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Abstract

In 2019 there were 490,000 children under five livingwithHIV.Understanding the dynamics ofHIV suppression1

and rebound in this age group is crucial to optimizing treatment strategies and increasing the likelihoodof infants2

achieving and sustaining viral suppression. Here we studied data from a cohort of 122 perinatally-infected3

infantswho initiated antiretroviral treatment (ART) early after birth andwere followed for up to four years. These4

data included longitudinal measurements of viral load (VL) and CD4 T cell numbers, together with information5

regarding treatment adherence. We previously showed that the dynamics of HIV decline in 53 of these infants6

who suppressed VLwithin one year were similar to those in adults. However, in extending our analysis to all 1227

infants, we find that a deterministic model of HIV infection in adults cannot explain the full diversity in infant8

trajectories. We therefore adapt this model to include imperfect ART adherence and natural CD4 T cell decline9

and reconstitution processes in infants. We find that individual variation in both processes must be included10

to obtain the best fits. We also find that, perhaps paradoxically, infants with faster rates of CD4 reconstitution11

on ART were more likely to experience resurgences in VL. Overall, our findings highlight the importance of12

combining mathematical modeling with clinical data to disentangle the role of natural immune processes and13

viral dynamics during HIV infection.14
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Author Summary16

For infants infected with HIV at or near birth, early and continued treatment with antiretroviral therapy (ART)17

can lead to sustained suppression of virus and a healthy immune system. However many treated infants expe-18

rience viral rebound and associated depletion of CD4 T cells. Mathematical models can successfully capture19

the dynamics of HIV infection in treated adults, but many of the assumptions encoded in these models do not20

apply early in life. Here we study data from a cohort of HIV-positive infants exhibiting diverse trajectories in21

response to ART. We show that wide-ranging outcomes can be explained by a modified, but still remarkably22

simple, model that includes both the natural dynamics of their developing immune systems and variation in23

treatment adherence. Strikingly, we show that infants with strong rates of recovery of CD4 T cells while on ART24

may be most at risk of virus resurgence.25

Introduction26

In 2019 there were 490,000 children under five living with HIV, and 150,000 newly diagnosed cases [1]. Al-27

though infants receiving antiretroviral treatment (ART) can suppress viral load (VL), eventually the cessation28

of treatment leads to HIV rebound, due to reactivation of latently-infected cells. Nevertheless, early initiation of29

ART can lead to extended periods of suppression in the absence of treatment – for example, over 22 months in30

the case of the ‘Mississippi Child’ and 8.75 years in a South African participant of the Children with HIV Early31

antiRetroviral therapy (CHER) trial [2, 3]. Therefore, understanding the dynamics of HIV suppression and re-32

bound following ART initiation in young infants is crucial for optimizing treatment strategies and increasing33

the likelihood of achieving and sustaining viral suppression.34

We previously showed that a simple biphasic model of VL decay captures the early dynamics of HIV decline in35

perinatally-infected infants on ART and that these dynamics are similar to those in adults [4]. However, mod-36

els applied to dynamics of infection in adults over longer timescales typically encode assumptions that do not37

extend to infants [5–12]. First, CD4 T cell dynamics in adults are typically described as a balance between a38

constant total rate of influx and a constant per capita rate of loss, leading to steady trajectories in the absence of39

infection. In contrast, HIV-uninfected infants experience a natural, exponential decline in CD4 T cell numbers40

per unit volume of blood as the immune system matures [13]. Second, perinatally-infected infants undergo a41

transient period of CD4 T cell reconstitution upon ART initiation, during which numbers quickly recover to42

those of HIV-uninfected infants [14]. This short-lived process cannot be captured by the constant CD4 recruit-43

ment term exploited in many models of adult infection. Third, the standard assumption that ART is completely44

effective in blocking new infection of cells may not hold true for young infants, due to challenges in treatment45

adherence. Thus, canonical models of HIV suppression and rebound in adults must be modified for infants to46

include potential reductions in ART efficacy, and more complex dynamics of CD4 T cell numbers.47

Here we model the dynamics of HIV infection in a cohort of perinatally-infected infants from Johannesburg,48

South Africa who initiated ART early in life. We extend a simple deterministic model of HIV suppression and49

rebound in adults to incorporate incomplete treatment adherence and dynamics of natural CD4 T cell decline50

and reconstitution. By fitting this model to longitudinal viral RNA and CD4 T cell data, we estimate rates of51

reactivation and reconstitution. We also show that individual variation in CD4 reconstitution rates are an im-52
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portant factor driving variation in HIV suppression and resurgence characteristics across infants, in addition to53

ART adherence. Overall, our results demonstrate the complex interplay between natural immune processes and54

HIV dynamics, and highlight the importance of mathematical modeling in disentangling these factors.55

Methods56

Data57

The LEOPARD study has been described previously [4, 15]. Briefly, 122 perinatally-infected infants were en-58

rolled at the RahimaMoosaMother and Child Hospital in Johannesburg, South Africa, between 2014 and 2017.59

The majority began ART within two weeks of birth (median age: 2.5 days; interquartile range (IQR): 1–8), and60

were followed for up to four years. VL (HIV RNA copies ml-1) and CD4 T cell concentrations (cells µl-1) in61

the blood were sampled over time, and various clinical covariates were also recorded, including the infant’s62

pre-treatment CD4 percentage, the mother’s VL and CD4 count after delivery, and the mother’s prenatal ART63

history (full list in Table S1).64

With these data, we previously identified a subset of 53 infants who successfully suppressed VL within one65

year [4, 16], with suppression defined as having at least one VLmeasurement below the 20 copies ml-1 detection66

threshold of the RNA assay. Here, we are interested in the interplay between natural CD4 T cell dynamics and67

infection processes, and whether and how this interplay determines whether an infant achieves suppression68

and/or experiences VL rebound. We have therefore broadened our analysis to all 122 infants.69

In addition to the data described previously, we include information relating toART adherence that was obtained70

at each study visit (details in SI). For each drug in each infant’s ART regimen – with the recommended, andmost71

common, being zidovudine (AZT), lamivudine (3TC), and (i) nevirapine (NVP) in the first four weeks of treat-72

ment, then (ii) ritonavir-boosted lopinavir (LPV/r) after four weeks – we estimated a percentage adherence by73

comparing the weight of medicine returned to the expected amount returned assuming perfect adherence. Less74

than 100% adherence can result from missed doses or ‘under-dosing’ (giving too little medicine at each dose),75

whereas greater than 100% adherence can occur through over-dosing or problems with drug tolerance (infants76

may spit up bad-tasting medicine, therefore requiring repeat dosing). For many visits, adherence could not be77

calculated because leftover medicine was not returned. The adherence estimates are therefore influenced by78

many unobserved factors and, given uncertainty in how the quantitative estimates map to actual adherence, we79

instead defined a categorical variable that labeled adherence estimates greater than 90% as ‘good’, and estimates80

less than 90% as ‘poor’. Using 85% and 95% as alternative thresholds for good adherence did not alter our find-81

ings. With this course-grained approach, some missing values could be manually labelled based on physician82

commentary from accompanying questionnaires (for example, if substantial gaps in dosing were noted, adher-83

ence was labeled as poor). We then summarized the average adherence of each infant as the most frequently84

reported category (good or poor) across their time series.85

Ethics statement86

All protocols for the LEOPARD study were approved by the Institutional Review Boards of the University of the87

Witwatersrand and Columbia University. Written informed consent was obtained from mothers for their own88
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and their infants’ participation.89

Model90

We describe HIV dynamics in an infant on ART using a deterministic ordinary differential equation (ODE)91

model (Fig 1A) [7, 12]. We assume that CD4 target cells, T (t) (measured as the concentration of cells per µl92

of blood, but from here on referred to as ‘cells’ or ‘counts’ for brevity), undergo background growth and loss93

according to a function θ(t, T ), and are infected by free virus, V (t), at per capita transmission rate β (Table 1).94

During ART this transmission is blocked with efficacy ϵ1, where ϵ1 < 1 reflects incomplete adherence of reverse95

transcriptase inhibitor drugs that block infection of new cells (for example, NVP and AZT). A proportion (1 - ρ)96

of the newly infected target cells seed the latent reservoir; the remaining fraction, ρ, either become productively97

infected or die through abortive infection [17]. Cells from this heterogeneous infected population, I(t), are lost98

at an average rate d, and produce virus at an average rate (1 − ϵ2)p, where p subsumes the fraction of cells that99

are productively infected and ϵ2 < 1 reflects any failure of protease inhibitors (for example, LPV/r) to block the100

production of infectious virus. The infected cell population is also boosted by reactivation of the latent reservoir,101

at rate a. We do not explicitly model the number of latently infected cells due to uncertainties in the rates of102

proliferation and loss in this population, and a lack of available data to estimate these parameters. Finally, free103

virus is lost at rate c. This system can be represented by the following equations104

dT

dt
= θ(t, T ) − (1 − ϵ1)βV T

dI

dt
= ρ(1 − ϵ1)βV T − dI + a

dV

dt
= (1 − ϵ2)pI − cV.

The reproduction number for this model at ART initiation is105

R0 = ρ(1 − ϵ1)(1 − ϵ2)βpT0

cd
,

whereT0 is the initial CD4 count (assuming contribution from the latent reservoir is negligible at this time).106

In the simplest case we assume all rate parameters are constant over time. However, we also investigate an107

extension of this model that incorporates a delay in reactivation of the latent reservoir,108

a =

0 if t ≤ TA

ā if t > TA,

where TA is the time to reactivation in days. Assuming the rate of virus turnover is faster than that of CD4 T109

cells [18], we reduce the model to the following system110
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Figure 1: Model framework and analysis schematic. (A) Framework for the infectionmodel with rate constants.
CD4 target cells (T) are infected by free virus (V) and either become productively infected cells (I) or latently
infected cells. Productively infected cells produce free virus whereas latently infected cells do not; but latently
infected cells can become reactivated at a later point to join the productively infected cell population. CD4 target
cells also undergo reconstitution and natural decline processes according to θ(t, T ). Further details are given in
the text. (B) Schematic illustrating the definition of viral resurgence (top) compared to no resurgence (bottom).
The timing of resurgence is defined as the time at which VL first starts increasing (vertical red line), and the size
of resurgence is the total integrated VL during the upslope period (blue shaded region). The dashed horizontal
line represents the assay detection threshold.

dT

dt
= θ(t, T ) − β0V T

dV

dt
= ρc̄β0V T − dV + ac̄,

where β0 = (1 − ϵ1)β and c̄ = (1 − ϵ2)p/c (derivation in the SI). The compound parameter c̄ represents the111

contribution of each infected cell to the total viral load, through its rate of production of virions and the average112

time they persist in circulation. Both β0 and c̄ incorporate ART efficacy (through ϵ1 and ϵ2), and thus infant113

ART adherence.114

Finally, we extend the model for young infants through the term governing background CD4 T cell growth and115

loss, θ(t, T ). Inmodels of infection dynamics in adults, θ(t, T ) typically takes the formλ−dT T , whereλ and dT116

are constant rates representing cell influx and natural decay processes, respectively. These forms lead to steady117

trajectories in the absence of infection. For infants, we propose an alternative θ(t, T ) that instead accounts for118

(i) the exponentially declining concentration of CD4 T cells that is observed as HIV-uninfected infants age [13],119

and (ii) the transient recovery in CD4 counts experienced by HIV-infected infants during the early stages of120

ART [14]. First, the natural decline in CD4 T cells can be captured by an exponential decay function121
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T = c0 + b0(1 − eb1t),

where c0, b0 and b1 are constant parameters that have been independently estimated in a cohort of 80 uninfected122

children in Germany, including 39 aged between 2 months and 4 years [13]. This function also captured CD4123

T cell dynamics in 381 South African children, of whom 300 were aged between 2 weeks and 5 years [19].124

Second, the additional reconstitution of theCD4T cell pool inHIV-infected infants can bemodeled as a transient125

increase in cell counts during the early stages of ART, i.e.126

dT

dt
=

r if t ≤ TR

0 if t > TR,

where r is the constant rate of reconstitution and TR is the time to reach healthy levels [14]. Combining these127

processes of reconstitution and the natural decline of CD4 T cell counts in infants gives θ(t, T ) = −b1b0eb1t + r̄,128

and129

dT

dt
= −b1b0eb1t + r̄ − β0V T (1)

dV

dt
= ρc̄β0V T − dV + ac̄, (2)

where130

r̄ =

r if t ≤ TR

0 if t > TR.

Model fitting and comparisons131

We fit equations 1 and 2 to the VL and CD4 T cell data from all 122 infants using a nonlinear mixed effects132

approach. All VL observations below the detection threshold were treated as censored values, and we assumed133

both V (t) and T (t) were lognormally distributed [20, 21]. Given the relative infrequency of CD4 T cell mea-134

surements, we fixed four parameters across all individuals (Table 1): three that governed the reconstitution and135

natural dynamics of target cells (TR, b0 and b1), and the proportion of newly infected cells that become pro-136

ductively infected (ρ). All other parameters were estimated and allowed to have both fixed and random effects.137

In subsequent analyses we estimated fixed and random effects for TR. We also examined the importance of138

individual variation in adherence and CD4 T cell recovery by comparing the best fit model to three alternative139

models in which β0, c̄ or r were fixed across all infants.140
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Following exploratory fits, each estimated parameter was assumed to follow a lognormal distribution, with the141

exception of a which followed a logit-normal distribution with pre-specified upper bound, and r and TR which142

followed normal distributions. We verified that the random effects for all estimated parameters were normally143

distributed, using the Shapiro-Wilk test. Guided by the exploratory fits, we allowed β0 and d to be correlated,144

and assumed all other parameters were independent. We confirmed the identifiability of all parameters [22], and145

conducted additional sensitivity analyses by varying each chosen parameter in turn and re-simulating themodel,146

while keeping all other parameters fixed. We used these simulations to assess the sensitivity of model predic-147

tions to our choice of fixed parameters. Model fitting and parameter estimation were implemented in Monolix148

2020R1 [21]. Downstream analyses and plotting were conducted in R version 4.03 [23], with the deSolve,149

cowplot, patchwork and tidyverse packages [24–27]. All details needed to reproduce our analyses are150

given in the SI.151

Table 1: Model parameters and population-level estimates.
Parameter Description Units Value, Mean (SE),

if fixed if estimated*
β0 = (1 − ϵ1)β Per-cell effective transmission rate (copies ml−1)−1 day−1 5 (1) ×10−8

ρ Proportion of cell infections that are productive – 0.9999 [5, 28]
c̄ = (1 − ϵ2)p/c Ratio of viral production to loss copies ml−1 cell−1 220 (76)

d Rate of infected cell loss day−1 0.05 (0.006)
a Total rate of latent reservoir reactivation cells day−1 0.001 (0.001)
b0 Extent of natural CD4 T cell decline cells -2354 [13]

-1/b1 Timescale of natural CD4 T cell decline days 1003 [13]
r Rate of CD4 T cell reconstitution cells day−1 8.0 (0.4)

TR Age at reconstitution plateau days 170–300† [14]
T0 Initial number of CD4 T cells cells 1612 (80)
V0 Initial viral load copies ml−1 5077 (1259)

*Estimates taken from the model with lowest AIC.
†A range of values were explored around previous estimates [14].
SE = standard error (random effect) around the population mean (fixed effect); cells = cells µl−1.

We compared the statistical support for different models using the Akaike Information Criterion (AIC). For152

model i, AICi = 2k − 2 ln L, where k is the number of estimated parameters, ln L is the maximum log-153

likelihood, and lower AIC values indicate stronger statistical support. We assessed the relative support formodel154

i using∆AICi =AICi - AICmin, whereAICmin is theminimumAIC value across allmodels. Differences greater155

than five indicate substantially greater support for the model with AICi = AICmin. For the favored model, we156

used the individual-specific parameter estimates to predict VL and CD4 T cell trajectories for each child. These157

trajectories extended either to the end of our study period or two years after their last observation, whichever158

was earlier. We then compared how viral infection and the natural decline in CD4 T cells mediated the overall159

VL and CD4 T cell dynamics. We calculated the relative contributions of new viral infection and natural decline160

to decreases in CD4 T cell numbers as161

β0TV

β0TV + b1b0eb1t
and

b1b0eb1t

β0TV + b1b0eb1t
, (3)

respectively. Similarly, the relative contributions of new viral infection and latent reservoir reactivation to in-162
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creases in the number of productively infected cells were163

ρβ0TV

ρβ0TV + a
and

a

ρβ0TV + a
, (4)

respectively.164

Statistical analyses165

We tested for statistical associations between model parameters, clinical covariates (Table S1), and the risk of166

VL resurgence – defined as any predicted increase in VL following initiation of ART (Fig 1B). We chose VL167

resurgence as our indicator of imperfect viral control rather than VL rebound (any predicted increase in VL168

following initial suppression of HIV) due to the small number of infants experiencing the latter (5/122 infants169

experienced rebound compared to 52/122 experiencing resurgence). We defined the timing of VL resurgence as170

the first point at which themodel predicted an increase inVL, and the size of resurgence as the total integratedVL171

during the upslope period (Fig 1B).We then tested for associations using Spearman correlations between pairs of172

quantitative variables, the Kruskal Wallis test between quantitative and categorical variables, and Chi-squared173

tests between pairs of categorical variables. We adjusted for multiple testing using the Benjamini-Hochberg174

correction.175
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Results176

The model for adult infection, with θ(t, T ) = λ − dT T , was a poor fit to the infant data, particularly the177

CD4 T cell counts (Fig S1, Table 2). We therefore used the model adapted for infant infection, with θ(t, T ) =178

−b1b0eb1t + r̄, in all further analyses. First, we verified that the infant model with fixed time to reconstitution179

plateau, TR, and constant rate of latent reactivation, a, was structurally identifiable (see Table 1 and SI) [22]. We180

initially fixed TR = 225 days across all infants, following previous modeling of CD4 reconstitution in another181

cohort ofHIV-infected infants who initiatedART 82 days after birth, on average [14]. We refitted themodel with182

different fixed values and verified that the best fits were obtained when TR = 225 days (∆AICi = 8.3 relative183

to the next best model with TR = 223 days; Table S2). Including random effects for TR improved model fits,184

although also estimating the fixed effect (i.e. estimating the population average of TR) did not (Table 2). This is185

likely due to the increased complexity introduced by estimating an additional parameter. Similarly, including a186

delay in reactivation of the latent reservoir did not improve model fits. We therefore focus on the model with a187

constant rate of reactivation from the latent reservoir and random effects for TR around a predefined population188

mean of 225 days. With this model, VL predictions were marginally sensitive to all fixed parameters (TR, b0,189

b1 and ρ; Fig S2), whereas CD4 T cell dynamics were sensitive to those governing healthy T cell reconstitution190

and decline (TR, b0 and b1) but robust to changes in the proportion of new infections that become productively191

infected cells (ρ; Fig S3).192

Strikingly, our relatively simple deterministic model captured the wide variation in infant VL trajectories, in-193

cludingmonotonic decreases to suppression, eventual suppression following transient increases in VL, and brief194

periods of suppression with a subsequent rebound in VL (Fig 2). Later, or multiple, rebound occurrences were195

generally not so well captured. These behaviors may be due to repeated fluctuations in treatment adherence196

or stochastic processes driving delayed reactivation of the latent reservoir, neither of which are included in the197

model. Initially, new infections were the major contributor to growth of the productively infected cell pop-198

ulation (Eqn 4; Fig S4). However, in almost all infants the importance of new infection events was eventually199

superseded by reactivation from the latent reservoir, although this displacement was delayed by viral resurgence200

events and prolonged CD4 T cell recovery (Fig S5).201

Table 2: Model comparisons. AIC values (∆AIC) are quoted relative to the minimum AIC value across all
models. Themodel with∆AIC = 0 is the model with lowest AIC and thus has most statistical support. See Table
1 for parameter definitions.

Model* ∆AIC
Constant a; fixed TR = 225 days with random effect 0.0
Constant a; fixed TR = 225 days without random effect 7.1
Constant a; estimated TR 27.1
Time-varying a, fixed TR = 225 days without random effect 31.5

θ(t, T ) = λ − dT T 365.4

*Unless stated otherwise, θ(t, T ) = −b1b0eb1t + r̄.

Themajority of infants experienced a transient increase in CD4 T cell counts followed by a steady decline; these202

patterns were well captured by the model (Fig 3). The decline in CD4 T cells was almost always driven by203
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Figure 2: Model fits for RNA observations Each panel represents a different infant; points represent the data;
and solid lines are the model fits. The dashed horizontal line is the detection threshold of the RNA assay, and
red crosses are censored observations below this threshold. Panels shaded in red are infants who experienced
viral resurgence (i.e. at least one period of increasing VL).
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natural processes, although the contribution of new infections increased during periods ofVL resurgence (Eqn 3;204

Fig S6).205

Thefixed effects for all estimated parameters, and the standard error of the associated randomeffects, are given in206

Table 1. The population-level average lifespan of productively infected cells (1/d) was 19 days (95% percentile207

across all infants = 5–52 days), and R0 at ART initiation was 0.35 (0.18–1.25), reflecting an initial decrease208

in VL across most infants. The rate of CD4 T cell reconstitution, r, was positively correlated with the initial209

number of CD4 T cells, T0, and the duration of reconstitution, TR (Fig S7). These associations are unlikely to be210

driven by poor parameter identifiability, whichwould instead cause negative correlations through compensatory211

mechanisms. Notably, we found that infants with higher reconstitution rates, r, and VL production to decay212

ratios, c̄, were more likely to experience increases in VL after ART initiation (p < 1×10−4; Fig 4A–B), although213

the effect was small in the former case (difference in means = 1.2% of the population average). For those infants214

who did experience increases in VL, larger and earlier increases were associated with higher VL production to215

decay ratios (p < 1×10−4; Fig 4C–D), but not reconstitution rates (p > 0.5). Overall, these results suggest that216

VL production to decay ratios and CD4 reconstitution rates are the most important parameters determining an217

infant’s resurgence characteristics.218

In addition to the deterministic model parameters, we found a longer duration of maternal prenatal ART was219

associated with risk of VL resurgence (p < 0.01; Fig 4E). However, this covariate was also associated with higher220

VLproduction to decay ratios (p < 0.01; Fig S9), suggesting potential colinearity. All other associations between221

VL resurgence characteristics and clinical covariates, including pre-treatment CD4 percentage and age at ART222

initiation (Table S1), were not significant at the p = 0.05 level. Taken together, these findings suggest maternal223

prenatal ART history maymediate the risk of VL resurgence, through, or in addition to, the deterministic model224

parameters discussed above.225

Variation in both adherence and the natural dynamics of CD4 T cells dictate infant trajec-226

tories227

Themost obvious explanation for the wide variety of VL suppression and resurgence trajectories we have iden-228

tified here is variation in ART adherence, whichmay be more pronounced in infants than adults. In our models,229

we assume variation in ART adherence is reflected entirely in the parameters ϵ1 and/or ϵ2, which dictate the230

efficiency of treatment at blocking new infection and virus production by infected cels, respectively. These pa-231

rameters are not individually identifiable with these data, but instead are subsumed in the compound parameter232

c̄ = (1 − ϵ2)p/c and β0 = (1 − ϵ1)β. (In support of this, we found that c̄ was associated with our measures of233

LPV/r, NVP and AZT adherence from the study questionnaires (p<0.05, Fig 4F), although β0 was not.) Thus,234

if adherence is the main driver of variation in VL trajectories, then individual variation in c̄ and β0 should be235

the most crucial components of our model. However, the association we detected between CD4 reconstitution236

rates and the probability of resurgence suggest variation in CD4 T cell dynamics may also be important. To237

explore this issue, we refit the model while removing the random effects for β0, c̄ and r in turn. We found that238

fixing any of these parameters resulted in poorer fits, although the model with fixed r performed worst overall239

(Table 3). This suggests that CD4 T cell dynamics are an important factor driving variation in HIV suppression240

and resurgence characteristics across infants, in addition to ART adherence.241
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Figure 3: Model fits for CD4 T cell observations Each panel represents a different infant, ordered as in Fig 2;
points represent the data; and solid lines are the model fits.
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Figure 4: VL resurgence is associated with CD4 reconstitution, VL production and decay, and ART history
of infant and mother. (A–B) Relationship between the occurrence of VL resurgence (defined as any increase
in VL following initiation of ART) and the CD4 reconstitution rate, r, in cells µl-1 day-1 (A) and ratio of VL
production to decay, c̄ = (1 − ϵ2)p/c, in copies ml-1 cell−1 (B). Each point represents a different infant and
p < 0.0001(∗∗∗∗) in both cases. Five infants whose resurgence was a viral rebound event are highlighted in
orange. (C–D) Relationship between c̄ and the size of VL resurgence in RNA copies ml-1 (C) and timing of VL
resurgence in days (D). Each point represents an infant who experienced resurgence. Correlations are 0.61 and
-0.58, respectively, and p < 1 × 10−4 in both cases. (E) Relationship between the occurrence of VL resurgence
and the timing of maternal prenatal ART initiation (p < 0.01). The size of each box reflects the proportion of
infants in the corresponding category and the numbers show the corresponding sample size. (F) Relationship
between infant ART adherence is associated and VL production to decay ratios. Adherence was classified as
‘good’ if the majority of adherence estimates were 90% or more, and ‘poor’ otherwise. The VL production to
decay ratio is given by c̄ = (1 − ϵ2)p/c, in copies ml-1 cell−1. Each panel represents a different drug and each
point represents a different infant. Significance levels are p < 0.05(∗); p < 0.01(∗∗).

Table 3: Model comparisons of adherence and CD4 recovery parameters. AIC values (∆AIC) are quoted
relative to the minimum AIC value across all models. The model with ∆AIC = 0 is the model with lowest AIC
and thus has most statistical support. See Table 1 for parameter definitions.

Model ∆AIC
Fixed and random effects for β0, c̄ and r* 0.0
Fixed and random effects for c̄ and r; only fixed effects for β0 30.0
Fixed and random effects for β0 and r; only fixed effects for c̄ 31.9
Fixed and random effects for β0 and c̄; only fixed effects for r 79.6

*Corresponds to the best-fit model in Table 2.
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Discussion242

In this studywemodeled the dynamics of HIV suppression and rebound in perinatally-infected infants receiving243

ART. Our framework extends previous models of rebound in adults [7, 12] by incorporating mechanisms of the244

natural decline and infection-induced reconstitution of CD4 T cells in young infants [14]. We found that new245

infection events were initially the major contributor to growth of the productively infected cell population, but246

that reactivation of the latent reservoir became more important once VL levels were low (Fig S4). We also247

identified natural processes as the longterm driver of CD4 T cell declines in blood.248

Although our estimates of the average CD4 T cell reconstitution rate (r = 8 cells µl-1 day-1) is greater than249

those from another cohort of HIV-infected infants (r = 3.8 cells µl-1 day-1), it is within the interquartile ranges.250

Notably, infants from this other cohort initiated ART later, on average, than the infants in our cohort (median251

= 82 days, IQR = 34–121), and all eventually achieved viral suppression [14]. We also found that higher rates252

of reconstitution were associated with a greater probability of experiencing a resurgence in VL. This relation-253

ship was not confounded by the immunological status of infants at the beginning of the study as we found no254

association between the reconstitution rate and pre-treatment CD4 percentage or counts, or between the risk255

of VL resurgence and pre-treatment CD4 percentage or counts. Our finding raises the possibility that rapid re-256

covery of CD4 T cells, despite suggesting an improved clinical state, can also increase the risk of VL resurgence257

in some individuals by repopulating the target cell pool. Although it could also be that VL resurgence triggers258

more rapid CD4 reconstitution through increased anti-viral immune activity or density-dependent responses to259

CD4 depletion [14], the latter seems unlikely in this cohort as we did not detect a negative association between260

the initial number of CD4 T cells (T0) and r. Nevertheless, further investigation is needed to determine the261

directionality of this relationship, and whether the extent of CD4 T cell recovery may be used as a biomarker for262

individuals at increased risk of VL resurgence.263

We also found that higher ratios of VL production to decline, c̄, were associated with a greater risk of resurgence,264

and larger and earlier increases in VL given that resurgence occurred. This is perhaps to be expected given that265

c̄ effectively controls the amount of free virus available to infect new cells at any given time. The association266

between c̄ and LPV/r adherence is also expected given that c̄ is a function of the protease inhibitor efficacy,267

ϵ2. However, the additional associations with AZT and NVP adherence suggest c̄ is also capturing some of268

the variation in reverse transcriptase inhibitor adherence through virus availability and its downstream effects269

on cell infection rates. Finally, although we cannot isolate the contribution of drug resistance to the protease270

inhibitor efficacy, we expect that resistance to LPV/r is rare in this cohort and is thus unlikely to be a major271

driver of individual variation in c̄, or of VL resurgence patterns.272

Our estimate of another key parameter, the rate of latent cell reactivation (a = 10−3 cells µl-1 day-1), is at the273

upper limit of similar estimates from adults obtained during ART interruption (2 × 10−6 – 1 × 10−3 cells274

µl-1 day-1 [7]). Biologically, a higher burden of reactivation (a) may reflect a larger latent reservoir in these275

infants and/or an increased per-cell rate of latent cell reactivation. Dynamically, larger reactivation estimates276

may compensate for significant fluctuations in treatment adherence that are not included in the model. We277

did not find any associations between a and the occurrence or size of VL resurgence. This is not surprising as278

a effectively represents the total contribution of latent cell reactivation averaged over the entire study, and its279

contribution to changes in VL relative to those of de novo infection events is small (Eqn. 2).280
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One unexpected result is that our simple framework can capture large variations in infant VL trajectories, in-281

cluding monotonic decreases to sustained suppression, resurgences in VL, and suppression with subsequent re-282

bound. Although the canonical explanation for erratic VL patterns is imperfect ART adherence, we found that283

incorporating variation in CD4 reconstitution rates was also required to capture the complexity in our infant284

data. In addition, we found that longer durations of maternal prenatal ART were associated with VL resurgence,285

which is consistent with findings from this cohort that exposure to maternal prenatal ART is associated with a286

larger viral reservoir [29], and could not be explained by worse adherence in this group (p > 0.2). However, we287

could not disentangle the effects of this variable from that of VL production to decay ratios, c̄. Netherless, our288

findings demonstrate that a deterministic framework with reactivation and constant ART efficacy can recapit-289

ulate intricate infection dynamics, and that, with the levels of adherence achieved in this study, resurgence may290

in fact be inevitable for infants with certain virological and CD4 T cell parameter combinations.291

There are a number of caveats to our modeling approach. First, our model does not differentiate between short-292

and long-lived productively infected cells, the loss of which underpins the multiphasic decline of VL in adults293

and infants on ART [4, 30, 31], or cells that have undergone abortive infection [17]. Instead, our estimates of294

the mean lifespan of an infected cell is effectively a weighted average of the mean lifespans of these subpopula-295

tions. Although our averaged estimate (19 days) is longer than corresponding values in adults (0.5–6 days) [7],296

it agrees with the median short and long-lived cell lifespans we estimated previously in a subset of these infants297

who achieved suppression (17 days) [4]. Second, we do not explicitly model the dynamics of latently infected298

cells as they are not directly observed. However, the parameter a in our model is effectively a ‘force of reac-299

tivation’, which combines the effects of reservoir size and the per-cell rate of reactivation. Third, we do not300

explicitly model non-productively infected cells. Although observed VL is likely a combination of infectious301

and non-infectious virus, our results will hold if the ratio of these remains approximately constant over time for302

each infant. Substantial and sustained changes in LPV/r efficacy (ϵ2), for example, through prolonged shifts in303

adherence levels and/or increasing drug resistance, may cause non-negligible changes in this ratio. However,304

fluctuations in LPV/r adherence, although frequent, were usually transient (Fig S12), and we expect LPV/r re-305

sistance in this cohort to be rare. Nevertheless, a potentially important extension of our model would be the306

inclusion of non-productively infected cells and/or allowing changes in LPV/r efficacy over time. Lastly, we307

fit the peripheral CD4 T cell data to the number of target cells predicted by the model (T (t)), rather than the308

predicted sum of target cells, productively infected cells and latently infected cells. This approach is reasonable309

as the frequency of infection in CD4 T cells is usually small [32], and the majority of infected cells most likely310

reside in lymphoid tissues where infection-induced CD4 depletion is greatest [33]. We also assume all CD4 T311

cells are equally susceptible to infection, although in reality activated cells may be more susceptible than resting312

cells [34, 35]. However, this heterogeneity is implicitly incorporated within the transmission parameter, β, if313

the proportion of CD4 T cells that are susceptible remains approximately constant over time.314

Finally, we acknowledge that the ART regimens used in the LEOPARD trial may not be optimal. Although315

consideredmost effective at the time of study design and implementation, more potent treatments – for example,316

integrase inhibitors and/or broadly neutralizing antibodies – have since been approved for young infants. It will317

be important to determine whether infants starting these newer treatments are also at risk of the inevitable318

resurgence we have identified here.319

In conclusion, we have extended the classic framework for HIV suppression and rebound to includemore realis-320
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tic dynamics of CD4T cell decline and reconstitution in young infants onART.We estimated rates of reactivation321

and reconstitution, and identified distinct phases in which dynamics were either dominated by new infection of322

CD4 T cells, or by reactivation of the latent reservoir. Moreover, we demonstrated the importance of incorpo-323

rating variation in CD4 reconstitution rates to capture the diversity of infant VL trajectories. Overall, our results324

suggest that VL resurgence in perinatally-infected infants may be inevitable in certain parameter regimes, and325

highlight the utility of mathematical modeling in understanding the dynamics of infant HIV infection.326
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Supplementary Information

Additional information on infant adherence

At each study visit, the infant’s caregiver provided additional information for a questionnaire taken by the attending physician.
Caregivers were asked if any doses had been missed since the previous visit and, if so, how many. They were also asked about
any challenges administering the medication, including drug tolerance issues (e.g. if the infant spit up the medicine and repeat
doses were required).

This information was a valuable supplement to estimates of adherence calculated from the amount of medication returned at
the visit, given that these were oftenmissing (due to leftovermedication spilling or being left at home). If a particular adherence
estimate was missing, we checked the corresponding questionnaire; if the physician noted serious adherence concerns for that
drug, such as a series of missed doses, adherence was labeled as ‘poor’. See Fig S10 for the resulting time series.

Model

Starting with the original set of equations

dT

dt
= θ(t, T ) − (1 − ϵ1)βV T

dI

dt
= ρ(1 − ϵ1)βV T − dI + a

dV

dt
= (1 − ϵ2)pI − cV,
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we assume that viral dynamics occur on a faster timescale than those of CD4 T cells, i.e. dV/dt = 0. This gives I = cV/(1 −
ϵ2)p, and we can rewrite the above equations as

dT

dt
= θ(t, T ) − (1 − ϵ1)βV T

c

(1 − ϵ2)p
dV

dt
= ρ(1 − ϵ1)βV T − d

cV

(1 − ϵ2)p
+ a,

i.e.

dT

dt
= θ(t, T ) − (1 − ϵ1)βV T

dV

dt
= ρ

(1 − ϵ2)p
c

(1 − ϵ1)βV T − dV + a
(1 − ϵ2)p

c
.

Setting β0 = (1 − ϵ1)β and c̄ = (1 − ϵ2)p/c then gives the reduced system,

dT

dt
= θ(t, T ) − β0V T

dV

dt
= ρc̄β0V T − dV + ac̄.

Structural Identifiability

We explore the structural identifiability of the equations using the approach of Castro and de Boer (2020) [1]. First, we define
scaling factors for all parameters we want to estimate, i.e. uβ0 , uc̄, ud, ua and ur̄ . The scaling factors for all fixed parameters
are equal to one. Similarly, since both V and T are observed, we do not need to define any variable scaling factors.

Next, we equate all functionally independent terms in our equations that contain these parameters to their scaled counter-
parts:

ur̄ r̄ = r̄ ⇔ ur̄ = 1

−uβ0β0V T = −β0V T ⇔ uβ0 = 1

ρuc̄c̄uβ0β0V T = ρc̄β0V T ⇔ uc̄ = 1 since uβ0 = 1

−uddV = −dV ⇔ ud = 1

uaauc̄c̄ = ac̄ ⇔ ua = 1 since uc̄ = 1.

Since all scaling factors have solution equal to 1, all estimated parameters are identifiable. Note that we assume r is identifiable
if r̄ is identifiable and TR is fixed.

2
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Nonlinear Mixed Effects Modeling in Monolix

We fit the following system of equations in Monolix,

dT

dt
= −b1b0eb1t + r̄ − β0V T

dV

dt
= ρc̄β0V T − dV + ac̄.

All VL observations below the detection threshold of 20 copies ml−1 are treated as censored values. In line with previous
pharmacokinetic and viral dynamics modeling, we assumed both V (t) and T (t) were lognormally distributed with combined
error models, i.e. for variable Xi(t), the residual error is expressed as the sum of a constant term and a term proportional to
Xi(t) (‘combined1’ in Monolix) [2–4].

We fix b0, b1 and ρ across infants to the values given in Table 1. Initially we fix TR = 190 days across all infants, but subsequently
explore fits when this value is varied, and when it is freely estimated. All other parameters were estimated and assumed to have
both fixed and random effects. Guided by exploratory fits, each estimated parameter was assumed to follow a lognormal
distribution, with the exception of a which followed a logit-normal distribution between 0 and 0.1, and r which followed a
normal distribution, and TR which also followed a normal distribution (when estimated). Initial estimates for all population
parameters are given in Table S3. Initial estimates for the residual error models were kept at their default values. Following
exploratory fits, we allowed for a correlation between β0 and d, but assumed all other parameters were independent.

3
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Supplementary Figures and Tables

Table S1: Summary of the clinical covariates included in our analyses.
Covariate Group N Variable treatment

Sex Male 59 Categorical
Female 63

Preterm Yes 88 Categorical
No 103

Delivery mode Normal vaginal delivery 87 Categorical
Caesarean section 35

Birth weight (g) <2500 29 Continuous
2500+ 93

Age at ART initiation (days) <2 49 Categorical
2–14 56
14+ 17

Pre-treatment CD4 percentage <35 33 Continuous
35+ 61
Not recorded 28

Mother’s viral load (copies ml−1) <1000 32 Continuous
1000+ 90

Mother’s CD4 count (cells µl−1) <350 61 Continuous
350+ 61

Mother’s CD4 percent <25 77 Continuous
25+ 45

Maternal prenatal ART history None 25 Categorical
Initiated 12+ weeks into pregnancy 37
Initiated <12 weeks into pregnancy 41
Initiated before pregnancy 18
Unknown 1

Breastfeeding Some 96 Categorical
None 26

4
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Table S2: Comparingmodels with TR fixed across all infants. The AIC difference for model iwas calculated as AICi−AICmin,
where AICmin is the minimum AIC value across all models. The model with zero difference is the model with lowest AIC and
thus is the most strongly favored.

Fixed value of TR (days) AIC difference
170 38.6
190 34.8
210 25.9
215 23.6
220 10.5
223 8.3
225 0.0
227 24.4
230 13.2
240 30.3
250 22.8
270 30.8
300 43.2

.

Table S3: Initial estimates for the population parameters in Monolix.
Parameter Distribution Fixed effect Standard Deviation

of Random Effects
β0 Lognormal 1×10−6 0.1
c̄ Lognormal 100 1
d Lognormal 0.3 0.1
a Logitnormal (0–0.1) 0.01 0.1
r Normal 9 0.25

TR* Normal 225 2
TA* Normal 365 2
T0 Lognormal 3500 1
V0 Lognormal 10,000 1
*when estimated

5
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Figure S1: Thestandardmodel for adult CD4T cell dynamics does not capture infant data. Each panel represents a different
infant, points represent the data, and solid lines are the model fits. Here θ(t, T ) = λ − dT T , with λ and dT assumed to have
lognormal distributions. Initial estimates for the population mean were 1000 cells µl−1 day−1 and 0.25 day−1, respectively,
and for the standard deviation were 1 and 0.1, respectively. The nonlinear mixed effects fitting procedure was as described in
the main text.
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Figure S2: Sensitivity of VL predictions to model parameters. Each fixed (A) or estimated (B) parameter was varied within
20%of its original value while keeping all other parameters at their original values. Original values for the estimated parameters
were the population-level means from the best-fit model. Note that predictions for ρ do not include 10% and 20% increases as
these are biologically unrealistic (i.e. a fraction > 1).
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Figure S3: Sensitivity of CD4 T cell predictions to model parameters. Each fixed (A) or estimated (B) parameter was varied
within 20% of its original value while keeping all other parameters at their original values. Original values for the estimated
parameters were the population-level means from the best-fit model. Note that predictions for ρ do not include 10% and 20%
increases as these are biologically unrealistic (i.e. a fraction > 1).
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Figure S4: Relative contribution of factors driving an increase in productively infected cells. Each panel represents an
infant, and red shaded regions show their VL scaled by its maximum value.
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Figure S5: VL and CD4 T cell dynamics influence the time at which reactivation contributes most to productively infected
cell growth. Each point represents a different infantwith respect to the time atwhich reactivation became themajor contributor
to productively infected cell growth and the time at which: (A) their VL started increasing (if applicable); (B) their VL finished
increasing (if applicable); and (C) their CD4 T cell recovery plateaued (TR). Correlations are 0.45, 0.71 and 0.29, respectively,
and p < 0.05 in all cases. Note that the correlation in (C) is reduced to a trend (p = 0.05) when the infant with the lowest TR

is removed.
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Figure S6: Relative contribution of factors driving CD4 T cell decline. Each panel represents an infant and shaded regions
show the periods of increasing VL (from start to peak, as shown in Fig 1B).
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Figure S7: Correlations between estimated parameters. The colour scale shows the strength of the correlation; those with
p-values greater than a significance threshold of 0.05 are crossed out. p-values were adjusted using the Benjamini-Hochberg
correction. The strong correlation between β0 and d was included in the nonlinear mixed effects model framework.
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Figure S8: Longer duration of maternal ART is associated with greater VL production to decay ratios. The ratio is given
by c̄ = (1 − ϵ2)p/c, in copies ml−1 cell−1. Each point represents a different infant. Significance levels are p < 0.01(∗∗); p <

0.001(∗∗∗).
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Figure S9: LPV/r adherence estimated from returned medication. Each line represents a different infant.
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Figure S10: Reported adherence trajectories. Adherence estimates greater than 90% were labeled ‘good’; and all others ‘poor’.
Each panel is a different infant.
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