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One Sentence Summary: The subthalamic nucleus encodes the initiation, termination, and vigor of muscle activity, 
which supports real-time decoding of gait in people with Parkinson’s disease.  

ABSTRACT 

Disruption of subthalamic nucleus dynamics in Parkinson’s disease leads to impairments during walking. Here, 
we aimed to uncover the principles through which the subthalamic nucleus encodes functional and 
dysfunctional walking in people with Parkinson’s disease. We conceived a neurorobotic platform that allowed 
us to deconstruct the key components of walking under well-controlled conditions. We exploited this platform 
in 18 patients with Parkinson’s disease, which allowed us to demonstrate that the subthalamic nucleus encodes 
the initiation, termination, and vigor of leg muscle activation. We found that the same fundamental principles 
determine the encoding of walking. We translated this understanding into a machine-learning framework that 
decoded muscle activation, walking states, locomotor vigor, and freezing of gait. These results expose key 
principles through which subthalamic nucleus dynamics encode walking, opening the possibility to operate 
neuroprosthetic systems with these signals to improve walking in people with Parkinson’s disease.  

INTRODUCTION 

Every year, thousands of individuals with Parkinson’s disease (PD) 
undergo surgical implantation of electrodes in the subthalamic 
nucleus (STN). These electrodes not only enable the delivery of 
deep brain stimulation (DBS) to treat motor symptoms, but also 
allow recording of neuronal activity to study the encoding of 
functional and dysfunctional movements in the STN1. 

Frequency domain analyses of local field potentials (LFP) 
combined with intraoperative recordings of single-cell activity 
uncovered fundamental principles through which the STN encodes 
upper-limb movements. It was found that the STN encodes the 
vigor of movements2–5, as well as the initiation, termination and 
concatenation of motor sequences6,7, which paralleled findings 
from animal models8–12. Moreover, abnormal modulation patterns 
in well-defined frequency bands of LFP signals have been shown 

to correlate with the severity of motor symptoms such as rigidity 
or bradykinesia13,14. This understanding has guided the develop-
ment of closed-loop DBS protocols that maximize the treatment 
of these symptoms while reducing side-effects15,16. 

Compared to upper-limb movements, gait and balance deficits 
respond insufficiently to pharmacotherapies and DBS interven-
tions in the late-stage of PD17. Understanding the principles 
through which the STN encodes walking could support the deve-
lopment of treatments that alleviate these deficits. However, the 
few studies that investigated the encoding of walking in the STN 
reported conflicting results18–21.  

Central to the understanding of upper-limb movement 
encoding was the possibility to study these principles under well-
controlled experimental conditions restricted to single joints. 
Instead, walking involves complex sequences of dynamic move-
ments requiring bilateral alternations between the right and left 
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lower-limbs that are difficult to isolate and quantify. Due to this 
complexity, deciphering the encoding of walking in the STN has 
remained inconclusive. 

To resolve this issue, we conceived a neurorobotic platform 
that emulated the key components of walking under well-
controlled conditions, thus allowing us to isolate and quantify the 
encoding of lower-limb movements in the STN. We leveraged this 
platform to elucidate the principles that determine the encoding of 
leg muscle activations underlying walking. We validated these 
findings in the context of locomotor activities of daily living. 
Finally, we translated this understanding into machine learning 
decoders that detect functional and dysfunctional walking in real-
time. 

RESULTS 

Neural recordings of subthalamic nucleus activity 
We aimed to record LFP from the STN during locomotor 
functions. We included 18 patients with PD (Table S1) who 
exhibited severe motor fluctuations and varying deficits of gait and 
balance. The contribution of each participant to the different tasks 
is summarized in Methods. 

Participants were implanted with DBS leads in the left and right 
STN (Fig. 1A), which were either externalized for five days after 
surgery (n = 8) or directly connected to an implantable pulse 
generator with sensing capabilities22 (Percept PC, Medtronic, USA) 
(n = 10). The location of DBS leads was confirmed using 
tridimensional anatomical reconstructions23 (Fig. 1A and Fig. S1). 

We first assessed the electrophysiological characteristics of LFP 
from each pair of electrodes to identify the bipolar contacts with 
the highest beta power. To define patient-specific frequency bands, 
we employed an unbiased fitting algorithm that parametrized 
neural power spectra as a combination of an aperiodic (1/f) and 
several periodic oscillatory components24 (Fig. 1E). Low-beta 
activity was identified in the most affected STN in 11 participants, 
high-beta in 18 participants and low-gamma in 6 participants.  

 
Neurorobotic platform to study leg muscle activation  
We aimed to conceive an experimental paradigm that mirrored the 
well-controlled conditions restricted to single joints that enabled 
elucidating principles of upper-limb movement encoding. 

We established a neurorobotic platform to study leg move-
ments and muscle activation patterns restricted to a single joint 

Figure 1 | Bilateral STN modulations encode 
active and passive leg movements. (A) 
Neurorobotic platform to study the encoding of 
leg muscle activations in the STN in well-
controlled conditions. Patients are sitting 
comfortably during unilateral knee-extension 
movements, the shin of their most affected leg 
attached to a rotating dynamometer. Move-
ments are either passively or voluntarily perfor-
med. Bilateral electromyographic and STN 
signals are recorded concurrently to movement 
angular parameters. The location of DBS leads 
is verified through 3D anatomical recons-
tructions. Contacts used for LFP recordings 
(most affected hemisphere) are highlighted in 
yellow. (B) Deconstructed components of gait-
related leg muscle activation to be studied in 
isolation. (C) Voluntary movement performed by 
participant P1. Movement angle (mean ±SD), 
knee extensor muscle envelope (vastus media-
lis, mean ±SD), and scalograms for contralateral 
and ipsilateral STN LFP normalized to baseline 
(rest pre-movement). Each movement epoch is 
preceded and followed by 2.5s of rest. (D) Same 
plots during passive movements of the knee 
joint. (E) Patient-specific band identification 
(same participant) using an unbiased fitting 
algorithm (see methods). Extracted low and 
high-beta bands are indicated as shaded boxes. 
(F) Boxplot of normalized power across trials 
(same patient) averaged over each window 
(rest pre, movement and rest post). (G) Group-
average and standard deviation of baseline-
normalized power of the low and high-beta 
bands of the contralateral STN. N = 5 partici-
pants performed this task (see methods). Dots 
represent the mean for each patient. * p<0.05 
paired t-test with Bonferroni correction. Circled 
dots indicate significant differences from 
baseline for individual participants. The ampli-
tude of modulations was more pronounced 
during active compared to passive movements 
(mean effect size (±SD) : low beta -
2.1dB±1.7dB, high beta -1.4dB±1.7dB, not 
significant t-tests).
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while patients were seated comfortably (Fig. 1A). Participants were 
secured in an instrumented dynamometric chair that enabled the 
concomitant recordings of leg kinematics, force, electromyo-
graphic activity, and bilateral STN LFP. A screen located in front 
of the participant displayed task instructions concomitantly to 
ongoing movement and force parameters (Movie S1). 

We exploited this platform to design paradigms that 
deconstructed the key components of leg muscle activation 
underlying walking (Fig. 1B). Specifically, we designed paradigms 
that emulated the differences between (i) sensory feedback versus 
volitional leg muscle activation, (ii) transient versus sustained 
activation, (iii) extensor versus flexor activation, (iv) activation 
from differ-rent joints, (v) ipsilateral versus contralateral activation, 
and (vi) varying levels of muscle activation.  
 
Encoding of sensory feedback versus volitional leg 
muscle activation 
We first recorded the patterns of STN modulation during self-
paced knee-joint extension movements, which required the acti-
vation of quadriceps muscles (Fig. 1C). STN patterns displayed a 
stereotypical sequence of movement-related modulations, both 
contralateral and ipsilateral to the recruited muscles. These patterns 
involved a significant desynchronization during movement execu-
tion, both in low- and high-beta power, followed by a rebound after 
movement termination that predominantly occurred in the low-
beta band (Fig. 1F,G).  

This sequence of motor-related modulations suggested a direct 
link between STN activity and the volitional activation of leg 
muscles. However, walking generates a flow of sensory feedback 
that may also contribute to the modulation of STN LFP. To 
disentangle sensory feedback versus volitional leg muscle acti-
vation, we compared LFP modulations during active versus passive 
leg movements (Fig. 1D). Unexpectedly, we found that passive 
movements generated reproducible LFP modulations that mirro-
red the patterns underlying active movements. All tested partici-
pants had significant low- and high-beta desynchronization during 
passive movements, and three had a significant low-beta rebound 
after movement (Fig. 1F,G). Nevertheless, the amplitude of these 
movement-related modulations was more pronounced during 
active compared to passive movements.  

These results revealed that the STN encodes both volitional 
commands to activate leg muscles and sensory feedback associated 
with leg movements.  
 
Encoding of muscle activation dynamics  
Walking involves transitions between different phases of gait, 
including transient activity of flexor muscles during swing, and 
sustained activation of extensor muscles during stance. Moreover, 
gait adjustments require volitional modulation of muscle activation 
levels. We designed paradigms that mimicked these conditions in 
the neuro-robotic platform. 

We first asked participants to perform a transient, isometric 
knee-extension task with two levels of force (Fig. 2A). Despite the 
lack of movement, we found that the recruitment of the quadriceps 
muscles involved significant desynchronization and resynchro-
nization profiles in low- and high-beta power that were similar to 
the patterns underlying active movements (Fig. 2C). Unexpectedly, 
these modulations were not influenced by the level of force 
production. 

We next designed paradigms that emulated the sustained 
activtion of muscles during the stance phase of gait. We asked 
participants to produce and maintain a constant activation of the 
quadriceps muscles with a weak or strong force (Fig. 2B). As 
observed during the transient task, the initiation of muscle activa-

tion led to a strong desynchronization in low- and high-beta power 
that was not modulated by the level of force produced.  

In contrast, holding a sustained force required a continuous 
activation of muscles during which the amplitude of LFP 
modulations depended on the level of force. When holding a weak 
force, beta power rapidly resynchronized and stabilized around 
baseline. Instead, maintaining a strong force significantly delayed 

Figure 2 | STN encodes muscle activation dynamics. Patients performed 
an isometric knee extension task with two levels of force (weak 33% of 
maximal voluntary contraction, strong 66%). (A) Task involving a transient 
effort (participant P1). Average traces of torque and knee extensor muscle 
envelope (mean ±SD), average spectrograms of the contralateral STN 
normalized to baseline (rest pre-movement, defined as 2.5s before the onset 
of effort) and traces of low- and high- beta power (mean ±SD). (B) Same plots 
for a task involving a sustained effort. Shadowed areas show significant 
differences in band-power when tasks performed with a weak and a strong 
force (Monte-Carlo cluster comparison). (C) Barplots of low- and high-beta 
power (mean ±SD) for both tasks. N = 17 patients performed the sustained 
task, only N = 5 of them performed the transient task. Low-beta was identified 
in all participants, and high-beta in 4 /5 and 10/17 participants respectively. * 
p<0.05 paired t-test with Bonferroni correction. No difference was found 
between levels of force for the transient task at the group level (two-way 
ANOVA, n=5: Effect of time window: df=2, low beta: F=2.64, p=0.09; high 
beta: F=8, p=0.002. Effect of force: df=1, low beta: F=0.04, p=0.83; high beta: 
F=0.02, p=0.90). Within participants: 5/5 (exhibiting low beta) and 4/5 (high 
beta) showed a significant effect of the time window (Two-way unbalanced 
ANOVA); 1/5 (low beta) and 0/5 had an effect of force. For the sustained task: 
9/10 (low beta) and 17/17 (high beta) showed a significant effect of the time 
window. 3/10 (low-beta) and 7/17 (high-beta) had a significant effect of force. 
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the resynchronization of beta power 
(Fig. 2C). These patterns suggested 
that the STN reflects the vigor 
involved in the production of sustai-
ned leg muscle activation. 

Termination of muscle activa-
tion also induced reproducible 
desynchronizations in low- and 
high-beta power that resembled the 
patterns underlying the initiation of 
the task (Fig. 2B,C). These 
modulations were not modulated by 
force at the group level, although 
they were more pronounced after 
weak than after strong efforts in 
some participants (p<0.05 for 4/10 
participants exhibiting low- beta and 
6/17 in high-beta). Post-effort 
rebounds in beta-power were also 
larger after strong than after weak 
force production. 

These patterns of STN dyna-
mics were similar during the 
concatenation of force levels (Fig. 
S2), across leg joints (knee vs ankle), 
and for extensor vs flexor muscles 
(Fig. S3).  
  
Bilateral encoding of muscle 
activation  
Walking requires finely tuned coor-
dination between left and right leg 
movements. We thus asked whether 
the activity of the STN incorporates 
information that is predominantly 
related to the contralateral versus 
ipsilateral leg during sustained 
muscle activations.  

We analyzed bilateral recordings 
of the STN during the production 
of sustained levels of force from the 
left versus right leg (Fig. S4). As 
expected, STN modulations were 
more pronounced when the move-
ment was performed with the leg 
contralateral to the movement, 
although movement-related modu-
lations systematically emerged in the 
ipsilateral STN as well. 
  
Idiosyncratic encoding of 
leg muscle activation  
The neurorobotic platform allowed us to identify common princi-
ples underlying the encoding of the initiation, termination, and 
vigor of leg muscle activation in the STN, which were consistent 
for all participants. However, we also detected idiosyncrasies in the 
definition and dynamical behavior of frequency bands across 
participants (Fig. S5 and Fig. S6):   

(i) Our unbiased fitting algorithm extracted beta bands that 
differed across participants, including the presence of low- or high-
beta, or a combination of both. The center frequency of these 
bands and their amplitude differed between patients. Moreover, 
some participants exhibited modulations in low-gamma power that 
also increased with the level of sustained force.   

(i) Two participants displayed additional frequency bands that 
modulated with force. One participant (P10) exhibited modulations 
in the alpha-band. A second participant (E2) showed a synchro-
nization around 20 Hz that scaled up with force25,26. 

These differences stressed the importance of accounting for 
participant-specific features in the analysis and use of STN 
recordings. 
 
Real-time decoding of force production 
The isolated conditions of the neurorobotic platform allowed to 
expose a link between STN modulations and the vigor of sustained 
leg muscle activation. This opened the intriguing possibility to 
predict the level of leg force production from STN dynamics. 

Figure 3 | Real-time decoding of leg force modulation. (A) Experimental setup for real-time decoding 
experiments. Bilateral externalized DBS leads are connected to a high-resolution amplifier (sampling 
frequency 8kHz). Digitalized LFP signals are fed to a dedicated computer running real-time decoding 
algorithms that predict the probabilities of three classes (“rest”, “weak” and “strong" force) based on the 
spectral components of LFP over a moving window of 500ms. Algorithms were trained (and tested offline) on 
a first task, in which patients maintained a single force for 5s and then released the effort. Decoders were 
then tested in real-time on a second task, in which patients had to switch online from a strong force to a weak 
force, or vice-versa. (B) Decoder performance during the first force task (participant E1). Probability (median 
±SEM) for each class over time, and confusion matrix (Accuracy = 81.06%, F-score = 0.79). Feature 
contribution traces display the frequencies that are automatically identified as being more relevant for the 
decoder (one contact from the contralateral lead shown). Relevant information is predominantly extracted 
from the low- and high-beta range for this patient (shaded box). (C) Average performance for all 16 patients 
tested on this task (one-way ANOVA with Bonferroni correction, n = 16, * p<0.05, *** p<0.001) (D) Illustrative 
example of real-time recording during the second task, which involves switching between levels of force, for 
the same participant (E1). Two trials are shown, first a change from a weak force to a strong force, then a 
change from strong to weak. (E) Average performance traces (EMG envelope, top, and probability traces, 
bottom) and confusion matrices for both cases. (F) cross-patient performance achieved for the 3 patients 
tested in real-time. 
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We translated this hypothesis into a machine-learning frame-
work that used Random Forest classification algorithms to decode 
leg force in real-time (Fig. 3A). Algorithms were trained to predict 
one of three classes (“rest”, “weak force” or “strong force”) based 
on the entire power spectrum of bilateral LFP modulations. Since 
vigor-related modulations in LFP occurred exclusively when 
muscle activations were sustained, we restricted the training of the 
classifiers to this specific period.  

We trained the classifiers offline for each participant. The 
algorithms automatically extracted patient-specific spectral features 
that captured their contribution to the encoding of muscle 
activation. These features closely matched the relevant frequency 
bands previously identified in each participant (Fig. 3B). The 
classifiers then combined these weighted features to discriminate 
rest from sustained weak- or strong-force conditions. Across the 
14 participants, the classifiers predicted the three states with 67 
±10% SD cross-validation accuracy (Fig. 3C and Fig. S8), despite 
variability during the transitions between states. 

We then evaluated the performance of these algorithms during 
real-time experiments. On the following day, participants perfor-
med a task during which they were required to alternate between 
weak versus strong levels of sustained force, based on instructions 
displayed on the screen (Fig. 3D). The classifiers acquired and 
processed LFP continuously, and automatically generated real-time 
predictions that closely matched the three motor states (average 
accuracy 68 ±11% SD) (Fig. 3E,F and Movie S1).  
 
Multimodal locomotor analysis platform  
We sought to translate these principles into paradigms that enabled 
studying the encoding of leg muscle activity during walking.  

We established a multimodal gait platform that allowed concu-
rrent recordings of whole-body kinematics, bilateral leg muscle 
activity, and bilateral STN LFP during unconstrained walking (Fig. 
4A and Movie S2). To repro-duce single-joint tasks with different 
levels of vigor, we instructed the participants to walk along a 

horizontal ladder with either short or long steps, which required 
weak or strong levels of muscle activation and force (Fig 4B). 

Contrary to single-joint paradigms, walking involves the 
coordinated activation of multiple muscles from the right and left 
leg. To link STN modulations to changes across leg muscles, we 
synthesized the complex patterns of muscle activity during walking 
into lower-dimensional muscle synergies (Fig. 4C and Fig. S9). We 
computed synergies across all the recorded muscles from the left 
and right leg. We restricted synergy extraction to 4 components, 
which were sufficient to capture muscle activations underlying 
short versus long steps (~90% of explained variance). The timing 
of these synergies suggested that they reflected propulsion and 
weight acceptance phases from the right and left leg.                   
  
STN LFP encodes the onset and termination of 
walking  
We previously found that the STN encodes the onset and termi-
nation of muscle activation. We thus asked whether the same 
principle emerges during walking.  

We instructed participants to stand for approximately 3 seconds 
before initiating a sustained bout of walking, after which they were 
requested to stop and stand for another 3 seconds (Fig. 5B). As 
observed during single-joint tasks, the initiation of walking 
involved a robust desynchronization in low- and high-beta power. 
Likewise, a transient desynchronization occurred in the same bands 
during the step preceding the termination of walking (Fig. 5C). 

These results suggested that changes in the walking state of 
participants could be predicted from STN LFP. To test this idea, 
we trained our machine learning classification algorithms to 
discriminate the probability of three classes: “standing”, “start/ 
stop” transitions and “walking”. The temporal profiles of the 
predicted probabilities for each class and performance analyses 
confirmed that the classifier was able to predict these three states 
accurately (55 ±5% SD across participants) (Fig. 5D, Fig. S11 and 
Movie S3). 

Figure 4 | Multimodal locomotor analysis 
platform. (A) Experimental setup for monitoring 
motor and neural states during unconstrained 
locomotor tasks. Externalized patients wore a whole-
body suit embedded with 19 inertial sensors located 
at key landmark joints of the body. This allowed to 
track their kinematics wirelessly and in real-time. All 
patients additionally wore six wireless electro-
myographic sensors on each leg that recorded 
agonist and antagonist muscles of the ankle (Tibialis 
Anterior TA, Medial Gastrocnemius GM, Lateral 
Gastrocnemius LG), knee (Vastus Lateralis VL, 
Semitendinosus ST) and hip (Rectus Femoris RF). 
(B) Patients performed various locomotor tasks 
requiring different levels of muscle recruitment and 
force. (C) Computation of leg muscle synergies. We 
extracted 4 muscle synergies from the set of 12 
bilateral EMG signals across locomotor tasks, which 
accounted for up to 90% of the variance of the 
original data. The temporal profiles of these 
synergies over the gait-cycle (left) and the weights of 
muscle contributions across patients (right) indicated 
that the extracted synergies predominantly captured 
bilateral propulsion and weight acceptance phases. 
All 4 synergies exhibited a clear increase with force. 
* p<0.05 paired t-test. (D) Bilateral STN LFP were 
recorded concurrently and aligned in time with 
kinematic and electromyographic signals for each 
task. Visual inspection of raw spectrograms 
highlighted modulations in well-defined frequency 
bands over the course of the task and across tasks, 
which aligned to the beginning and execution of 
walking (participant E1). 
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STN LFP encodes the timing of leg muscle synergies 
STN modulations during single-joint motor tasks were irrespective 
of the type (flexor vs extensor), location (ankle vs knee), or side 
(ipsilateral vs contralateral) of the muscles recruited. We thus asked 
how the STN would encode muscle activation patterns during 
walking, since the cyclic patterns of leg movements require a 
succession of stance and swing phases from both legs, associated 
with a mixture of flexor and extensor muscle activations. 

LFP analysis over the course of a gait cycle revealed modu-
lations in low- and high-beta power that were locked to the 

activation of muscle synergies from both legs (Fig 5E). Concretely, 
high-beta power exhibited pronounced desynchronizations span-
ning mid-swing to early stance. This timing coincided with the 
concomitant activation of the propulsion muscle synergy from one 
leg and the weight acceptance muscle synergy from the other leg. 
These patterns occurred twice per gait cycle, as expected from the 
alternating movements of the left and right legs and bilateral 
encoding of leg movements in the STN (Fig. S7). Consequently, 
high-beta power traces correlated negatively with the activation of 
leg muscle synergies (Fig. 5F). 

Figure 5 | STN encodes transitions between walking states and modulations in leg muscle synergies. (A) Illustrative example of changes in 
power spectral density (participant P1). Walking induces an overall decrease of high-beta power as compared to sitting and standing, along with 
modulations in the amplitude and frequency range of low-beta power. (B) Time decomposition of a complete walking sequence for patient P1. 
Chronophotography (top, please contact the corresponding author to request access to the image), average spectrogram (middle) and synergy traces 
(median ±SEM) highlight modulations in low- and high-beta that exhibit well-defined temporal patterns during continuous walking, aligned to the 
activation of leg muscle synergies. Transitions between locomotor states (onset and termination of walking) exhibit strong desynchronizations across 
beta bands. (C) Quantification of median power in the low- and high-beta bands during standing, walking and state transitions for patient P1 (Kruskal-
Wallis test with Bonferroni correction, n=20). Across participants, we distinguished two groups: those for whom low-beta exhibited strong rebounds 
after effort, and those who had a tendency to remain desynchronized. (D) Automatic prediction of locomotor states. We trained decoding algorithms 
to automatically discriminate between 3 classes (“standing”, “walking” and “transitions”) based on bilateral STN LFP signals. Average probability 
traces for each class over time and confusion matrix for patient P1, and cross-patient performance (* p<0.05 one-way ANOVA with Bonferroni post-
hoc correction, n = 12) (E) Time decomposition per gait-cycle. Average spectrogram (top), low- and high-beta power traces (median ±SEM, middle) 
and synergy traces (bottom) aligned and interpolated between consecutive contralateral footstrikes. (F) Cross-correlation coefficients between band 
power (low- and high-beta) and synergy activations (sum of all four extracted synergies) for each gait-cycle. High-beta band is negatively correlated 
with synergy traces, and desynchronizes whenever muscles are recruited, whereas low-beta exhibits a positive correlation due to rebounds at the 
late stages of swing. (G) Automatic prediction of bilateral gait events. We adapted our decoding algorithms to discriminate right vs left foot strikes. 
Average traces aligned between contralateral footstrikes for participant P1, and cross-patient performance (* p<0.05, Signrank test, n= 12), show the 
capacity to discriminate between such events. 
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Modulation of LFPs were even more pronounced in the low-
beta band. Walking involved desynchronization patterns during the 
weight acceptance phase (double stance) and the transition from 
stance to swing, followed by a rebound during the ballistic part of 
swing, which also occurred twice per gait cycle. Low-beta power 
thus exhibited predominantly positive cross-correlations with leg 
muscle synergies (Fig. 5F). 

These phase-locked patterns encouraged us to explore the 
possibility to predict gait events from STN LFP (Fig 5E). The 
decoder was trained to predict the probability of left vs right foot 
strikes, and reached an accuracy of 60 ±8% SD across participants 
(Fig. S12). Analysis of LFP patterns revealed that performance was 
contingent on the relative laterality in the encoding of muscle 
activation during walking.  
  
STN LFP encodes the vigor of leg muscle synergies 
We next asked whether the encoding of vigor is a general principle 
that also applies to the activation of leg muscle synergies during 
walking. We translated the single-joint paradigm wherein 
participants were instructed to produce two levels of muscle 
activation to the context of walking. We requested participants to 
produce a sudden increase in step length during walking (Fig. 6A).  

Lengthening the step during transitions from a normal to a long 
step involved a significant increase in the amplitude of muscle 
synergies associated with ipsilateral propulsion and contralateral 
weight acceptance (Wilcoxon signed rank test, n=12, p=0.008). 

During the increase in step length, all participants exhibited a 
decrease in the power of both low- (signed rank test, n=8, p=0.023) 
and high-beta bands (n=9, p=0.055) (Fig 6B). This response 
abolished the rebound that occurred during late swing in low-beta 
and reinforced the desynchronization in high-beta power (Fig 6C). 

We observed the same modulation patterns during walking 
involving sustained short versus long steps (Fig 6D,E,F).  
  
Continuous prediction of muscle synergy amplitude 
during walking   
We then tested the possibility to predict the continuous modulation 
of leg muscle synergies from STN LFP, both during short and long 
steps. We established a deep learning model27 that takes as input 
the spectral decomposition of bilateral LFP signals and generates a 
continuous prediction of muscle synergy amplitude over time. The 
model was trained and tested on all recordings of walking with 
short and long steps (Fig. 7A). Since the power of STN LFP 
correlated with bilateral muscle synergies, we trained the model to 
predict the sum of all four muscle synergies. The model accurately 
predicted the amplitude (average R2=0.51) and timing (average 
cross-correlation = 0.30) of synergy profiles for all participants 
(Fig. 7B,C,D and Fig. S14).  

Training the model to predict only one synergy led to lower 
accuracy, both in amplitude (average R2=0.21) and timing (average 
cross-correlation=0.24), compared to the prediction of all four 
synergies combined (Fig. 7D).  

Figure 6 | STN encodes modulations in force during walking. (A) Patients were instructed to perform a locomotor task that involved a long step 
interleaved during short steps. This required a bigger activation of muscles related to propulsion (leg in stance) and weight acceptance (landing on the 
contralateral leg). (B) Time decomposition of a complete walking sequence (patient P1). Chronophotography (top, please contact the corresponding 
author to request access to the image), average spectrogram (middle) and synergy traces (median ±SEM) highlight modulations in low- and high-beta 
aligned in time with the recruitment of contralateral propulsion (LP) and ipsilateral weight acceptance (RWa) synergies during the big step. (C) 
Correlation between band power (low- and high-beta) and synergy amplitude (sum of LP and RWa) for each gait-cycle. Steps requiring bigger synergy 
recruitment consistently exhibit strongly desynchronized low- and high-beta correlates (Wilcoxon signed rank test, * p<0.05, ** p<0.01). Boxplots 
showing cross-patient quantifications confirm this behavior. (D) Power spectral density during tasks requiring walking with sustained big steps, as 
compared to sustained small steps. Both low- and high-beta bands exhibit a reduction in power. (E) Time analyses per gait-cycle for this task. Average 
spectrogram (top) and power traces (median ±SEM, middle) aligned and interpolated between contralateral footstrikes. Predominant force-related 
changes occur just before footstrikes, aligned with propulsion phases. Boxplots showing quantifications across patients confirm this behavior (bottom) 
(Wilcoxon signed rank test test). 
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Idiosyncratic encoding of walking                    
We found that participants exhibited both common and idio-
syncratic features during single muscle activation. Importantly, 
comparisons of LFP patterns during walking versus single-joint 
paradigms revealed that these features were highly consistent 
across tasks for all participants (Fig. S5 and S6).  

  
STN LFP encodes muscle activation underlying 
activities of daily living  
Activities of daily living require gait adaptations that involve 
modulations in muscle activation to accommodate leg movements 
to changing terrains. Therefore, we asked whether the encoding of 
muscle activation in the STN also captured these modulations.  

We asked participants to walk naturally without any signs on 
the floor, and to step over an obstacle located in the middle of the 
room (Fig. S15A and Movie S2). Passing the obstacle required an 
increase in flexion to raise the foot above the obstacle, followed by 
an increase in propulsion contralaterally. These leg adaptations 
were paralleled by modulations in STN LFP that mirrored the 

patterns observed during the sudden production of a long step 
(Fig. S15B).  

While the decoder was trained on short versus long steps, the 
same decoder accurately predicted standing and walking without 
any visual cues, as well as modulations related to the obstacle (Fig. 
S15C). 
 
Decoding of freezing of gait  

Finally, we sought to leverage our decoding framework to test 
whether dysfunctional components of walking could be predicted 
from STN recordings.  

Four participants exhibited frequent episodes of freezing of 
gait, predominantly whilst turning. Two participants showed 
“complete akinesia”28 (E2 and P3), while the other two participants 
exhibited “leg trembling with little effective forward motion” (E3) 
or “shuffling steps with minimal forward movement” (P1). We 
asked a neurologist expert in movement disorders (A.Z.) to define 
these periods based on video recordings. To capture the precise 
time windows during which both feet were “glued to the floor”28, 
we combined these visually-defined periods with analyses of 
accelerometer data from sensors attached to the shoes of the 
participants (Fig. 8A).  

Visual inspection of LFP spectral features revealed that these 
periods correlated with the emergence of predominant low-beta 
signatures in bilateral STN LFP, along with partial co-activation of 
knee extensor muscles that reflected the incapacity to shift 
bodyweight (Fig. 8A). Alternations of right and left muscle 
activation patterns resumed as soon as low-beta synchronization 
vanished. 

Analysis of spectral components showed increased low-beta 
power during freezing periods compared to walking or standing, 
although the predominance of these signatures mirrored the 
severity of freezing events in each participant, and the frequency 
and duration of events28 (Fig. 8C).  

We finally configured our machine learning classification 
platform to predict the occurrence of periods during which feet are 
“glued to the ground” (Fig. 8B,C). Cross-validation performance 
reached accuracies (between 60 and 75%) for participants 
exhibiting a large number of freezing episodes. Performance was 
variable for participants with few episodes to train the decoder 
(around 50% across three classes). 

DISCUSSION  
We conceived a neurorobotic platform that allowed us to uncover 
fundamental principles of leg movement encoding in the STN. We 
found that the STN encodes the initiation, termination and vigor 
of leg muscle activation, independently of the recruited muscle. We 
found that the same principles underlie the encoding of bilateral leg 
muscle synergies during walking. We translated this understanding 
into machine learning classification algorithms that predicted 
walking states, gait events, vigor of walking, and freezing episodes. 
Here, we discuss the similarities in the principles that determine the 
encoding of arm and leg movements, and how understanding 
patient-specific modulations during isolated leg movements 
allowed the interpretation of functional and dysfunctional LFP 
patterns during walking. 
 
Encoding of sensory feedback in STN LFP 
Sensory feedback is an essential source of control during walking29. 
People with PD exhibit a reduction in gait automaticity30. Conse-
quently, studies suggested that the cerebral cortex may be more 
engaged in the control of walking in people with PD compared to 
healthy indivi-duals31. Difficulties to integrate proprioceptive 

Figure 7 | Prediction of muscle synergy activation during walking 
using a deep learning model. We implemented state-of-the-art deep 
neural network algorithms to model the continuous amplitude 
modulations of leg muscle synergies from STN LFP. (A) Architecture of 
the neural network. Bilateral raw LFP are pre-processed and used to 
compute a spectrogram for each contact pair (multitaper). For each 
timepoint (10ms resolution), a sliding window (500ms) is isolated and fed 
into a convolutional neural network (CNN) that processes their image 
properties. The CNN is composed of three consecutive convolutional 
layers with increasing receptive fields. Each layer identifies the spectro-
temporal features that best predict the output at their specific resolution 
and pass them on to the next layer. A final layer (fully connected neural 
network) combines all features into a single prediction of synergy 
activation. Training and testing of the deep neural network are performed 
using leave-one-out cross-validation on all short and long walking 
sequences combined. We compared the performance when predicting an 
individual synergy (unilateral) versus predicting the sum of all four 
synergies (bilateral).  (B) Illustrative examples of target vs predicted 
synergy traces for six walking sequences (three sequences of small steps 
and three sequences of big steps). (C) Quantification of performance 
when predicting the amplitude and timing (cross-correlation between 
target and prediction) of synergy profiles for each walking sequence. (D) 
Boxplot showing the cross-participant accuracy when modeling the sum 
of all (four, bilateral) synergy profiles vs predicting a single synergy. 
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information may be responsible for 
this reduced automaticity32, to 
which basal ganglia dysfunction is 
likely to contribute. Experiments in 
non-human primate models and 
intra-operative recordings in 
humans showed that PD alters the 
encoding of sensory feedback in 
the STN33,34. We found that 
proprioceptive sensory feedback 
from the legs is also encoded in 
STN LFP. This encoding followed 
similar modulation profiles that 
emerged in the same frequency 
bands as those underlying 
volitional muscle activations. 
Together, these results suggest an 
involvement of the STN in the 
integration and processing of leg 
sensory feedback signals, especially 
proprioception. 
 
Encoding of gait initiation 
and termination in STN LFP 
The basal ganglia has long been 
associated with the selection of 
motor programs2,8 and transitions 
between motor states7,10. The well-
controlled conditions of our neuro-
robotic platform allowed us to 
uncover systematic modulations in 
STN LFP during the initiation, 
termination and concatenation of 
leg muscle activation. We then 
translated these observations to the 
context of walking. We found that 
STN LFP encodes the initiation 
and termination of walking, as well 
as transitions between walking 
states when accommodating 
locomotor movements to sudden 
behavioral constraints, such as avoiding an obstacle. These results 
are compatible with observations in animal models. Single-unit 
recor-dings combined with activation/inactivation experiments 
showed that neurons located in various regions of the basal ganglia 
communicate with brainstem locomotor regions35,36 to control gait 
initiation11,37 and termination12,38.  
 
Encoding of bilateral leg muscle synergies in STN LFP 
Previous studies reported that STN LFP encodes bilateral compo-
nents of arm, hand or even finger move-ments3,39–41. This encoding 
did not appear to be specific for the type of movements or muscles 
involved. Our observations during isolated leg movements confir-
med that the same principles apply to the encoding of leg muscle 
activation.  

During walking, STN LFP displayed modulation patterns that 
directly reflected the activation of synergistic groups of leg muscles. 
These modulation patterns included two desynchronizations in 
beta power per gait-cycle that coincided with the activation of 
propulsion and weight-acceptance muscle synergies, followed by 
resynchronizations (and rebounds) during the ballistic component 
of the swing phase. These patterns emerged during steps from both 

legs. Deep learning modeling confirmed that the relative amplitude 
of bilateral muscle synergies is continuously encoded in the STN. 

Our observations suggest that the STN encodes leg muscle 
activation during walking with high temporal resolution but low 
specificity. This conclusion is in line with current views about the 
role of the basal ganglia in the selection of motor programs that are 
encoded in other neural structures42. For example, it is well-
established that the spinal cord encodes leg muscle synergies43,44. 
In turn, the modular activation of muscle synergies simplifies the 
elaboration of various locomotor programs45. Our results are 
compatible with the idea that the STN contributes to selecting 
muscle synergies during walking.  

 
Encoding of vigor in STN LFP  
Single-joint experiments revealed that STN LFP encodes the vigor 
of leg muscle activation. However, this principle could only be 
detected during the sustained activation of muscles with different 
levels of force. Maintaining a strong force required continuous 
adjustments in muscle activation that were not required when 
maintaining a weak force. We surmise that these continuous 
adjustments imposed a continuous engagement of the STN to send 
corrective commands downstream, which delayed the re-

Figure 8 | Prediction of freezing of gait episodes from STN LFP. (A) Illustrative example of a freezing of 
gait episode during turning. Chronophotography and kinematic traces of trunk orientation and foot elevation 
(top, please contact the corresponding author to request access to the image), spectrogram of raw STN LFP 
(middle) and bilateral knee extensor EMG traces (bottom) for a walking bout involving two U-turns. Periods 
of freezing of gait (defined based on video analysis by a movement disorders clinician) are indicated with 
orange dashed lines. Within those periods, we additionally computed the precise times during which feet are 
“glued to the ground” using kinematic sensors attached to the feet. (B) Aligned probability traces from a 
decoding algorithm trained to discriminate 3 classes (“stand”, “walk” and “freeze”). (C) Four patients exhibited 
episodes of freezing, which differed in their types28 and severity (duration and frequency of events). PSD 
profiles for each class highlight a predominance of low-beta power during freezing episodes that reflect the 
severity of FoG in each patient. Boxplots quantify the median power in the low-beta band for each class. We 
then trained our decoding algorithms to predict freezing episodes for each patient individually. Confusion 
matrices highlight the decoding performance for each participant.  
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synchronization in beta power. The same principle applied during 
walking. The execution of long steps involved an increase in the 
amplitude of the muscle synergy associated with propulsion, 
compared to short steps. This increase abolished the rebound in 
low-beta that was observed during the ballistic phase of swing 
when participants walked with short steps.  

Patients with PD display small shuffling steps and slow walking 
with reduced propulsion. While many aspects may contribute to 
these deficits, the difficulty to maintain a sustained desynchro-
nization during the activation of propulsion-related muscles may 
partly explain these deficits. Consistent with our observations, 
experiments in animal models showed that the relative activity of 
basal ganglia neurons scale up with the speed of walking2,8,35,46. 
Similarly, the vigor and speed of movement was found to be 
encoded in STN LFP of patients performing manual tasks3,4,40.  

Automatic predictions of gait features from STN LFP 
Understanding the principles through which leg muscle activation 
is encoded in the STN allowed us to configure machine learning 
algorithms that predicted gait features from STN LFP. We could 
predict walking states, gait events and vigor with accuracy. While 
each algorithm was trained and tested separately on individually 
defined classes, they could easily operate in parallel as part of an 
integrative platform for real-life applications.  

However, we also identified limitations in the scope of gait 
features that may be predicted from STN LFP to control closed-
loop therapies. For example, spatiotemporal stimulation of the 
lumbar spinal cord49 has the potential to alleviate gait deficits in 
people with PD. This intervention requires real-time control of 
stimulation bursts targeting specific joint movements. Our results 
suggest that this spatial resolution is not accessible from STN LFP. 
Other brain regions may complement STN decoders for 
applications that require muscle- or joint-specificity. Increasing the 
resolution of STN recordings may resolve this issue. For instance, 
single-cell recordings reported preferential firing of STN neurons 
with different joystick directions in intra-operative conditions47, as 
well as with detailed kinematics in animal models48.   

Clarification of conflicts in the literature 
The encoding of gait in the STN has remained controversial. A 
subset of studies reported a reduction either in high-beta power18,19 
or in the entire beta band25,49 during walking compared to standing, 
as well as frequency shifts in the beta peak20. Instead, other studies 
failed to detect changes in power21. Additionally, two studies 
documented beta modulations aligned to the phases of gait18,19, but 
the temporal patterns of these analyses did not match.  

To disentangle these heterogeneous results, we implemented 
three strategies. First, we used an unbiased fitting algorithm to 
identify patient-specific frequency bands. Second, we informed the 
design of locomotor tasks based on the deconstruction of gait 
features during single-joint paradigms. Third, we computed explicit 
metrics of leg muscle activation that allowed us to establish direct 
links between the modulation of STN LFP and motor 
performance. These strategies uncovered systematic and 
reproducible correlations between STN modulations and the 
timing and vigor of leg muscle synergies. These strategies were 
essential to expose these principles. Instead, the considerable 
variability across patients hindered most of these correlations when 
LFP signals were averaged across gait cycles and patients. We infer 
that these idiosyncratic modulation patterns are largely responsible 
for the variability observed across previous studies. 

Encoding of gait freezing 
Freezing of gait remains an enigmatic phenomenon. The ability to 
predict the occurrence of freezing episodes is essential to design 

therapies able to prevent or alleviate these deficits. Studies that 
investigated this phenomenon reported a variety of correlates in 
STN LFP, including increases in entropy49, low-beta power25,26 or 
cortico-STN decoupling50. Our recordings confirmed that gait 
freezing was associated with an increase in low-beta power, and 
that this increase coincided with periods when both feet were 
“glued to the ground” whilst turning. Concomitantly, abnormal 
activation patterns emerged in bilateral knee extensor muscles, 
which prevented patients from shifting body weight from one leg 
to the other despite the intention to turn.  

We leveraged this understanding to design classification 
algorithms that predicted gait freezing, suggesting that our 
computational framework could discriminate between functional 
and dysfunctional walking states. However, the robustness of the 
decoders was variable across patients. Concretely, we found that 
the magnitude of low-beta modulations mirrored the type and 
number of freezing events. So did decoding performance. For 
patients who suffered infrequent episodes of gait freezing that 
terminated rapidly, we could not collect a sufficient amount of data 
to train and test the decoder. However, we anticipate that 
monitoring STN LFP throughout the day will enable the collection 
of the necessary data to train robust decoders.  

We exposed fundamental principles through which the STN 
encodes leg muscle activation during isolated leg movements and 
walking. We predict that this understanding will open new 
possibilities to design algorithms that decode gait deficits in people 
with Parkinson’s disease. These predictions will support strategies 
that translate continuous recordings of STN LFP into control 
commands to operate neuromodulation therapies in closed loop.  

MATERIALS AND METHODS 
Study design 
The objective of this study was to uncover the STN correlates 
underlying locomotor functions, and to leverage this understanding 
to develop decoders that predict functional and dysfunctional gait. 

20 patients with Parkinson’s disease were recruited for the study. 
All participants received bilateral deep brain stimulation (DBS) 
leads (Medtronic 3389) and were recorded in the five days that 
followed their surgery. One participant, who was only able to 
perform single-joint experiments during the post-surgery period, 
was additionally recorded 6 months later on the walking tasks. Ten 
patients were recorded while their leads were externalized (referred 
to in the text as “patient Ex”). Ten patients were implanted with a 
Percept PC stimulator (Medtronic, USA) in the right abdominal 
area, and were recorded using the sensing capabilities offered by 
the device (referred to as “patient Px”). Patients were 
predominantly in the OFF-medication condition (>12h), although 
depending on their severity, some retained some dopamine agonist 
medication (see Table S1). 

Not all patients participated in all motor tasks. 19 patients 
performed the isometric single-joint force tasks in the neurorobotic 
platform. Five of them additionally performed the isotonic and 
passive experiments. 15 patients performed the walking tasks 
(small, big and mixed steps). Four patients additionally performed 
the obstacle-avoiding task.  

For single-joint experiments, two patients were excluded due to 
technical problems during data acquisition. For gait experiments, 
one patient had to be removed due to difficulties in synchronizing 
neural and kinematic data. Another patient was excluded because 
all LFP channels exhibited artifacts (see artifact definition below). 
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Overall, 17 patients were retained for analyses on the neurorobotic 
platform and 12 for gait experiments. 

All experiments were approved by the Ethical committee of the 
Canton de Vaud, Switzerland. Informed consent was obtained after 
the nature and possible consequences of the studies were explained. 

DBS electrode localization 
Lead localization was computed using the processing pipeline 
(Horn & Li et al. 2018) in the Lead-DBS Matlab toolbox (Horn & 
Kühn. 2017), using pre-operative T1 and T2-weighted MRIs and a 
post-operative CT-scan as inputs. Briefly, post-operative CT scan 
was linearly co-registered to pre-operative MRI using advanced 
normalization tools (ANTs, Avants et al. 2011). Co-registrations 
were visually verified and manually corrected if needed. A brain 
shift correction step was applied, as implemented in Lead-DBS. All 
preoperative volumes were used to estimate a precise multi-spectral 
normalization to ICBM 2009b NLIN asymmetric space (Fonov et 
al. 2009) applying the ANTs SyN Diffeomorphic Mapping (Avants 
et al. 2008) using the preset “effective: low variance default + 
subcortical refinement”. DBS contacts were automatically pre-
reconstructed using the phantom-validated and fully automated 
PaCER method (Husch et al. 2017). They were all individually 
verified. 
 
LFP recordings 
Externalized patients: Local field potentials were recorded by 
connecting the externalized extension leads to a high-resolution 
amplifier (Tucker Davis Technologies, USA for patients E1-3, and 
ANT-neuro, Netherlands, for patients E4-10). Digitized signals 
were imported into a dedicated computer. For patients E4-10, we 
used the OpenVibe library (Renard et al., 2010) to enable real-time 
acquisition of LFP. For each hemisphere, signals from each contact 
were referenced to the upper-most electrode. They were later re-
referenced as bipolar channels between neighboring contacts. 
Recordings were high-pass filtered (2nd-order Butterworth filter, 
3Hz cut-off), 50-Hz notched, and downsampled to 1kHz. Signals 
were visually inspected and whenever needed, artifacts were 
identified and replaced by a noise signal carrying the same 
frequency components as the whole recording. Synchronization 
with additional devices was performed using the “trigger” input to 
the amplifier. 

Percept PC:  Local field potentials were recorded using the sensing 
capabilities of the Percept PC (sampling frequency 250 Hz). 
Recordings in resting conditions (sitting or standing) were 
performed in the Indefinite Streaming mode, which records all 3 
bipolar contact pairs. Recordings during motor tasks were obtained 
in the Brainsense Streaming mode, which is restricted to one contact 
pair per hemisphere. Prior to the first recording session with each 
patient, we performed a Brainsense Survey and visually inspected the 
PSD of each pair. We selected the contact pair with the highest beta 
power and kept that pair for all subsequent experiments. We 
further ensured that the selected contact pair was not labeled as 
“artefacted” by the system. Synchronization with external devices 
was performed by applying a transient DBS burst (130Hz, 60us, 
1mA) at the beginning and end of each recording, which induced 
artifacts in an external electromyographic sensor placed on the 
chest of the patient, in the vicinity of the IPG (Thenaisie et al., 
2021). 

All recordings were performed in the OFF-stimulation condition. 
For Percept PC recordings in the Brainsense Survey mode, stimula-
tion was ON at 0mA. 
 

Biomechanical recordings during gait 
Kinematics: Externalized patients were recorded using a whole-
body suit endowed with 19 motion sensors on key landmark joints 
of the legs, arms, trunk and head (Rokoko, Denmark). The suit 
transmitted accelerometer and magnetometer data wirelessly 
(100Hz) to a dedicated computer running the Rokoko Studio 
software, which reconstructed 3D body positions using an inverse-
kinematics model. The model was personalized for each patient 
(definition of body height and segment lengths) on the first day of 
experiments. Prior to every recording, the initial pose of the model 
was calibrated during a baseline “standing” position to maximize 
the accuracy of subsequent movements. Patients implanted with 
the Percept PC were recorded in a gait lab using an optoelectronic 
motion capture system (Vicon, UK) that measured 3D positions of 
key body joints. 

Kinematic data was complemented with bilateral triaxial inertial 
measurement unit (IMU) sensors (Delsys, MA, USA) attached to 
the patients’ shoes, which recorded raw gyroscope signals from the 
right and left feet (sampling frequency: 148Hz). All recordings were 
synchronized using dedicated trigger signals. 

Electromyographic signals: EMG signals were recorded using a 
wireless system operating at 1.5kHz (Noraxon, USA). Sensors were 
placed bilaterally, on agonist and antagonist muscles of the ankle 
joint (TA Tibialis Anterior, MG Medial Gastrocnemius, LG Lateral 
Gastrocnemius) knee joint (VM Vastus Medialis, ST Semitendi-
nosus) and hip joint (RF Rectus Femoris). For patients implanted 
with a Percept PC stimulator, an additional EMG sensor was placed 
on the chest for synchronization purposes. 
 
Identification of LFP power frequency bands 
The identification of power frequency bands was personalized for 
each patient. Theta, low- and high-beta, and gamma bands were 
identified using an unbiased algorithm that fits the PSD of each 
patient as a combination of an aperiodic (1/f) and a mix of 
Gaussian components24. The algorithm iteratively optimized the fit 
and found the most appropriate number of Gaussian components 
and their parameters (mean and std) to model the original spectrum 
with a given accuracy. 

Since frequency bands may differ or shift20 between rest and 
movement, and specific bands may only emerge during movement 
(such as gamma), we run the fitting algorithm on the PSD 
computed on the complete recordings in the neurorobotic platform 
(isometric task), which included both resting and leg effort periods. 
Identified Gaussian components in the 13-20 Hz range were 
labeled as “low-beta”, and those in the 20-35 Hz range were labeled 
as “high-beta”. All 17 participants exhibited a high-beta band. 10 
participants did exhibit a low-beta band (Fig. S5 and S6). 
 
Joint-specific motor tasks in the neurorobotic platform 
Patients were comfortably sitting on an instrumented isokinetic 
machine (HUMAC NORM, CSMI, USA). The shin of their most 
affected leg was strapped to a pushing lever, connected to a 
dynamometer that measures rotation angles, speeds, and forces 
applied during a range of experimental conditions (isotonic or iso-
metric exercises, active or passive movements). A screen provided 
patients with real-time visual feedback about their performance 
during each task. 

Active isotonic movements: Patients were asked to perform a 
knee-extension movement from a resting position (baseline, 90-
degree angle of the knee joint) to a full leg extension, and to release 
the leg back to baseline. 30 repetitions were recorded, interleaved 
with pauses of 5s duration. 
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Passive movements: Patients were asked to completely relax their 
leg (at the baseline position) and to not exert any resistance. The 
neurorobotic platform was programmed to passively move the 
patients’ leg with an angular range and speed matching the ones 
recorded during active isotonic movements. Each trial was 
interleaved by 5s resting periods. 

Isometric transient effort exercises: Patients were asked to push 
against the lever and to exert a predefined isometric force (either a 
low or a high force, defined as 33% and 66% of their maximal 
voluntary contraction respectively). Throughout each trial, they 
received visual feedback of the force being exerted, along with the 
target. They were asked to release the effort immediately as soon as 
they reached the target (displayed on the screen as a yellow circle 
with predefined diameter, it disappeared from the screen as soon 
as patients reached it). 

Isometric sustained effort exercises: Similar to the previous 
task, but patients were asked to reach and maintain a low or a high 
force for five seconds before releasing their effort. The target 
remained displayed on the screen for the duration of the task and 
patients were instructed to maintain their force within the circle. 
 
Locomotor tasks 
Walking tasks (small and big steps): Patients were instructed to 
stand for approximately 3 seconds before initiating a sustained bout 
of walking at their comfortable speed (in a straight line), placing 
their feet on marked lines on the floor. Marked lines were spaced 
either 47cm (small) or 70cm (big) apart from each other. When 
arriving at the end of the bout, patients were instructed to stop and 
stand for another 3 seconds, before doing a U-turn and starting 
again. 

Obstacle task: Patients were asked to walk at their natural speed 
in a straight line (without any marks on the floor). An obstacle 
(height 10.5cm, length = 39.5cm) was placed on their path. They 
were requested to stride over it and continue walking normally until 
the end of the bout. 
                                                                                                                           
Identification of gait events & Definition of locomotor 
states 
Bilateral gait events: We computed periods of walking and 
turning, along with toe-off and heel-strike events, automatically 
from gyroscope signals from the right and left feet using a modified 
version of the two-step framed threshold algorithm24. All identified 
events were validated manually. Briefly: 

First, uninterrupted walking sequences were identified from low-
pass filtered signals in the sagittal plane (3Hz, 5th-order Butter-
worth). Mid-swing peaks were detected using a threshold (defined 
as the average of the top ten peaks and scaled by 0.2. A minimum 
value of 40 degrees/seconds was taken) and pooled together when 
less than 3 seconds apart. Peaks of right and left sensors that did 
not occur consecutively were discarded. Identified walking 
sequences lasting less than 5 seconds and occurring during 
concomitant peaks in the coronal plane (which corresponded to 
turning periods, see below) were also removed. 

Within each walking sequence, we extracted heel strike and toe off 
events. Gyroscope signals were low-pass filtered at 5Hz (5th-order 
Butterworth). We first refined the identification of mid-swing 
points. These points needed to be at least 0.5 seconds apart, and 
greater than a sequence-specific threshold (defined as the mean of 
all points exceeding the sequence mean). Any mid-swing points not 
complying with these rules were discarded.  We then computed 
“full contact” times, i.e. when feet were in full contact with the 

floor (these corresponded to a plateau in the acceleration profiles). 
They were identified as the maximum of the plateau between 
consecutive mid-swing peaks. From there, (i) heel strike events 
were identified as the minima occurring between mid-swing and 
“full contact” points, and (ii) toe-off events were defined as the 
minima occurring between “full contact” points and the next mid-
swing points. 

We then identified turning sequences. The low-pass filtered 
gyroscope signals in the coronal plane (5Hz, 5th-order Butterworth 
filter). Turning peaks needed to be superior to a threshold (defined 
as 75% quantile of the datapoints exceeding the mean of the whole 
recording) and at least 0.2 seconds apart. Turning sequences were 
pooled together: Peaks separated by less than 1.75x the mean inter-
peak distance throughout the recording were assumed to belong to 
the same turning sequence. 

Locomotor states: Using the aforementioned gait events, we 
categorized each time-point of the recordings into five discrete 
locomotor states, labeled as “standing”, gait “initiation” and 
“termination”, “continuous walking”, and “turning”. 

For each walking sequence, gait initiation was defined as starting 
0.5s prior to the first heel-off (time needed for the postural 
adjustment and bodyweight shift required to lift the leg) until the 
first heel strike. Gait termination was defined as the last 2 gait cycles 
(one full step with one leg, and a last one to bring the trailing leg 
next to the leading leg). Continuous walking corresponded to all 
steps in between. Standing was defined as the periods between the 
end of turning and the beginning of gait initiation (standing pre-
walk), or as the period between gait termination and the beginning 
of turning (standing post-walk). 

This state-machine description of gait was further used for develo-
ping gait-state decoders and compute state-related analyses of 
power. 
  
Computation of muscle synergies 
We first computed EMG envelopes for each individual muscle. 
Raw EMG signals were band-pass filtered (20-500Hz, zero-lag 4th-
order Butterworth filter), full-wave rectified and smoothed (zero-
lag 4th-order low-pass Butterworth filter at 7 Hz). Envelopes were 
normalized so that their maximum would be one. 

Synergies were derived from all muscle envelopes of the left and 
right leg together (N = 12 muscles), using recordings from both the 
small and big stepping tasks. A non-negative matrix factorization 
(NNMF) algorithm was iteratively run (1000 iterations beginning 
from 10 initial seed values, randomly selected using the 
multiplicative update algorithm). For each patient, the 4 first 
dimensions were kept, and we verified their percentage of variance 
explained (~90% across patients). We then labeled each one of the 
extracted synergies as right or left “weight acceptance” or 
“propulsion” based on the muscle weights and their temporal 
activations profile. 

To obtain average synergy activation profiles for each task, synergy 
traces were linearly time interpolated over the 4 phases of each 
individual gait cycle (bilateral stance, swing and double stance, as 
defined by gait events). Gait initiation and termination steps were 
excluded from this average. The area under the curve of for synergy 
was computed using trapezoidal numerical integration and 
compared between tasks across subjects. 

The synergy sub-space identified on small and big steps was then 
also used to extract the temporal activation profiles of synergies for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 15, 2022. ; https://doi.org/10.1101/2022.02.08.22270370doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.08.22270370
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

other tasks (e.g., mixed steps) by multiplying muscle envelope 
signals with the identified weights. 
 
Identification of artefacted LFP channels during gait 
Gait-related artifacts affect signals predominantly in the low-
frequencies but can also spread to higher frequencies, which makes 
them difficult to be removed through standard filtering. Cleaning 
methods using ICA or advanced signal processing tools have been 
reported in literature (Gwin et al., 2019) but results and 
interpretations have remained controversial (Castermans et al., 
2014). Moreover, the identification of corrupted channels itself can 
be tricky, as movement-related neural modulations and artifacts are 
both locked to the rhythm of gait. 

Rather than aiming to identify artifacts in the time-domain, we 
reasoned that corrupted channels would exhibit important differ-
rences in the aperiodic (1/f) component of the power densities 
(PSD) between rest and walking: The aperiodic component 
captures the overall baseline power across the spectrum and should 
not change importantly over consecutive trials (task-related 
modulations are expected to be captured in the activity of periodic 
frequency bands) 

For each patient, we thus applied the fitting algorithm24 to the PSD 
of two separate recordings, one at rest (sitting) and one during 
walking (from the same session). We then compared their aperiodic 
(1/f) component: We computed the root mean square error 
(RMSE) in the range [10-90] Hz (region of interest) and ensured 
that walking did not induce an increase in 1/f power bigger than 
50% compared to that sitting (difference of 1.76 dB) (Fig. S10). All 
channels that exceeded that value were considered as corrupted in 
the region of interest and discarded for further analyses or decoding 
purposes. Visual inspection of the spectrogram for channels 
labeled as “artefacted” consistently showed important low-
frequency spikes that periodically corrupted the spectrogram and 
spread to higher frequencies. All retained channels were also 
verified by visual inspection of their spectrogram. 

We note that this approach is highly restrictive, in that channels 
may still convey useful information (for instance in high 
frequencies that have a priori not been corrupted) but are 
nonetheless completely discarded. Overall, N=6 participants 
exhibited at least one corrupted channel. One patient (implanted 
with the Percept PC) had to be completely excluded as all contacts 
(one per hemisphere) were artefacted. 
 
Spectral and power analyses of experiments in the 
neurorobotic platform 
Identification of events and interpolation: Events were defined 
from knee angle (isokinetic tasks) or torque (isometric tasks). Start, 
hold, release and end events corresponded to the maximum (start) 
and minimum (stop) torque acceleration, and on angle/torque 
thresholds manually defined for each recording (hold and end). The 
baseline was defined as the 2.5s preceding start, and the post-effort 
resting period as the 2.5s following end. 

Interpolation: Data (torque, leg angle, EMG envelopes, band 
power data and power spectrum) was epoched and interpolated for 
each time window defined by two events. Epochs containing bad 
task execution or LFP artifacts were manually excluded. 

Average scalograms: Scalograms were computed with continu-
ous wavelet transform (cwt function, Morlet’s wavelets) from 8 to 
95Hz and log-normalized to baseline for each frequency as: 

 

Band power: The whole recording was filtered to the band limits 
(Butterworth order 4), and power was computer after Hilbert 
transform. Powers were epoched and interpolated. Power of each 
epoch were log-scaled and normalized to the pre-movement resting 
period, and smoothed with a 0.5s moving average before mean and 
standard error of the mean computation. 

Statistical analysis: Scalograms and band power were tested at the 
subject-level for difference between conditions (e.g. low and high 
forces) with Monte-Carlo cluster randomization (200 randomi-
zations, maximum sum of t-scores). Band powers were further 
tested at the group-level by averaging across each time window for 
each patient. Differences to baseline were tested with t-test. 
Differences between conditions (e.g. low versus high force) were 
tested with non-parametric Wilcoxon test. Bonferroni correction 
was applied for the number of bands tested (n=2). 
  
Spectral and power analyses of gait experiments 
Raw spectrograms: Spectrograms of raw LFP signals were 
computed through multi-taper decomposition using the Chronux 
library (http://chronux.org/) between 5 and 125Hz (N = 3 tapers, 
1s window with 50ms overlap). 

Average scalograms: Average scalograms were computed both 
for complete walking sequences (starting 2s prior to the first heel 
off and lasting until 2s after the last footstrike) or per gait cycle 
(between consecutive footstrikes of the same leg). For both cases, 
the scalogram of all the recorded sessions for each condition were 
computed using continuous wavelet decomposition (Morlet 
wavelets, Matlab, USA). Each frequency was normalized with 
respect to the mean power computed during “standing” periods (as 
previously defined). Walking sequences were pooled together 
depending on whether they started with the right or left foot, 
interpolated (5000 points for the standing periods before and after 
walking, and 1500 points between consecutive footstrike events 
during stepping) and averaged over time. For gait-cycle averages, 
consecutive steps were pooled together after interpolation and 
averaged in time. 

Computations of band-power per gait states: For each 
frequency band, power was computed from the bandpass filtered 
LFP signals ((4th-order Butterworth filter, limits defined by the 
fitting algorithm). Power was normalized with respect to the mean 
power of all “standing” periods pooled together. 

To compare band-power changes per gait state (standing, walking, 
initiation, or termination), we computed the median power for each 
repetition of each state (N = 20 sequences) and performed non-
parametric statistical analyses for each patient (Kruskal-Wallis test 
followed by multiple comparisons with Bonferroni correction). 

Cross-correlation between band-power and synergies: For 
each gait-cycle (defined as the period between consecutive 
footstrikes of the same leg), we iteratively computed the cross-
correlation coefficient between the z-scored band-power and the 
z-scored synergy profile (using the sum of all 4 synergies).  

Comparisons of power per gait-cycle: Comparisons in 
bandpower between short versus long steps were computed by 
comparing the time-interpolated power traces of each band 
(between consecutive footstrikes) using Monte-Carlo cluster 
analysis (200 randomizations, sum of t-scores). To derive statistics 
across-patients, we computed the median power of each band for 
each gait cycle. We restricted the calculations to a window of 200ms 
before each footstrike as key differences had been observed in 
those periods. 
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Decoding algorithms of force production during 
single-joint experiments 
Single-joint force decoder -- offline training and testing: For 
externalized patients, raw LFP signals (6 channels, 8kHz sampling 
frequency) were low-pass filtered at 1kHz and downsampled to 2 
kHz. For patients implanted with the Percept PC, raw signals (2 
channels, 250 Hz sampling frequency) were used without further 
pre-proce-ssing. 

To train each class, we defined an epoch range of 2 seconds relative 
to the onset of each class (the “rest” class started 2s before the start 
of the movement, the “weak force” and “strong force” classes  
started when participants reached the target force and started 
holding a constant force). Within each epoch range, we iteratively 
estimated the PSDs of the LFP over sliding windows of 500ms with 
30ms overlap. Each PSD was computed in a predefined frequency 
range (1-150 Hz for externalized patients, 1-125Hz for Percept PC) 
using a multi-taper method (2Hz per bin, Thomson 1982), as 
implemented in the Python MNE library (Gramfort et al., 2013). 
All PSD vectors from all channels were then concatenated into a 
unique feature vector of size = Nbins x Nchannels (75x6 = 450 
dimensions for externalized patients, 60x2 = 120 dimensions for 
Percept PC). 

We used a custom-built Python software for real-time decoding 
(https://github.com/dbdq/neurodecode). The decoder was based 
on Random Forest algorithms and implemented using the python 
Scikit-learn library (hyperparameters: 1000 trees, 5 maximum 
depth, and balanced subsampling). Testing performance was 
computed using Monte-Carlo cross-validation over 20 repetitions 
(20% of data for testing, 80% for training) within the epoch 
windows. Feature importance vectors (contribution of each 
frequency band to the overall prediction) were calculated for each 
channel from the trained model, and normalized (sum of all 
contributions equal to 1).  Quantification of performance (Fig. 3 
and Fig. S8) is reported as (i) median probability traces 
(interpolated) for each class, separately for weak and strong force 
levels, (ii) sample-based confusion matrix across all weak and 
strong trials, and (iii) median probability values of each class across 
all weak and strong trials. 

Single-joint force decoder – online real-time experiments: All 
three patients tested in real-time were externalized (Patients E1, E2 
and E3). The decoder was previously trained and tested offline 
using data recorded on the previous day. During real-time 
experiments, raw LFP data was pulled from the amplifier at 2kHz 
(one sample every 0.5ms) and buffered (buffer size of 500ms). PSD 
computations and predictions were computed at approximately 30 
Hz (one prediction every 33ms) to comply with computational 
resources. Computed probability traces for each class were then 
exponentially smoothed (alpha=0.1) to prevent abrupt noisy peaks 
or artifacts. 

Decoding algorithms during gait experiments 
Decoder of gait states: Decoders were trained to discriminate 
between “stand”, “walk” and “start/stop” classes.  We employed 
only LFP signals from contacts that were not corrupted by 
movement-related artifacts (see definition above).  Additionally, we 
only considered frequencies above 10Hz to ensure that only 
physiological data is accounted for (range used for PSD 
computations = 10-125Hz, for all externalized and Percept PC 
patients). Epoch ranges were reduced to 1 second (relative to the 
onset of each class), to account for the shorter duration of some 
classes during walking. The onset times of each class were defined 
as follows: the “standing” class started 1s before the “initiation” 

state and after the “termination” state (see definition of states 
above), the “start/stop" class started at the beginning of the 
“initiation” state and at the beginning of the “termination” state, 
and the “walk” class was defined within windows of 600ms around 
each footstrike (right and left combined) during the “continuous 
walking” state. 

Quantification of performance (Fig. 5 and Fig. S11) is reported as 
(i) median +/- sem probability traces (interpolated within consecu-
tive footstrikes) for each class, separately for short and long steps, 
(ii) sample-based confusion matrix across all short and long tasks, 
and (iii) median probability values of each class of the entire 
duration of each state across all short and long tasks. 

To further evaluate changes in decoder performance induced by 
artifact removal, we compared the features contribution when 
decoders were trained using all contacts (as compared to only using 
non-artefacted contacts) (Fig. S10). Removed channels systema-
tically showed predominant contributions of very low frequencies. 
Their removal did not importantly change the frequencies 
contributing from the other channel when starting at 10Hz. 

Decoder of gait events: Decoders were trained to discriminate 
between “stand”, “right footstrike” and “left footstrike” classes. 
Electrode contacts and training parameters were identical to those 
used in the decoder of gait states. The onset times of the “standing” 
class were kept unchanged. The “right footstrike” and “left 
footstrike” classes were defined within a window of 600ms around 
each footstrike event. Quantification of performance (Fig. 5 and 
Fig. S12) is reported as (i) median +/- sem probability traces 
(interpolated within consecutive footstrikes) for each class, 
separately for short and long steps, (ii) sample-based confusion 
matrix across all short and long tasks (computed within a window 
of 100ms around each event), and (iii) median probability values of 
each class of the entire duration of each state across all short and 
long tasks (same window). 

Decoder of gait freezing: Decoders were trained to discriminate 
between “stand”, “walk” and “freezing” classes. Electrode contacts 
and training parameters were identical to those used in the decoder 
of gait states. The onset times of the “standing” class and the 
“walk” class were kept unchanged. The onset times of the  
“freezing” class were defined based on the times of “feet glued to 
the ground” (see FoG definition below). Quantification of 
performance (Fig. 8) is reported as sample-based confusion matrix 
across all recorded trials for each patient. 
  
Deep neural network algorithm for the prediction of 
continuous levels of muscle activation. 
Architecture of the convolutional neural network (CNN): 
Bilateral LFP were used to compute a spectrogram for each contact 
pair (multitaper). For externalized patients, raw signals were low-
passed at 1kHz and downsampled from 8kHz to 2kHz. For Percept 
PC patients, signals were preprocessed with a hardware bandpass 
filter in the range of 0.5-100 Hz and sampled at 250Hz. At each 
timepoint (every 10ms), a spectrogram vector was estimated from 
a sliding window of 500ms. 100 consecutive spectrogram vectors 
were concatenated and fed into the CNN as an input sample with 
the mapping muscle activation value as the target output. 

The CNN was composed of 3 consecutive one-dimensional 
temporal convolutional layers with increasing receptive fields 
(layer1: 34 filters with receptive field of view (FoV) of 30ms, layer2: 
64 filters of 60ms FoV, layer 3: 128 filters of 120ms FoV). Each 
layer was trained to identify the spectro-temporal features that best 
predict the output at their specific resolution, which were passed to 
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an average-pooling layer with a temporal stride of 2. The output 
values from the final pooling layer were then flattened and fed into 
a fully connected layer of 512 nodes, which are finally fed into a 
single output node without activation function that is mapped to 
the normalized  muscle activation value. Training and testing of the 
deep neural network were performed using leave-one-trial-out 
cross-validation on all short and long walking sequences combined. 
Cross validation was performed at the trial level, i.e. samples were 
grouped by each trial so that samples from the same trial do not 
split into training and testing folds, to avoid having optimistic 
performance due to the temporal proximity of samples. 

Performance (Fig. 7 and Fig. S14) was quantified in terms of (i) 
the capacity to predict changes in synergy amplitude, quantified as 
the 95% quantile of each walking sequence, and (ii) the timing of 
synergy modulations, computed as the cross-correlation between 
the target and modeled traces of each walking sequence.   
 
Definition of time-periods of freezing of gait 
Clinical evaluation: Periods of freezing of gait were identified 
based on video analysis by a neurologist expert in movement 
disorders (A.Z).  

Kinematic detection of feet “glued to the ground”: Within the 
periods identified by the neurologist, we computed the times in 
which the feet of patients were “glued to the ground” using inertial 
sensors attached to the shoes of the participants. We applied a 
threshold (1.5x the mean) to the norm of the 7Hz low-pass filtered 
accelerometer data of each foot. This defined a binary vector (1 
when a foot is moving, 0 when it’s static). We added right and left 
vectors and only preserved states equal to 0 (no movement from 
either feet) lasting more than 0.5s. 

Computation of PSD and band-power during freezing episo-
des: For each state (stand, walk or freezing), we concatenated all 
occurrences and computed the overall PSD using Welch method 
(sliding window of 1s with 50% overlap).  
 
Statistics 
Experimental data and simulations were processed offline using 
MATLAB R2018b (MathWorks). All data are reported as mean or 
median values, ±SD or SEM, as indicated. Normality of data was 
tested using a Kolmogorov-Smirnov test with 95% confidence 
interval (CI). Comparisons between conditions were computed 
using one-tailed t test (parametric) or Wilcoxon sign rank test (non-
parametric) with 95% CI. Multi-group comparisons were perfor-
med using one-tailed ANOVA (parametric), or Kruskal-Wallis 
(non-parametric) tests with 95% CI, followed by Bonferroni 
correction.  

SUPPLEMENTARY MATERIALS 
Fig. S1. Anatomical reconstructions of deep brain stimulation 

lead placement across participants. 
Fig. S2. STN LFP modulations during concatenation of force 

levels 
Fig. S3. STN LFP modulations are irrespective of leg joint or 

movement direction 
Fig. S4. STN LFP modulations are irrespective of ipsilateral or 

contralateral leg muscle activation 
Fig. S5. Idiosyncratic encoding of leg muscle activation across 

tasks for participants implanted with a Percept PC stimulator 
Fig. S6. Idiosyncratic encoding of leg muscle activation across 

tasks for participants recorded while their DBS leads 
externalized 

Fig. S7. STN LFP modulations per gait-cycle 
Fig. S8. Decoding performance of single-joint vigor tasks across 

participants 
Fig. S9. Muscle synergies across participants 
Fig. S10. Identification of artefacted channels during walking 
Fig. S11. Decoder of walking states across participants 
Fig. S12. Decoder of gait events across participants 
Fig. S13. Performance of walking-state decoder during gait 

adaptations 
Fig. S14. Model of leg muscle synergy profiles using a deep 

learning algorithm across participants 
Fig. S15. STN LFP modulations during activities of daily living 
Table S1. Clinical details for all patients 
Movie S1. Neurorobotic platform to study the encoding of leg 

muscle activation in the STN 
Movie S2. Encoding of leg muscle activation in the STN during 

walking 
Movie S3. Decoding of walking features from STN local field 

potentials 
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