 136 1 0 - 344 1 1 2 2 0 0 6 Medium

TB Miller, 1996 (1) [48] 219 120 1 2 - - 1 2 2 0 1 0 6 Medium

TB Moore, 1996 (1) [49] 161 120 1 0 - - 0 0 0 0 0 -1 -1 Low

TB Parmet, 1999 (1) [54] 48 48 1 0 - - 1 2 0 0 2 0 5 Medium

TB Scholten, 2008 (1) [50] - 2472 98 0 - - 1 2 0 0 0 0 3 Low

TB Thibealut, 2012 (1) [51] 56 32 1 0 - - 1 2 0 1 1 0 5 Medium

TB Vassiloyanakopoulos, 1999 

(1)[52]

147 24 1 0 - 148 1 2 2 2 0 0 7 High

TB Wang, 1998 (1) [120] 308 277 1 3 0 309 1 2 2 2 2 0 9 High

TB Whitlock, 2001 (1) [53] - 67 1 0 - - 1 2 0 0 2 0 5 Medium

TB Whitlock, 2001 (2) [53] - 171 1 0 - - 1 2 2 0 2 0 7 High
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Appendix 4 – Forest plots of meta-analysis, by pathogen
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   0.00302  (  0.00000,  0.01293)      4.4

   0.00341  (  0.00000,  0.01461)      3.9
   0.00495  (  0.00000,  0.02115)      2.7

   0.00612  (  0.00000,  0.01835)    100.0

   0.00685  (  0.00010,  0.02053)      3.9

   0.01087  (  0.00000,  0.04611)      1.2
   0.01351  (  0.00021,  0.04031)      2.0

   0.02105  (  0.00034,  0.06243)      1.3

   0.03406  (  0.01666,  0.05700)      4.3
   0.04762  (  0.01041,  0.10569)      1.1
   0.04783  (  0.02350,  0.07970)      3.0

   0.06944  (  0.03892,  0.10761)      2.9
   0.21667  (  0.12051,  0.33083)      0.8

Figure 4: Forest plot showing weighted pooled attack rates for measles

Figure 5: Forest plot showing weighted pooled attack rates for SARS-CoV

Figure 6: Forest plot showing weighted pooled attack rates for tuberculosis
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