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ABSTRACT 1 

Genome-wide association studies (GWAS) have identified numerous genetic loci associated 2 

with breast and prostate cancer risk, suggesting that germline genetic dysregulation influences 3 

tumorigenesis. However, the biological function underlying many genetic associations is not 4 

well-understood. Previous efforts to annotate loci focused on protein-coding genes (pcGenes) 5 

largely ignore non-coding RNAs (ncRNAs) which account for most transcriptional output in 6 

human cells and can regulate transcription of both pcGenes and other ncRNAs. Though the 7 

biological roles of most ncRNAs are not well-defined, many ncRNAs are involved in cancer 8 

development. Here, we explore one regulatory hypothesis: ncRNAs as trans-acting mediators of 9 

gene expression regulation in non-cancerous and tumor breast and prostate tissue. Using 10 

germline genetics as a causal anchor, we categorize distal (>1 Megabase) expression 11 

quantitative trait loci (eQTLs) of pcGenes significantly mediated by local-eQTLs of ncRNAs 12 

(within 1 Megabase). We find over 300 mediating ncRNAs and show the linked pcGenes are 13 

enriched for immunoregulatory and cellular organization pathways. By integrating eQTL and 14 

cancer GWAS results through colocalization and genetically-regulated expression analyses, we 15 

detect overlapping signals in nine known breast cancer loci and one known prostate cancer 16 

locus, and multiple novel genetic associations. Our results suggest a strong transcriptional 17 

impact of ncRNAs in breast and prostate tissue with implications for cancer etiology. More 18 

broadly, our framework can be systematically applied to functional genomic features to 19 

characterize genetic variants distally regulating transcription through trans-mechanisms. 20 

 21 

SIGNIFICANCE 22 

This study identifies non-coding RNAs that potentially regulate gene expression in trans-23 

pathways and overlap with genetic signals for breast and prostate cancer susceptibility, with 24 

implications for interpretation of cancer genome-wide association studies.  25 

 26 
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INTRODUCTION 27 

Genome-wide association studies (GWAS) of cancer risk have revealed risk-associated alleles 28 

at hundreds of genetic loci, with breast and prostate cancer GWAS yielding the largest number 29 

of associations (1,2). Through integration with transcriptomic and functional genomics datasets, 30 

the proposed target genes for many of these risk loci have been found in protein-coding regions 31 

of the genome (1–4). However, many risk variants fall in non-coding regions of the genome and, 32 

for these variants, identifying the likely biological mechanism is challenging. One proposed 33 

mechanism for GWAS-identified risk variants is trans-acting pathways: a GWAS variant affects 34 

a regulatory feature, like a transcription factor, in proximity, which then affects genes located far 35 

away from the GWAS variant. Particularly, one study identified GWAS risk variants for breast 36 

cancer that confer trans-effects through transcription factors, like ESR1, MYC, and KLF4 (5). 37 

Another potential mechanism by which GWAS variants in non-coding regions affect risk is 38 

mediation of trans-acting effects of genetic variants through non-coding RNAs (ncRNAs). 39 

 40 

Although ncRNAs do not code for proteins, they account for nearly 60% of transcriptional output 41 

in human cells and interact with a complex network of genes, transcripts, and proteins with 42 

widespread effects on cell biology (6,7). Some ncRNAs, like microRNAs (miRNAs), target and 43 

degrade mRNA transcripts of specific genes and link to regulatory networks that include multiple 44 

ncRNAs and protein-coding genes (pcGenes). These complex interactions between ncRNAs 45 

and pcGenes support the hypothesis that ncRNAs have key roles in cellular pathways (6,8,9). 46 

Specific ncRNAs have been shown to leave their transcription site and regulate gene 47 

expression at genomic regions far from their transcription start site (8,9). However, regulatory 48 

impacts of ncRNAs on transcription of pcGenes are generally uncategorized, especially in a 49 

systematic fashion (8). 50 

 51 
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ncRNAs have shown associations with the onset and progression of different cancers, are 52 

enriched in multiple tumor types, and are even therapeutic targets, as they act as regulators of 53 

genes in important tumorigenic or progressive networks (10). For example, the long ncRNA 54 

XIST exerts oncogenic and metastatic effects in multiple cancer types (11). Profiling and deep 55 

sequencing of ncRNAs have shown that perturbing ncRNA biogenesis affects amplification, 56 

deletion, and normal epigenetic and transcriptional regulation (10,12–14); accordingly, ncRNAs 57 

can act as oncogenes or antagonize tumor suppressors. 58 

 59 

However, as most ncRNA mechanisms in cancer tumorigenesis or progression have been 60 

categorized on a case-by-case basis (13,14), mechanistic impacts of ncRNAs have not been 61 

explored systematically. Bioinformatics analyses that leverage high-throughput genomics have 62 

investigated the role of ncRNAs through computational target prediction or differential 63 

expression analyses. Although these computational methods have elucidated potential roles of 64 

ncRNAs in cancer, they have limitations, including computational feasibility and functional 65 

translation of sequence similarity methods (15) and reverse causality for differential expression 66 

analyses (i.e., differential expression more likely reflects consequences of disease) (16). 67 

 68 

One systematic approach to identifying potential trans-mechanisms of regulation is to use 69 

genetic variants as causal anchors. A prevailing thought is that distal expression quantitative 70 

trait loci (eQTLs) of genes, where the genetic variant is far away from the gene (more than 1 71 

Megabase, or Mb), are often themselves local-, or cis-acting, QTLs of a regulatory feature (17–72 

22). We emphasize that the modifiers “local” and “distal” refer merely to distances in the 73 

genome (i.e., within or outside 1 Mb, respectively), whereas cis- and trans-acting refer to the 74 

biological mechanism (i.e., direct or indirect interaction, respectively). Molecular features, like 75 

ncRNAs, that have potential trans-acting regulatory effects can be identified through mediation 76 

analyses, either at variant- or gene-level (18,21,23,24). Not only can these analyses point to 77 
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distal relationships between ncRNAs and pcGenes, but they can point to genetic variants 78 

associated with disease etiology with potential distal effects in the transcriptome. 79 

 80 

Here, we systematically map distal-eQTLs of pcGenes that are potentially mediated by local-81 

eQTLs of ncRNAs in non-cancerous and tumor prostate and breast tissue, using data from the 82 

Genotype Tissue-Expression (GTEx) Project (25) and The Cancer Genome Atlas (TCGA) (26). 83 

We then employ colocalization (27) and genetically-regulated expression analysis (28) to 84 

identify overlaps in eQTLs and GWAS signals for both overall and molecular subtype-specific 85 

breast (2) and overall prostate (1) cancer risk. In total, our work shows the widespread 86 

transcriptomic impact of genetically-mediated portion of ncRNAs and that this impact has key 87 

associations with cancer susceptibility. This approach provides a rigorous framework to not only 88 

categorize functional hypotheses of distal regulatory effects of ncRNAs but also other regulatory 89 

molecular features. 90 

 91 

MATERIALS AND METHODS 92 

A graphical representation of our methods is provided in Supplemental Figure S1. 93 

 94 

Data acquisition and processing 95 

We used pre-processed genotype, transcriptomic, and covariate data for non-cancerous 96 

mammary and prostate tissue from the Genotype-Tissue Expression Project (GTEx) v8 (25) and 97 

breast and prostate tumor tissue from The Cancer Genome Atlas (TCGA) (26). We included 98 

only individuals of European ancestry due to the small sample sizes available for other 99 

demographics (𝑁 =  337 for GTEx breast, 𝑁 =  186 for GTEx prostate, 𝑁 =  437 for TCGA 100 

breast, 𝑁 =  349 for TCGA prostate). For both GTEx and TCGA, we only consider SNPs and 101 

genes on autosomes, restricted to SNPs with minor allele frequency greater than or equal to 102 

1%, and excluded SNPs that deviated from Hardy-Weinberg equilibrium at 𝑃 < 10−6.  103 
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 104 

We used the BioConductor package biomaRt for ENSEMBL gene biotype annotations (29). 105 

Using these annotations, we defined pcGenes as those labeled “protein-coding” and non-coding 106 

RNAs (ncRNAs) as those labeled otherwise; we exclude transcripts labelled as “pseudogenes”. 107 

These annotations included 16,582 pcGenes and 5,650 ncRNAs in GTEx breast, 16,827 108 

pcGenes and 5,862 ncRNAs in GTEx prostate, 21,648 pcGenes and 1,261 ncRNAs in TCGA 109 

breast, and 15,773 pcGenes and 548 ncRNAs in TCGA prostate. We considered all provided 110 

GTEx covariates: 5 genotype-based principal components (PCs), up to 60 probabilistically-111 

estimated expression residuals (PEER) factors, age, sex, and sequencing platform and protocol 112 

(25). For TCGA, we calculated genotype PCs using PLINK v1.93 (30), calculated up to 50 113 

hidden components of expression (HCP) using Rhcpp (31,32), and included the following 114 

covariates: age, estrogen receptor subtype, menopausal status, and disease pathological stage. 115 

For prostate tumors, we include the following covariates: age, sequencing platform, and 116 

protocol. 117 

 118 

We integrated eQTL results with GWAS summary statistics for overall and subtype-specific 119 

breast and overall prostate cancer risk. We obtained European-ancestry specific overall and 120 

subtype-specific GWAS summary statistics for breast cancer risk from the BCAC Consortium 121 

(2). We studied 5 intrinsic breast cancer molecular subtypes, defined by combinations of 122 

estrogen (ER)-, progesterone (PR)-, and human epidermal growth factor receptor (HER2) and 123 

tumor grade (2): Luminal A-like (ER + and/or PR + , HER2-, grade 1 or 2); (2) luminal B-124 

like/HER2-negative (ER + and/or PR + , HER2-, grade 3); (3) luminal B-like/HER2-positive 125 

(ER + and/or PR + , HER2 +); (4) HER2-positive/non-luminal (ER- and PR-, HER2+), and (5) 126 

TNBC (ER-, PR-, HER2-). We obtained European-ancestry specific GWAS summary statistics 127 

for prostate cancer risk from the PRACTICAL Consortium (1).  128 

 129 
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eQTL mapping 130 

We used a multiple linear regression model in MatrixEQTL to detect local- and distal-eQTLs 131 

(33). Here, we define a local-eQTL as a variant within 1 Mb of the gene body and a distal-eQTL 132 

as a variant outside the 1 Mb window. eQTLs outside this 1 Mb window are unlikely to have 133 

direct effects on the promoters or enhancers of the gene and are more likely to have trans-134 

acting mechanisms (17,18). 135 

 136 

To determine a set of covariates that maximizes the number of detected distal-eQTLs for 137 

pcGenes, we iterated on eQTL mapping using SNPs on Chromosome 22. For breast tumor 138 

tissue, we found that the optimized covariate set for local-eQTL mapping included all of the 139 

clinical covariates (age, estrogen receptor subtype, menopause status, and disease 140 

pathological stage), the first 3 PCs, and the first 8 HCPs. For prostate tumor tissue, we included 141 

age, sequencing platform, protocol as covariates and used 5 genotype PCs and 10 HCPs as the 142 

optimized set of covariates (31). For data from GTEx, we used the full set of provided covariates 143 

for non-cancerous breast and prostate tissue local- and distal-eQTL mapping. We then run 144 

genome-wide eQTL mapping with these optimized sets of covariates. 145 

 146 

Mediation analysis for distal-eQTL mapping 147 

We first identify a testing triplet, consisting of (1) a SNP 𝑠, (2) a distal pcGene 𝐺 associated with 148 

SNP 𝑠 with nominal 𝑃 < 10−6, and (3) a set of local ncRNAs 𝑚1, … , 𝑚𝑀, all associated with SNP 149 

𝑠 with nominal 𝑃 < 10−6. As in previous distal-eQTL studies, we use a liberal P-value threshold 150 

to increase the number of testing triplets subjected to rigorous permutation-based mediation 151 

analysis (18,21,23). Next, we fit the following two sets of linear regressions for mediation 152 

analysis (21,23): 153 

𝑌𝐺  =  𝑋𝑠𝛽𝑠 + 𝑀𝛽𝑀 + 𝑋𝐶𝛽𝐶 + 𝜖𝐺 , 𝜖𝐺 ∼ 𝑁(0, 𝜎2𝐼𝑛) 154 
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where 𝑌𝐺 is a vector of expression for gene 𝐺, 𝑋𝑠 is a vector of dosages for SNP 𝑠, 𝛽𝑠 is the 155 

effect size of SNP 𝑠 on gene 𝐺, 𝑀 is the expression matrix of 𝑚 ncRNAs, 𝛽𝑀 is the effects of the 156 

𝑀 ncRNAs on 𝑌𝐺, 𝑋𝐶  is a matrix of covariates, and 𝜖𝐺  is a random error term. The 𝑗th ncRNA is 157 

modeled as 158 

𝑀𝑗  =  𝑋𝑠𝛼𝑀𝑗
+ 𝑋𝐶𝛼𝐶,𝑗 + 𝜖𝑀𝑗

, 1 ≤ 𝑗 ≤ 𝑚, 𝜖𝑀𝑗
∼ 𝑁(0, 𝜎𝑀𝑗

2 𝐼𝑛) 159 

where 𝑀𝑗  is the vector of expression for the 𝑗th ncRNA, 𝛼𝑀𝑗
 is a vector of effects of SNP 𝑠 on 160 

mediator 𝑀𝑗 , 𝑋𝐶  is a matrix of covariates, 𝛼𝐶,𝑗 is a vector of covariate effects on the mediator, 161 

and 𝜖𝑀𝑗
 represents a random error term. 162 

 163 

We define the total mediation effect (TME) as 𝑇𝑀𝐸 = 𝛼𝑀 ⋅ 𝛽𝑀 and the mediation proportion (MP) 164 

as 𝑀𝑃 = min (1,
𝛼𝑀⋅𝛽𝑀

𝛽𝑠+ 𝛼𝑀⋅𝛽𝑀
). We test 𝐻0: 𝑇𝑀𝐸 = 0 vs. 𝐻1: 𝑇𝑀𝐸 ≠ 0 via permutation testing with 165 

10,000 draws. 166 

 167 

Gene-based association testing (GBAT) 168 

We applied GBAT (24) with modifications to identfy ncRNAs with genetically-regulated 169 

expression (GReX) associated with distal pcGenes. First, we removed multi-mapped reads 170 

using previously provided annotations (34). Then, we estimated the heritability of ncRNA 171 

expression using GCTA v1.93 (35), excluding genes with limited evidence of heritability (P > 172 

0.05). Next, using leave-one-out cross-validation, we constructed the ncRNA GReX using SNPs 173 

within 1 Mb using elastic net, LASSO (36) and SuSiE (37), excluding ncRNAs with cross-174 

validation R2 < 0.01. We then employed MatrixEQTL to estimate the association between the 175 

ncRNA GReX and distal pcGene expression, adjusting for the optimized set of covariates from 176 

eQTL mapping (33). Lastly, to identify a set of SNPs that best explains distal ncRNA-pcGene 177 

association, we used SuSiE fine-mapping with default parameters to define a 90% credible set 178 

(37). 179 
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 180 

Colocalization with cancer risk 181 

To identify any potentially overlapping signals between local-eQTLs of ncRNAs, ncRNA-182 

mediated distal-eQTLs of pcGenes, and cancer risk, we employed the Bayesian colocalization 183 

method, coloc (27). coloc estimates the posterior probability that the same SNP explains both 184 

the eQTL and the GWAS signal at a given locus. We used standard parameters with default 185 

priors (p1 = 10-4, p2 = 10-4, and p12 = 10-6) to estimate the colocalization posterior probability. We 186 

considered an eQTL signal to colocalize with a GWAS signal if the posterior probability of 187 

colocalization through one SNP (PP.H4 in Giambartolomei et al) was greater than 0.75 (27). 188 

 189 

Genetically-regulated expression analysis of ncRNAs 190 

We identified any cancer associations for the genetically-regulated expression (GReX) of any 191 

ncRNAs that showed significant mediation of multiple distal-eQTLs of distant pcGenes. First, 192 

using elastic net regression, linear mixed modeling, and SuSiE, we built predictive models of 193 

ncRNAs in both GTEx and TCGA data across breast and prostate tissue and select only models 194 

with 5-fold cross-validation McNemar’s adjusted R2 > 0.01 (28,36–38). We then employed the 195 

weighted burden test and permutation test from the FUSION TWAS framework to detect a trait 196 

association with the GReX of an ncRNA (28). We define transcriptome-wide significance as P < 197 

2.5 x 10-6 and permutation test P < 0.05. 198 

 199 

Data Availability 200 

GTEx v8 data were obtained through dbGAP Study Accession phs000424.v8.p2. TCGA 201 

genotype were obtained through dbGAP Study Accession phs000178.v11.p8 and expression 202 

and covariate data was obtained from the Broad GDAC Firehose repository 203 

(https://gdac.broadinstitute.org). Prostate cancer GWAS summary statistics were obtained from 204 

the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the 205 
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Genome (PRACTICAL) Consortium: http://practical.icr.ac.uk/blog/wp-206 

content/uploads/uploadedfiles/oncoarray/MetaSummaryData/meta_v3_onco_euro_overall_Chr207 

All_1_release.zip. Breast cancer GWAS summary statistics were obtained from the Breast 208 

Cancer Association Consortium (BCAC): 209 

https://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-210 

result/gwas-summary-associations-breast-cancer-risk-2020/. Sample code for this analysis is 211 

available at https://github.com/ColetheStatistician/ncRNAInBreastCancer/. 212 

 213 

RESULTS 214 

In this work, we uncover hidden mechanisms contributing to genetic risk for breast and prostate 215 

cancer mediated by ncRNAs, systematically exploring one regulatory hypothesis: distal 216 

mediation of pcGene expression regulation in non-cancerous and tumor breast and prostate 217 

tissue (Figure 1). Specifically, we identify distal-eQTLs of protein-coding genes (pcGenes) that 218 

are significantly mediated by ncRNAs local to these distal-eQTLs and assess if they overlap 219 

with genetic signal for cancer risk. 220 

 221 

Multiple ncRNAs mediate distal-eQTLs in breast and prostate tissue 222 

Distal-eQTL mapping through mediation analysis 223 

We conducted distal-eQTL mapping through ncRNA mediation in GTEx (25) and TCGA (26). 224 

The number of distal-eQTLs of pcGenes that are significantly mediated by ncRNAs are reported 225 

in Table 1 and Supplemental Table S1-2. Distributions of TME and MP in tumor tissue showed 226 

a larger range than in non-cancerous tissue for both breast and prostate, and median TME and 227 

MP were higher in tumor tissue (Supplemental Figure S2).  228 

 229 

In non-cancerous breast tissue, pcGenes with cross-chromosomal distal-eQTLs with large 230 

ncRNA-mediated effects included PUM1 and PCBP1 (Figure 2A), both of which influence 231 
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tumorigenesis (39–41). In breast tumors, we found MT4 and GPRC6A have large mediated 232 

distal effects. MT4 belongs to the metallothionein family involved in breast cancer 233 

carcinogenesis (42,43), and GPRC6A is a part of the androgen receptor signaling pathway 234 

(44,45). In non-cancerous prostate tissue, we detected large distal mediation effects for genes 235 

such as RAF1, a proto-oncogene (46) and LGR5, a gene associated with prostatic regeneration 236 

and overexpressed in prostate tumors (47). We also detected a number of olfactory receptors 237 

(OR2T1, OR10G8, OR10S1) with large mediated effects in prostate tumor. Olfactory receptors 238 

are associated with prostate cancer progression but generally have low expression in prostate 239 

tumors (48,49). 240 

 241 

Owing mainly to a larger set of nominally-significant distal-eQTLs in tumor tissues and larger 242 

sample sizes in TCGA than GTEx, we found nearly four times as many significantly mediated 243 

distal-eQTLs in tumor tissue compared to non-cancerous tissue. Among distal-eQTLs detected 244 

in tumor samples, we observed that multiple ncRNAs mediated distal-eQTLs with many different 245 

pcGenes (vertical bands in Figure 2A). One such ncRNA in breast tumors is LINC00301, 246 

showing significant mediation of 1,103 distal-eQTLs across 53 unique SNPs and 53 unique 247 

pcGenes. Many of these pcGenes belong to the GAGE protein family, which promotes breast 248 

cancer cell invasion and has shown evidence of distal genetic regulation (50,51). LINC00301 249 

itself has been implicated in facilitating tumor progression and immune suppression, albeit in 250 

lung cancer (52). Another example of such an ncRNA in breast tumors is miR-548f-4, a 251 

commonly mutated microRNA in multiple cancers (53), mediating more than 300 distal-eQTLs 252 

for 16 unique pcGenes, including GUCA2B, upregulated in breast cancer metastases (54), and 253 

CYP2C9, a target of tamoxifen (55). In contrast, only two ncRNAs in non-cancerous breast 254 

tissue showed significant mediation of more than 50 distal pcGenes. One of these genes, 255 

FAM106A, mediated distal-eQTLs of 13 pcGenes, including BTN3A2, a prognostic marker for 256 

breast cancer (56). In both non-cancerous and tumor breast tissue, three pcGenes (PRCC1, 257 
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CYP2C9, and ATG14) showed significant mediation through ncRNAs, though the sets of 258 

pcGene targets across non-cancerous and tumor tissue are distinct. 259 

 260 

In prostate tumors, LINC02903 showed significant mediation with the most distal-eQTLs (177 261 

eQTLs across 8 pcGenes). These pcGenes include FABP9, an upregulated gene in prostate 262 

carcinomas with prognostic value (57), and MTNR1B, a gene harboring nominal risk variants for 263 

prostate cancer (58). Another ncRNA with significant TME for nearly 100 distal-eQTLs across 264 

20 pcGenes was SDHAP2. Many of these pcGenes have been implicated in prostate cancer 265 

and metastasis pathways, including TMEM207, FADS6, MTNR1B, SLC26A8, and FGF23 (59–266 

61). Similar to breast tissue, only two ncRNAs showed significant mediation of more than 20 267 

distal eQTLs in prostate tissue: FBXO30-DT and SNHG2, which has been implicated in 268 

tumorigenesis and proliferation in multiple cancers (62–64). A majority (22/26) of distal-eQTLs 269 

mediated by FBXO30-DT are for OVCH2, which has been implicated in prostate risk through 270 

GWAS (65,66). The majority of distal-eQTLs mediated by SNHG2 are for RAF1, a therapeutic 271 

target for multiple cancers (46). We did not detect any shared ncRNAs or pcGenes across non-272 

cancerous and tumor prostate tissue. 273 

 274 

Gene-based distal-eQTL mapping  275 

Next, we conducted gene-level distal eQTL mapping using GBAT (24) to identify ncRNAs that 276 

are regulated by multiple weak local genetic effects and may have distal effects on pcGenes; 277 

these ncRNAs are likely to be missed by the mediation framework. Comparing to mediated 278 

pcGenes from mediation analysis (Table 1), we found a similar order of magnitude of pcGenes 279 

with distal associations with ncRNAs using GBAT (Table 2). We again detected far more distal 280 

ncRNA-pcGene directional associations in tumor compared to non-cancerous tissue (Table 2, 281 

Supplemental Table S1-2). In addition, the distribution of ncRNA-pcGene effect sizes is shifted 282 

downwards in tumor tissue, compared to non-cancerous tissue, though the number of effect 283 
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sizes in these distributions are far less for non-cancerous tissue distal associations 284 

(Supplemental Figure S2). In breast tumors, we found large distal genetic associations with 285 

pcGenes like OXNAD1, an RNA-binding protein that is associated with pan-cancer survival 286 

rates and involved with tumor invasion and metastasis (66,67), and LCN9, part of the lipocalin 287 

family that promotes breast cancer metastasis (68). In prostate tumors, we detected multiple 288 

large distal genetic associations with genes in the pro-proliferative keratin-associated protein 289 

family (KRTAP13-3, KRTAP13-4, KRTAP10-8) (69) (Figure 2). 290 

 291 

Though distal genetic effects of ncRNAs in non-cancerous breast or prostate tissue were 292 

sparse, we found three ncRNAs with genetic associations with pcGenes across both breast and 293 

prostate tissue: LINC01678, FAM106A, and AP001056.1. These ncRNAs also target the same 294 

pcGenes (LOC102724159, CCDC144A, GATD3B, and a paralog to TRAPPC10), all with no 295 

catalogued functions in cancer. 296 

 297 

Again, in tumor-specific gene-gene associations, many ncRNAs had associations with multiple 298 

pcGenes, leading to vertical bands in the location plots in Figure 2B. For example, in breast 299 

tumors, LINC000906, a predicted miRNA sponge in breast tumors (70), was associated with 300 

115 pcGenes. The largest association was with MS4A5, whose hypomethylation is shown to be 301 

prognostic for multiple cancer types (71,72). Another ncRNA associated with multiple different 302 

pcGenes is LINC00115, a known promoter of breast cancer metastasis and progression (73–303 

75). Many of these targets are related to interferons (IFNA17 and IFNW1), immune system 304 

cytotoxicity (RAC2 and DDB2), or secretory proteins (PRH1 and PRH2). 305 

 306 

In prostate tumors, FAM138F showed distal genetic associations with 57 distinct pcGenes, 307 

many of which are involved in amino acid activation in prostate cancer (HDAC2, NT5DC1, 308 

NUS1, and PREP) and protein stability (PDCD2, TCP1). Additionally TDRG1, shown to be 309 
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associated with progression and metastases in multiple cancers (76,77), showed multiple distal 310 

genetic associations with pcGenes, including the cancer-initiating pluripotency factor PRDM14 311 

(78) and multiple genes related to olfactory stimulus (OR10H3, OR2T1, OR51V1, and UGT2A1) 312 

(49). Taken together, these distal eQTL mappings suggest the ncRNAs have strong influences 313 

on gene expression of multiple pcGenes in both non-cancerous and tumor tissue. 314 

 315 

Overlap of miRNA-pcGene pairs with target prediction databases 316 

For in-silico validation, we queried TargetScan (79,80), a database that curates computationally 317 

predicted RNA targets of miRNAs, for any miRNAs that our analysis detected to mediate distal-318 

eQTLs of pcGenes. Out of 522 pairs of miRNAs and pcGenes across 72 unique miRNAs 319 

identified through our analysis, we found that 184 pairs were included in the TargetScan 320 

database (Supplemental Table S3). miRNA-pcGene pairs identified in our eQTL analysis are 321 

found in TargetScan at an enrichment ratio of 8.2 (95% CI: [6.68, 10.09]), compared to the 322 

universe of all miRNA-target pairs in TargetScan (approximately 3.56 million) and roughly 323 

159,000 miRNA-target pairs in TargetScan for the 72 miRNA families identified. A majority of 324 

these miRNAs (82% of miRNAs detected in eQTLs) are conserved only across humans and 325 

mice but well-annotated. Though this intersection with TargetScan does not implicate the 326 

miRNA in distal regulation of the proposed pcGene, it provides some computational validation of 327 

this relationship using different methodology (sequence similarity vs. eQTL mapping). 328 

 329 

Distal-eGenes are enriched for tumorigenesis and cancer progression gene pathways  330 

To assess enriched biological processes or pathways by sets of prioritized pcGenes (called 331 

distal-eGenes), we conducted gene ontology enrichments (81). Overall, compared to all 332 

expressed pcGenes in the transcriptome, distal-eGenes in non-cancerous tissue (combining 333 

breast and prostate) were significantly enriched (FDR-adjusted P < 0.05) for many relevant 334 

ontologies: immune processes, genes targeted by epigenetic regulation, microRNA targets in 335 
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cancer, and oxidoreductase activity. In comparison, distal-eGenes detected in tumor tissue 336 

showed enrichments mainly for chemical and sensory receptors and intermediate filament 337 

cytoskeleton (Supplemental Figure S3-4). Comparing tissue-prioritized distal-eGenes (breast-338 

specific or prostate-specific pcGenes to the protein-coding transcriptome), we found distal-339 

eGenes enrichments detected in prostate tissue for immune pathway ontologies, including the 340 

multiple activations of immune cells, and known tumorigenic pathways, like the JAK-STAT 341 

cascade and PI3K-Akt signaling (82,83). We did not detect any significant enrichments for the 342 

breast-specific distal-eGenes (Supplemental Figure S5). 343 

 344 

We also conducted comparisons of distal-eGenes between non-cancerous and tumor state in 345 

both breast and prostate tissue (Figure 3). We find that, compared to distal-eGenes prioritized 346 

in breast tumors, non-cancerous breast distal-eGenes were enriched for cytokine and leukocyte 347 

production, response, and function, as well as membrane transport and binding. We observed 348 

similar enrichments when we compared non-cancerous prostate distal-eGenes to those from 349 

prostate tumors, with additional cell death and morphogenesis ontologies enrichments. In 350 

contrast, across both breast and prostate tissue, tumor-specific distal-eGenes, compared to 351 

non-cancerous distal-eGenes, mainly showed enrichments for olfactory and chemical stimulus 352 

response, intermediate filament cytoskeleton localization, and epidermis development. These 353 

ontologies are consistent with cancer progression, as olfactory receptors have been validated 354 

as prognostic biomarkers in prostate cancers and are overexpressed in more aggressive breast 355 

tumors (48,49,84,85), more aggressive breast cancers are enriched for genes that influence 356 

epidermal growth (86) and cytoskeletal dysregulation is key to cancer cell invasion, progression, 357 

and metastasis (87–89). 358 

 359 

Distal-eQTLs overlap with genetic signal for breast and prostate cancer risk 360 
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Lastly, we integrated these eQTL results with GWAS summary statistics for overall prostate and 361 

overall and molecular subtype-specific breast cancer risk (1,2). A total of 84 detected ncRNAs 362 

are within 0.5 Mb of a GWAS SNP at P < 5 x 10-8, the majority for overall prostate and breast 363 

cancer risk, which have the largest GWAS sample sizes (Figure 4A, Supplemental Table S1-364 

2). Among pairs of ncRNAs and pcGenes where the ncRNA is 0.5 Mb from a GWAS SNP for 365 

either breast or prostate cancer risk, we identified 30 pairs (15 for overall breast cancer and 10 366 

for LumA breast cancer, five for prostate cancer) where at least one of the ncRNA local-eQTL or 367 

pcGene distal-eQTL colocalized with the GWAS signal at the locus with PP.H4 ≥ 0.75 368 

(Supplemental Figure S6, Supplemental Table S4). In total, we detected 10 independent 369 

overall or LumA-specific breast cancer risk GWAS signals and one independent prostate cancer 370 

risk GWAS signal may be, in part, explained by distal genetics effects on pcGenes mediated by 371 

local-ncRNAs.  372 

 373 

We found that distal-eQTLs of CSH1 mediated by RFPL1S strongly colocalize with GWAS 374 

signal for prostate cancer risk. (PP.H4 = 0.913) (Figure 4B). CSH1 codes for a somatotropin 375 

hormone with paracrine signaling functions promoting cell division and growth in glands (90). 376 

Using non-cancerous breast tissue eQTLs, we found strong colocalization with overall breast 377 

cancer risk with local-eQTLs of RUSC1-AS1 and distal-eQTLs of SH2B1 (Figure 4C). Two 378 

different SNPs carried the largest posterior probability of colocalization for the local- 379 

(rs2297480) and distal-eQTLs (rs2075571), which are in moderate, yet statistically significant, 380 

linkage disequilibrium (D’ = 0.51, R2 = 0.131, P < 0.001).  RUSC1-AS1 has shown evidenced 381 

silencing of genes through epigenetic signaling and is correlated with breast cancer progression 382 

(91,92). Additionally, SH2B1 is involved with cytokine signaling in cell proliferation and migration 383 

(93). We also found strong colocalization with LumA-specific breast cancer risk with local-384 

eQTLs of THBS3-AS1 and distal-eQTLs of SLC39A13 in non-cancerous breast tissue. The 385 

same SNP showed the maximum posterior probability for colocalization with both the local- and 386 
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distal-eQTL signal. Though the ncRNA has not been implicated in cancer risk or progression, 387 

SLC39A13 facilitates metastasis in ovarian cancer by activating the Src/FAK signaling pathway 388 

(94). 389 

 390 

For overall breast cancer risk, we also detect strong colocalization between eQTLs and GWAS 391 

signals at the 17q21.31 locus. This locus houses a large, common inversion polymorphism 392 

associated with breast and ovarian cancer prognosis (95–97), as well as widespread 393 

associations with multiple phenotypes (98–101). In particular, we found that the ncRNA 394 

KANSL1-AS1 potentially mediates distal-eQTLs of multiple pcGenes. All but one of these 395 

pcGenes are on Chromosome 17, near the end of the 17q21.31 region; the last pcGene we 396 

detected is TXNRD3 at 3q21.3. We were interested in disentangling effects of the H2 inversion 397 

on gene expression and breast cancer risk, with the proposed causal diagram presented in 398 

Figure 5A. First, we estimated haplotypes of the H2 inversion in GTEx (102). We found that 399 

KANSL1-AS1 and the associated pcGenes near 17q21.31 all have significant associations with 400 

the H2 inversion (Figure 5B). Next, we reran mediation analysis for SNPs local to KANSL-AS1 401 

and these detected pcGenes. After accounting for H2, the distal mediation signal of KANSL-AS1 402 

is attenuated for all pcGenes except TXNRD3, suggesting that the inversion may be driving a 403 

significant portion of this signal. These analyses support our proposed causal model, that the 404 

genetics of the H2 inversion affect expression of the local ncRNA KANSL-AS1 and the distal 405 

pcGenes at the end of the inversion, which induces the eQTL associations (Figure 5A). 406 

 407 

H2 inversion-adjusted colocalization analyses also support this model. A salient example is 408 

shown in Figure 5D, with Manhattan plots from colocalization analysis of overall breast cancer 409 

risk, local-eQTLs of KANSL-AS1, and distal-eQTLs of CRHR1. Colocalization analysis 410 

unadjusted for H2, showed nearly-perfect colocalization for both eQTL signals with GWAS 411 

(PP.H4 > 0.98 for both eQTLs), but after adjustments, the eQTL signals are completely 412 
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removed. In fact, the standardized effect sizes for local-eQTLs of KANSL1-AS1 showed strong 413 

correlation with the standardized effect sizes for local-QTLs of the H2 inversion (Figure 5E), 414 

and the local-QTL signal for the H2 inversion strongly colocalized (PP.H4 = 0.99) with the 415 

GWAS signal in the locus (Figure 5F). These results illustrate that the structural inversion in the 416 

locus likely accounts for both cis-genetic control of KANSL1-AS1 and the associated pcGenes 417 

further downstream on Chromosome 17. Furthermore, we emphasize further examination of the 418 

H2 inversion and other structural variants in the locus for its impact on local and distal gene 419 

expression, as well as cancer susceptibility, especially to elucidate if SNPs with widespread 420 

local or distal associations with gene expression are affected by confounding due to structural 421 

variants or other aberrations. 422 

 423 

We also studied the cancer risk associations of ncRNAs with predicted large transcriptomic 424 

effects using a genetically-regulated expression (GReX) approach (Methods). At P < 2.5 x 10-6 425 

and permutation P < 0.05, we identify 33 ncRNA-level associations (Figure 6, Supplemental 426 

Table S5), predominantly for overall and subtype-specific breast cancer risk. Only one ncRNA, 427 

SDHAP2, showed an association with overall prostate cancer risk (Figure 6); as we restrict to 428 

ncRNAs mediating distal-eQTLs and not necessarily in known prostate cancer GWAS loci, we 429 

do not recover any ncRNAs detected by Guo et al’s analysis of long-ncRNAs in prostate cancer 430 

(103). A couple ncRNAs prioritized in associations of breast cancer risk using ncRNA GReX in 431 

non-cancerous breast tissues have been previously noted. Common non-synonymous SNPs in 432 

HCG9 have previously been implicated in breast cancer GWAS (104). In addition, CEROX1, a 433 

cataloged post-transcriptional regulator of mitochondrial catalytic activity, has been implicated in 434 

distal alterations of metabolic pathways in breast cancers (14,105). ncRNAs prioritized in breast 435 

tumor GReX-associations with breast cancer risk mainly included micro- and snoRNAs. Of 436 

these, miR-519d has been shown to suppress breast cancer cell growth by targeting distal 437 
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molecular features(106,107). GReX associations prioritize these ncRNAs for further 438 

investigation of their functional effects in breast and prostate tissue. 439 

 440 

DISCUSSION 441 

In this work, we systematically identify distal-eQTLs of pcGenes that are mediated by ncRNAs 442 

in non-cancerous and tumor breast and prostate tissue. We then show that many of these 443 

ncRNA-mediated distal-eQTLs of pcGenes overlap with GWAS signals for breast and prostate 444 

cancer, both with known GWAS loci and novel genetic loci undetected by GWAS. Taken 445 

together, our results suggest that distal genetic effects on pcGenes mediated by ncRNAs may 446 

be a common mechanism underlying genetic signals and ncRNAs have a widespread role as 447 

distal transcriptional regulators in prostate and breast tissue. We observed more distal ncRNA-448 

pcGene directional associations in tumor than non-cancerous tissue, suggesting that tumor 449 

tissues have multiple activated gene regulatory networks with potential effects on disease 450 

pathogenesis or progression. Our results implicating distal interactions between ncRNAs and 451 

pcGenes are attractive for further in silico and experimental study. 452 

 453 

We find many colocalized eQTL signals for ncRNAs and pcGenes in the 17q21.31 region, many 454 

of which have been prioritized by previous genetic association studies. For example, a 455 

transcriptome-wide association study (TWAS) of estrogen receptor subtype-specific breast 456 

cancer, identified ncRNA KANSL-AS1 (108), which has also been associated with ovarian 457 

cancer (109). In our analysis, KANSL-AS1 mediated multiple breast cancer-associated pcGenes 458 

further downstream on Chromosome 17 and colocalized almost perfectly with the GWAS 459 

association, suggesting widespread distal effects of KANSL-AS1 (108,110–114). However, after 460 

accounting for the large and common H2 inversion in the 17q21.31 locus, the distal effects of 461 

KANSL1-AS1 were largely attenuated, pointing to correlated effects of large structural 462 

aberrations on gene expression and disease etiology in this region (115–118). These results 463 
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also suggest that structural aberrations, like the 17q21.31 H2 inversion, have large effects on 464 

gene expression, not only locally, but also distally. Our results also serve as a cautionary tale: 465 

future gene expression analyses must delineate the eQTL signal in a locus from chromosomal 466 

aberrations, especially when integrating with GWAS signals. Comprehensive analyses of the 467 

transcriptomic effects of genomic aberrations in tumor tissue are needed.  468 

 469 

We conclude with limitations of our study. First, we rely on Ensembl annotations of gene 470 

biotypes to define our sets of ncRNAs and pcGenes. These annotations may be incomplete, 471 

and accordingly, we may have ignored multiple non-coding transcripts (119). Next, as our local- 472 

and distal-eQTL signals are the same cohor, we were unable to use multi-trait colocalization 473 

methods, like moloc or Primo (120,121). A more flexible framework that allows for shared 474 

molecular QTL signal could be developed to fully interrogate the mediated-distal QTL signal, in 475 

the context of complex trait etiology. Next, we do not account for copy number variation or 476 

structural variation to disentangle these potentially disparate signals. Future studies should 477 

consider corrections for inversions, translocations, or genomic imbalances. Lastly, due to limited 478 

sample sizes in TCGA, we could not assess the effects of molecular subtype heterogeneity on 479 

eQTL mapping in tumor tissue. Previously, subtype-specific genetic architecture of gene 480 

expression regulation has been suggested by previous studies (5,122,123), with some distal 481 

genetic associations detected for genes that are highly predictive of molecular subtypes (124). 482 

Robust subtype-specific analyses in breast cancer can be informative for both subtype-specific 483 

risk and outcomes. 484 

 485 

Our study provides evidence supporting trans-acting regulation by ncRNAs as a potential 486 

biological mechanism relevant to breast and prostate cancer etiology. Particularly, our results 487 

emphasize that larger samples of tissue- and tumor-specific transcriptomics datasets need to be 488 
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collected to study often ignored transcripts and explore more complex regulatory hypotheses to 489 

interpret GWAS risk loci for cancer. 490 

 491 
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FIGURES 

 

Figure 1: Schematic of mediation analysis to identify ncRNA-mediated distal-eQTLs of protein-
coding genes. A SNP s is distal to protein-coding gene G and local to ncRNA M, where M has 
some distal regulatory effect on G. We use expression quantitative trait locus mapping to 
identify the local-eQTL between s and M (green dotted line) and the distal-eQTL between s and 
G (grey dotted line). Using either mediation analysis or gene-level association testing, we 
estimate the indirect mediation effect of s on G through effects from M (red line). Lastly, we use 
colocalization and genetically-regulated expression analysis to find any intersecting genetic 
signal between distal-eQTLs of G and genetic associations with breast and prostate cancer risk. 
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Figure 2: Location plot of distal-eQTL or gene-gene associations across healthy and tumor 
samples of breast and prostate tissue. (a) eSNP (X-axis) position vs. transcription start site 
(TSS) of pcGene (Y-axis) at FDR-adjusted P < 0.01, sized by absolute scaled TME and colored 
by direction of effect. (b) ncRNA TSS (X-axis) vs. pcGene TSS (Y-axis) at FDR-adjusted P < 
0.01, sized by absolute scaled gene-gene effect and colored by direction of effect. Top cross-
chromosomal distal-eGenes with largest effects are labeled. 
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Figure 3: Over-represented ontologies for tissue-specific eGenes. -log10 P-value of enrichment 
(X-axis) of over-represented gene sets (Y-axis), with point sized by enrichment ratio and colored 
by ontology category. Here, for a tissue, we compare the set of pcGenes from healthy or tumor 
state to the universe of all pcGenes for tissue across both healthy and tumor states. 
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Figure 4: Colocalization of local-eQTLs of ncRNA and distal-eQTLs of pcGene with GWAS. (a) 
Barplot of numbers of mediating ncRNAs within 1 Megabase of a GWAS SNP (X-axis) from 
cancers (Y-axis). (b-d) Colocalization results for example ncRNAs and pcGenes, with 
phenotype in the GWAS, ncRNA, and pcGene provided. Left panel shows scatterplot of 
absolute Z-scores of GWAS (X-axis) and eQTL associations (Y-axis) with points colored by 
posterior probability of colocalization (PP.H4). Right panel shows a Manhattan plot of GWAS 
(top), ncRNA local-eQTL (middle), and pcGene distal-eQTL (bottom) signal, colored by PP.H4. 
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Figure 5: Impact of H2 inversion on eQTLs in the 17q21.31 locus.  (a) Causal diagram of 
genetic effects in 17q21.31, where strong effects of genetically-determined H2 inversion on 
ncRNA and pcGene (in black) induces the observed SNP-ncRNA and -pcGene associations (in 
grey). (b) Forest plot of effect sizes and 95% confidence interval (Y-axis) on H2 inversion on 
pcGenes or ncRNAs (X-axis). (c) Difference in -log10 permutation P-value (Y-axis) of total 
mediation effect of ncRNA on pcGene, with or without adjustment for H2 inversion (X-axis). (d) 
Manhattan plots of GWAS, local-eQTLs of KANSL-AS1, and distal-eQTLs of CRHR1, 
unadjusted (left) and adjusted (right) for H2 inversion, colored by per-SNP PP.H4. (e) 
Scatterplot of Z-score of local-eQTLs on KANSL1-AS1 (X-axis) against Z-score of local-QTLs of 
H2 inversion. (f) Manhattan plots of GWAS and local-QTLs of H2 inversion, colored by per-SNP 
PP.H4. 
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Figure 6: GReX associations with cancer risk for ncRNAs mediating multiple distal-eQTLs of 
pcGenes. Forest plot of effect size and confidence intervals at significance level of P = 2.5 x 10-6 
(Y-axis) of GReX-associations with overall and subtype-specific cancer risk across ncRNAs that 
showed significant mediation of multiple distal-eQTLs of distinct pcGenes (X-axis) in non-
cancerous (a) and tumor (b) tissue states. 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2022. ; https://doi.org/10.1101/2022.02.08.22270601doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.08.22270601
http://creativecommons.org/licenses/by/4.0/


TABLES 
 

Table 1: Summary of local- and distal-eQTL mapping results across breast and prostate non-
cancerous and tumor tissue through mediation analysis. 

 Breast Prostate 

 Non-
cancerous 

Tumor Non-
cancerous 

Tumor 

Total eQTLs     

Local 22,832 1,298 12,511 6,368 

Distal 29,512 316,097 31,782 363,587 

Total eGenes     

local-ncRNAs 1,113 87 773 60 

distal-pcGenes 8,849 19,376 8,711 15,560 

SNPs associated in both local and distal 
eQTLs 

    

Local 1,569 601 281 6,368 

Distal 1,580 5,089 264 9,259 

Mediated distal-eQTLs     

eSNPs 703 3,017 103 425 

e-ncRNAs 157 45 22 18 

e-pcGenes 173 562 24 107 
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Table 2: Summary of distal-eQTL mapping results across breast and prostate normal and tumor 
tissue using GBAT. 

 Breast Prostate 

 Normal Tumor Normal Tumor 

Total gene-gene 
associations 

13 1,375 7 297 

Unique ncRNAs 9 209 4 84 

Unique pcGenes 10 1,127 5 268 
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SUPPLEMENTAL FIGURES 

Supplemental Figure S1: Analysis scheme. We analyze genetic and transcriptomic data from 
non-cancerous breast and prostate tissue from GTEx and breast and prostate tumors from 
TCGA. We optimize eQTL mapping using ordinary least squares regression for numbers of 
genotype principal components and expression hidden covariates with prior to optimize eQTL 
discovery. We then conduct a genome-wide local and distal eQTL analysis using the optimized 
set of covariates. Next, we conduct mediation analysis or gene-based association testing to 
identify distal-eQTLs of pcGenes that are mediated by local-eQTLs of ncRNAs. Lastly, we 
integrate eQTLs results with GWAS using colocalization and analysis of genetically-regulated 
expression. 
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Supplemental Figure S2: Distribution of total mediation effects, mediation proportions, and 
gene-level distal effect sizes in healthy and tumor breast and prostate tissue. 
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Supplemental Figure S3: Over-represented ontologies for healthy- or tumor-specific eGenes, 
compared to all protein-coding genes in the transcriptome. -log10 P-value of enrichment (X-axis) 
of over-represented gene sets (Y-axis), with point sized by enrichment ratio and colored by 
ontology category. Here, combining pcGenes with a distal genetic association across breast and 
prostate tissue, we compare the set of pcGenes from healthy or tumor state to the universe of 
all pcGenes in the transcriptome. 
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Supplemental Figure S4: Over-represented ontologies for healthy or tumor state-specific 
eGenes, compared to all protein-coding genes detected in distal-QTL mapping. -log10 P-value of 
enrichment (X-axis) of over-represented gene sets (Y-axis), with point sized by enrichment ratio 
and colored by ontology category. Here, combining pcGenes with a distal genetic association 
across breast and prostate tissue, we compare the set of pcGenes detected for breast or 
prostate and compare to the universe of all pcGenes detected across breast and prostate. No 
enrichments at P < 0.05 were detected for breast-specific pcGenes. 
 

Non-cancerous 
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Supplemental Figure S5: Over-represented ontologies for breast or prostate-specific eGenes, 
compared to all protein-coding genes detected in distal-QTL mapping. -log10 P-value of 
enrichment (X-axis) of over-represented gene sets (Y-axis), with point sized by enrichment ratio 
and colored by ontology category. Here, combining pcGenes with a distal genetic association 
across healthy and tumor state, we compare the set of pcGenes detected for breast or prostate 
and compare to the universe of all pcGenes detected across breast and prostate. No 
enrichments at P < 0.05 were detected for breast-specific pcGenes. 
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Supplemental Figure S6: Scatterplot of posterior probability of colocalization for local- and 
distal-eQTLs with cancer risk GWAS. Red lines show PP.H4 = .75.

Non-cancerous 
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SUPPLEMENTAL TABLE LEGENDS 

Table S1: Prioritized ncRNA-mediated distal-eQTLs of pcGenes in healthy and tumor prostate 

tissue. We provide the tissue state (healthy or tumor), SNP, ncRNA, pcGene, effect size, P-

value, method of detection (mediation analysis or GBAT), and closest GWAS risk SNP and P-

value. 

 

Table S2: Prioritized ncRNA-mediated distal-eQTLs of pcGenes in healthy and tumor breast 

tissue. We provide the tissue state (healthy or tumor), SNP, ncRNA, pcGene, effect size, P-

value, method of detection (mediation analysis or GBAT), and closest GWAS risk SNP and P-

value. 

 

Table S3: In-silico validation of miRNA-pcGene pairs using TargetScan. For miRNAs detected 

to mediated distal-eQTLs of pcGenes, we list miRNAs shown to target the pcGene using 

TargetScan. 

 

Table S4: Colocalization results for ncRNA-mediated distal-eQTLs with GWAS signal of cancer 

risk. We provide the trait, tissue (breast or prostate), tissue state (healthy or tumor), ncRNA and 

its location, pcGene and its location, posterior probabilities of colocalization between the ncRNA 

and pcGene with the GWAS signal, and the colocalized SNP for each signal. 

 

Table S5: GReX analysis results for ncRNAs and cancer risk. We provide the trait, tissue 

(breast or prostate), tissue state (healthy or tumor), ncRNA and its location, effect size, standard 

error, and Z-score of association. 
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