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ABSTRACT 

Background and objective: Type 1 diabetes (TID) is a complex, polygenic disorder, the 

etiology of which is not fully elucidated. Machine learning (ML) genomics could provide 

novel insights on disease dynamics while high-dimensionality remains a challenge. This 

study aimed to identify marker genes of incident T1D in peripheral blood mononuclear cells 

(PBMC) of children via a ML strategy attuned to high-dimensionality. 

Methods: Using samples from 105 children (81 with incident T1D and 24 healthy controls), 

we analyzed microarray transcriptomics via a workflow consisting of three sequential steps: 

application of dimension reduction strategies on the processed transcriptome; ML on the 

reduced gene expression matrix; and downstream network analyses to demarcate seed nodes 

(statistically significant genes) and hub genes. Sixteen dimension-reduction algorithms 

belonging to three groups (3 tailored; 3 regularizations; 10 classic) were applied. Four ML 

algorithms (multivariate adaptive regression splines, adaptive boosting, random forests, 

XGB-DART) were trained on the reduced feature set and internally-validated using repeated, 

10-fold cross-validation. Marker genes were determined via variable importance metrics. 

Seed nodes were identified by the ‘OmicsNet’ platform while nodes having above average 

betweenness, closeness, and degree in the network were demarcated as hub genes. 

Results: The processed gene expression matrix comprised 13515 genes which was reduced to 

contain 1003 genes collectively selected by dimension reduction algorithms. All four ML 

algorithms on this reduced feature set attained perfect and uniform predictive performance on 

internal validation. On removal of redundancies, variable importance metrics identified 30 

marker genes of incident T1D in this cohort, while Early Growth Response 2 (EGR2) was 

uniformly selected by all four ML algorithms as the most important marker gene. Network 
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analyses classified all 30 marker genes as seed nodes. Additionally, we identified 14 hub 

genes, 7 of which were found to be marker genes of incident T1D elucidated by ML. 

 Conclusions: We identified marker genes of incident T1D in PBMC of children via a ML 

analytic strategy attuned to the high dimensional structure of microarrays, with downstream 

analyses providing high biological plausibility. The demonstrated ML strategy would be 

useful in analyzing other high-dimensional biomedical data for biomarker discovery. 

Keywords: Biomarkers; Dimension reduction; Gene expression; High dimensionality; 

Machine learning; Type 1 diabetes 
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1. INTRODUCTION 

Type 1 diabetes (T1D) is a chronic, polygenic disorder with a multifactorial aetiology 

encompassing strong genetic, autoimmune and environmental components, although its 

natural history is not yet fully elucidated [1]. It accounts for nearly 10% of the global diabetes 

prevalence and is the most common form of diabetes among children [2]. Insulin secretory 

dysfunction and hyperglycemia being hallmarks of the disease, people with T1D require 

lifelong insulin therapy. Increased mortality rates and complications [3], concomitantly with 

reduced quality of life [4], frequently associate with T1D.  

Pathogenesis of T1D is driven by T-cell mediated destruction of β-cells, whilst 

autoantibodies targeting insulin, glutamic acid decarboxylase 65 (GAD65), tyrosine 

phosphatase-related islet antigen 2 (IA-2) and zinc transporter-8 (ZNT8) tend to appear long 

before symptomatic onset of the disease, and are thus considered early biomarkers of T1D 

[5]. Current evidence suggests an increased susceptibility of individuals with human 

leukocyte antigen (HLA)-DR and HLA-DQ genotypes to T1D [6], while genome-wide 

association studies have discovered a large number of non-HLA, T1D-associated genes as 

well [7]. Moreover, T1D-discordant monozygotic twin studies have reinforced the impact of 

environmental triggers, ascribing a potentially causal role for epigenetic changes such as 

hypomethylated gene promoter regions, in T1D pathogenesis [8, 9]. While important 

advances have been made with respect to T1D along its continuum of care, further concerted 

efforts are required to identify biomarkers and facilitate early detection and management to 

prevent complications. 

Precision medicine initiatives combining analytic approaches such as artificial intelligence 

(AI) with multi-omics data, have shown promise for yielding novel and valuable findings on 

diseases including diabetes [10, 11]. With rapid and continuous progress in the disciplines of 
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big data, omics, and AI, multidisciplinary studies amalgamating these domains to address 

knowledge gaps pertaining to the genetic basis of complex diseases such as T1D, are now a 

reality. As the classical statistical paradigm is constrained in its capability to handle the 

intricacies associated with high-dimensional data, machine learning (ML) offers a viable 

alternative for analyzing omics data. 

The large-p, small-n structure (p>>>n), also coined as the “curse of dimensionality”, in which 

the feature space (p) heavily outnumbers the observations (n), is inherent in omics data 

including in gene expression microarrays, microbiome compositional data, and single cell 

RNA-sequencing assays. Being counterfactual to the common phenomenon of large-n, small-

p contexts, classical statistical models are challenged by this unique structure. Various 

techniques proposed to address the curse of dimensionality in omics data, are dominated by 

feature selection workflows [12] and regularization techniques [13], while de-novo 

algorithms tailored to omics data have also been developed [14, 15]. Although a single best 

method to deal with high-dimensionality does not exist, proposed approaches have 

unequivocally contributed to increasing the robustness of omics data analytics and biomarker 

discovery. 

In a previous study, we demonstrated the viability of a strategy combining multiple feature 

selection algorithms with ML for elucidating the markers of prediabetes using an 

epidemiological cohort [16]. However, omics data such as gene expression microarrays 

present a formidable analytic challenge with an enormous feature space of a 

disproportionately smaller sample. Robustness of an analogous approach combining classic 

feature selection, regularization, and de-novo dimension reduction algorithms with ML upon 

omics data is hitherto untested. 
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Gene expression profiles of incident T1D could potentially consist of marker genes and 

reveal insights on causally-linked transcriptomic alterations associated with the onset of T1D. 

Identification of peripheral blood-based biomarkers of T1D can also be useful for clinical 

diagnostic and screening purposes. In a previous study, differential expression of interleukin 

1 beta (IL1B), early growth response 3 (EGR3), and prostaglandin-endoperoxide synthase 2 

(PTGS2) genes in peripheral blood mononuclear cells (PBMC) was associated with incident 

T1D [17]. The objective of the present study was to analyze the gene expression profile of 

PBMC with respect to incident T1D in children using a ML strategy amenable to large-p, 

small-n scenarios and to identify marker genes. Further, we determined the biological 

plausibility of the findings by conducting downstream analyses including constructing 

protein-protein interactions (PPI) networks and demarcating hub- and seed- nodes. 

2. METHODS 

The analytic workflow is illustrated in S1 Figure. 

2.1. Data retrieval and processing 

Data used in this study are available on the open-source National Center for Biotechnology 

Information Gene Expression Omnibus (NCBI GEO) [18, 19] platform with the unique GEO 

accession ID of GSE9006. Microarray data were retrieved via the ‘getGEO’ function of 

‘GEOquery’ R package [20]. Of note, GSE9006 contains gene expression profiles of children 

with both T1D and T2D, measured on diagnosis at baseline and 4 months afterwards, 

following treatment. As per the objectives of this study and since the sample of children with 

T2D was also smaller, only T1D samples were included. This comprised 105 samples in 

total, of which 81 were children with T1D and 24 were healthy controls. Furthermore, as 

gene expression profiles change with treatment, only baseline data were eligible. 

Observations without corresponding gene symbol annotations were removed. In case of 
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multiple probes hybridized to the same gene, their mean expression values were estimated 

across the samples to create a single row each for a given gene symbol. The gene expression 

matrix was transposed and three demographic features deemed important, namely, age 

(years), gender, and race (White/Other), were annotated to the transposed matrix. Gene 

expression values of this curated dataset was log2 Normalized to create symmetric 

distributions devoid of skewness (S2 Figure). 

2.2. Dimension reduction 

We applied 16 dimension-reduction algorithms belonging to three categories on the curated, 

transposed, and log2 Normalized gene expression matrix (Table 1). A brief description of 

these algorithms follows. 

2.2.1. De-novo algorithms tailored to handling the curse of dimensionality in omics (n = 

3) 

• Sparse Principal Component Analysis (SPCA): Incorporated in the ‘mixOmics’ R-

package [14], this algorithm selects features via singular value decomposition and 

lasso penalization on the loading vectors. The optimal number of principal 

components (PC) was determined via elbow method. 

• Sparse Partial Least Squares Discriminant Analysis (SPLSDA): Incorporated in 

the ‘mixOmics’ R-package [14], this supervised algorithm performs partial least 

squares-based feature reduction administering an L1 penalty on the loading vectors 

of the input matrix. Parameter tuning was performed to determine the optimal 

number of features and components by evaluating the balanced classification error 

rate (BER) of PLSDA against the number of features and components (Figures 1-

5).  
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• Max-Min Parents and Children (MMPC): Incorporated in the MXM R-package 

[15], this algorithm conducts a constraint-based feature selection, assuming a 

Bayesian network for input variables. The permutation option was activated (R = 

999) and the max_k value was specified as: sample size/10 for optimizing the 

performance. 

2.2.2. Regularization algorithms (n = 3) 

• Lasso: This algorithm performs feature reduction based on L1 regularization, 

which adds a penalty term equal to the absolute value of the magnitude of 

coefficients. 

• Ridge: This algorithm performs feature space reduction based on L2 penalization 

which adds a penalty term equal to the square of the magnitude of coefficients. 

• Elastic net: This algorithm performs feature selection via a regularization method 

which linearly combines L1 and L2 penalties. 

2.2.3. Classic feature selection algorithms (n = 10) 

• Boruta: This is an all-relevant wrapper algorithm around Random Forests which 

selects features based on mean decrease accuracy, by default [21]. 

• Recursive feature elimination: A greedy algorithm which extracts the best subset 

of features by iteratively building models, rank ordering feature importance and 

removing the least important features. 

• Information gain, gain ratio, and symmetrical uncertainty: These entropy-based 

algorithms, incorporated in the FSelector R package [22], determine feature 

weights based on their correlation with the target variable. 

• Linear correlation and rank correlation: These two correlation-based algorithms, 

integrated into the FSelector [22], utilise Pearson’s- and Spearman’s correlation 

coefficients, respectively, for feature selection. 
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• Random forests: A filter algorithm which selects features based on a random 

forest learner, found in FSelector [22]. 

• One R: A simple filter algorithm which selects features by generating one rule per 

predictor, found in FSelector [22]. 

• Chi Squared: This algorithm in FSelector [22] attributes importance to discretised 

features based on a chi squared test. 

Features selected by each algorithm were compiled and repeated genes were removed. 

Demographic features (age, gender, race) were appended and the categorical variables 

(gender, race) were one-hot encoded to create dummy variables. 

2.3. Machine learning 

Machine learning with hyperparameter tuning was performed on the reduced feature set using 

four algorithms, namely, multivariate adaptive regression splines (MARS), adaptive boosting 

(AdaBoost), random forests (RF), and extreme gradient boosting-dropouts meet multiple 

additive regression trees (XGB-DART). The MARS algorithm is a non-parametric regression 

technique suited for high dimensional data, and an advancement of linear models, capable of 

automatic accounting for non-linearities and interactions within the feature space [23]. The 

AdaBoost is a meta-algorithm ensemble of decision trees which generates boosted classifiers 

by combining weak decision tree learners into a weighted sum [24]. The RF algorithm is an 

ensemble meta-learner based on bootstrap aggregating (“bagging”) of a multitude of decision 

trees accounting for overfitting [25]. The XGB-DART is a hybrid algorithm of two learners: 

XGBOOST is an ensemble algorithm [26] which collates a large number of decision trees 

with a small learning rate, while DART incorporates dropout techniques emanating from the 

deep neural network algorithmic paradigm in order to overcome overfitting [27]. For each 

algorithm, hyperparameter tuning was performed using tuneLength and tuneGrid commands 
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of the Caret R package [28] and the metric for the optimal model selection was specified as 

“ROC”. 

Internal validation of each model was performed by repeated, k-fold cross-validation (k = 

10). The cross-validation approach has been the method of choice for internally validating 

omics-based ML models including gene expression analytics [29, 30]. In k-fold cross-

validation, data are split into k non-overlapping folds. Each fold is set aside as test data while 

all other folds are combined into training sets. After a total of k models are fitted, 

performances are evaluated on the k test datasets and the mean performance is estimated. 

Repeated k-fold cross validation is an advancement which reduces the noise (error) of mean 

performance metrics attained by k-fold cross-validation. 

The predictive performance of each model was evaluated using multiple performance metrics 

(Table 2, S3 Figure) and marker genes were identified via variable importance metrics 

(Table 3, Figures 6-9). 

2.4. Downstream analysis of marker genes 

The ten most important genes identified by each ML model was compiled and repetitions 

were removed to generate the list of marker genes of incident T1D in PBMC of children. This 

list of genes was fed into OmicsNet [31, 32] which determines the significant genes (seeds) 

within the PPI network (Figure 10) by mapping input genes to the specified molecular 

interactions database.  

To demarcate the hub genes, we first created the gene-gene interactions network in 

GENEMANIA [33], which integrates an array of functional enrichments such as co-

expression, pathways, physical interactions, co-localization, genetic interactions, and protein 

domain similarity into the network (S4 Figure). Next, the network was imported to 

Cytoscape [34] and its Centiscape plugin [35] was used to visualize the network and estimate 
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topological metrics (Figure 11). As per Liu et al [36], nodes with above-average 

betweenness, closeness, and degree values were defined as hub genes (Table 4). 

3. RESULTS 

The unprocessed gene expression matrix of PBMC at baseline consisted of 22283 probes 

measured on 105 children (81 with incident T1D and 24 healthy controls). After pre-

processing, 13515 probes with unique gene symbols were retained (S1 Table). Age(years) 

distribution ranged from 2 – 17, with a mean (SD) of 9.81 (3.91) and a median (IQR) of 

10.00 (6.00). Samples comprised 59 female and 46 male individuals. The dichotomized 

covariate of self-reported race was distributed as: 60 White and 45 Other (Black or African 

American = 8; selected more than one race = 5; other race = 3, race not reported = 29). 

3.1. Features selected by tailored algorithms 

Genes selected by running each of the 16 dimension-reduction algorithms are presented in S2 

Table. For the SPCA algorithm, the optimal number of PC was found to be three according 

to the elbow method, and the 150 features selected (50 each from the 3 PC) are shown in S2 

Table. The optimal number of features and components minimizing BER, with respect to the 

SPLSDA algorithm were found to be 150 and 3, respectively (Figures 1 & 2), and the 

selected 150 features (50 each from the 3 components) are illustrated in Figures 3 - 5. The S3 

Table contains the complete feature ranking produced by the MMPC algorithm while the top 

100 features ranked according to p-values that were selected for ML are shown in S2 Table. 

3.2. Features selected by regularization algorithms 

Seven candidate genes with non-zero coefficients (CSDE1, PPP2R5E, ZNF473, ACAD10, 

PNP, EGR2, LPIN2) were produced by Lasso regularization (S4 Table). The top 100 features 

with the largest absolute coefficients were selected from the ridge regularization algorithmic 
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output (S5 Table). Elastic net algorithm converged with 377 non-zero feature coefficients 

(S6 Table). 

3.3. Features selected by classic algorithms 

Boruta algorithm selected 48 candidate genes (20 confirmed and 28 tentative) (S7 Table). 

Recursive feature elimination identified a sum of 22 variables maximizing cross-validated 

accuracy (S2 Table). Output produced by the eight algorithms incorporated in FSelector is 

given in S8 Table. Each of the three entropy-based algorithms (information gain, gain ratio, 

symmetrical uncertainty) converged with 379 non-zero coefficients. The top 100 features 

from the two correlation-based algorithms (rank- and linear- correlation) were selected for 

ML. We selected the top 100 features produced by random forests and One-R feature 

selection algorithms as well. Finally, the chi-squared algorithm generated 379 non-zero 

feature coefficients. 

After removing redundancies, the collated feature set produced by all algorithms contained 

1003 genes (S9 Table). The curated dataset containing these 1003 candidate genes and basic 

demographic variables (age, gender, race) used for ML is presented in S10 Table. 

3.4. Machine learning 

All four repeated, 10-fold cross-validated ML models converged attaining perfect and 

uniform predictive accuracy, classification-, and discrimination- metrics (Table 2; S3 

Figure).  

3.5. Variable importance 

The 10 most important genes identified by the MARS model, in descending order, were: 

EGR2; RAP1B; RNF4; CSDE1; GAR1; MLEC; CTDSP1; LOX; POMC; CNTLN (Figure 

6). The AdaBoost model elucidated: EGR2, PTP4A2, PNP, ZNF473, SLC35A3, KBTBD4, 
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FRAT2, UCHL3, IL1B, CHFR, as the top 10 marker genes, in descending order (Figure 7). 

The RF model ranked: EGR2; GNG11; ZNF473; SUMO3; LPIN2; CR2; CRYL1; UCHL3; 

PTP4A2; ACAD10 genes as the top 10 marker genes, in diminishing importance (Figure 8). 

The most ten important genes identified by XGB-DART model, in descending order, were: 

EGR2; MICA/////MICB; ZNF473; SUMO3; LPIN2; PTP4A2; RAP1B; EXOC7; MRPS10; 

NR1D2 (Figure 9). Collation of the marker genes identified by the four ML models and 

removal of redundancies resulted in 30 candidate genes (S11 Table). 

3.6. Network modules and seed nodes 

Based on the 30 input genes, OmicsNet constructed a single subnetwork consisting of 504 

nodes, 575 edges, and 23 modules (Figure 10), while all 30 marker genes were identified as 

seeds (statistically significant nodes of the PPI network) (S12 Table). 

3.7. Hub genes 

Details on the gene-gene interaction network constructed by GENEMANIA from the 30 input 

marker genes are provided in S13 Table. We identified 14 hub nodes within the PPI network 

which had above-average betweenness, closeness, and degree as per the topological values 

estimated by Centiscape (S14 Table). Seven of these hub nodes were found within the set of 

marker genes (MLEC, NR1D2, CSDE1, UCHL3, RNF4, RAP1B, PNP) while the remaining 

7 hub genes were predicted by GENEMANIA (CDV3, GTF2H3, IMP3, CTDSP2, SP3, H1-

0, CUL2). 

4. DISCUSSION 

In this study, we found a range of marker genes of incident T1D in PBMC of children, via an 

extensive ML workflow amenable for high dimensionality inherent in transcriptomics 

microarrays. Biological plausibility of our findings was confirmed by downstream analyses 

and appraisal of contemporary evidence. We envisage that the proposed ML strategy has the 
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potential to integrate into various omics data types for an efficient biomarker discovery 

process. 

4.1. Marker genes of incident T1D in PBMC of children: Biological plausibility 

Noteworthily, the zinc finger transcription factor EGR2 was uniformly chosen by all four ML 

algorithms as the most important gene associated with incident T1D in this cohort. This is in 

tandem with previous studies in which EGR genes (both EGR2 and EGR3) were identified as 

highly perturbed at the onset of T1D [17]. There is emerging evidence on the role of EGR2 in 

the natural history of diabetes, through the development of insulin resistance which is 

increasingly observed in people with T1D [37] to the progression of complications [38, 39]. 

Recent studies which revealed crucial roles of EGR2 in the induction of T cell anergy and 

suppression of activities mediated by LAG3+ regulatory T cells (Tregs) are intriguing [40], 

given that Tregs are strongly implicated in T1D etiopathogenesis [41] and extensively 

investigated as therapeutic targets to ameliorate islet autoimmunity of T1D [42].  

Our findings on the marker genes of incident T1D were congruent with previous studies 

which reported an innate inflammatory transcriptomic profile characterized by perturbations 

of genes such as CSDE1, EGR2, FRAT2, GNG11, IL1B, PTP4A2, SLC35A3, and UCHL3 

[17, 43]. Moreover, there is topical evidence that RAP1B regulates glucose homeostasis [44], 

while the dysregulation of protein tyrosine phosphatases such as PTP4A2 (PRL2) is observed 

in several diabetes phenotypes [45]. Both MICA and MICB candidate genes belong to the 

HLA complex, which is collectively and consistently associated with T1D, contributing to 

50% of its genetic risk [6]. An integrated analysis revealed that PNP is a strong diagnostic 

marker of T1D [46]. Furthermore, CR2 was found to be associated with abatacept-resistant, 

new-onset T1D, suggesting a likely role in B lymphocyte alterations [47]. Contemporary 

evidence also supports associations of POMC [48], and NR1D2 clock gene [49], with T1D.  
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4.2. Seeds and hub genes: Biological plausibility and implications 

The inclusion of all 30 candidate genes as statistically significant nodes (seeds) in the PPI 

network was indicative of substantial gene-gene interactions between them. Further studies 

exploring these interactions could enhance our understanding of the genetic basis of T1D. 

Hub genes which appear as extensively and densely connected nodes in scale-free gene 

regulatory networks [50] tend to have important regulatory functions and offer value as 

potential therapeutic targets [51]. Therefore, hub genes identified in this analysis may be 

useful for guiding pharmacogenomics studies focused on T1D. 

4.3. Methodological and analytic aspects 

We observed a considerable degree of consistency with respect to the marker genes of T1D 

identified by ML, notwithstanding the essentially different dynamics between algorithms. 

However, some marker genes were uniquely identified by each algorithm, underscoring the 

need to train more than a single learner to gain robust and meaningful insights; a 

recommended practice in ML analytics [16]. It should also be noted that ML is intrinsically 

geared to optimizing prediction, although it is increasingly used to derive etiologic insights of 

diseases [52, 53]. Further studies focusing on the candidate genes identified in the current 

analysis, pragmatically combined with relatively larger samples are recommended, as they 

may provide novel insights on T1D pathogenesis. While the perfect predictive performance 

demonstrated by ML algorithms is encouraging, we underscore the caveats associated with 

the cross-validation approach, which is frequently used in omics analyses primarily owing to 

the large-p, small-n structure. Although we used repeated, k-fold cross-validation, which was 

found superior to other cross-validation techniques, they all have limitations [54]. Therefore, 

future research aiming to expand on this work should focus on externally validating our 

findings on different cohorts or internally validating on larger samples. 
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4.4. Applications 

As high-dimensionality is frequently observed across different omics data typologies [55-57], 

we envision avenues for practical usage of the proposed ML strategy, beyond microarray 

transcriptomics. 

5. CONCLUSIONS 

In conclusion, we identified marker genes of incident T1D in PBMC of children via a ML 

analytic strategy attuned to the high dimensional structure of microarrays, with downstream 

analyses on seed nodes and hub genes providing high biological plausibility. The 

demonstrated ML strategy would have broader applications to studies aimed at biomarker 

discovery using high-dimensional, biomedical data. 
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TABLES 

Table 1: Summary of the 16 algorithms applied for dimension reduction and the outputs 

Algorithm Description Number of features selected 
Tailored   
MXM: MMPC Max-Min Parents and Children (MMPC) in the MXM 

package is a constraint-based feature selection algorithm 
which assumes a Bayesian network for input variables. 
Performs robustly with high dimensional feature space 

Top 100 features according to p-values. 
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such as omics data. Permutation option was incorporated 
(R = 999) and max_k was specified as: sample size/10 for 
optimizing performance. 

mixOmics: SPCA Sparse Principal Components Analysis (SPCA) algorithm 
in mixOmics package, which is a sparse version of the 
classical PCA technique, was used. Optimal number of 
principal components (PC) as per the elbow method was 
3. Number of variables for each PC was set at 50. 

50 each from the 3 PC amounting to 150 
features. 

mixOmics: SPLSDA Sparse Partial Least Squares Discriminant Analysis 
(SPLSDA) is a supervised algorithm which applies L1 
penalty on the loading vectors of the input matrix. 
Amenable for high dimensional biomedical data mining 
which aims to identify biomarkers. The optimal ncomp 
argument was set to 3, as identified by evaluating the 
balanced classification error rate (BER) of PLSDA against 
the number of components. 

50 each from the 3 components amounting to 
150 features. 

Classical   
Boruta An all-relevant wrapper algorithm around Random Forests 

which selects features based on mean decrease accuracy, 
by default. 

48 features were selected (20 confirmed & 28 
tentative) 

Recursive feature 
elimination (RFE) 

A wrapper algorithm which applies a backward selection 
process to extract the optimal subset of features by 
iteratively building models, rank ordering feature 
importance and removing the least important features. 

22 features included. 

FSelector: Chi Squared Importance of discretised features based on a chi squared 
test 

379 non-zero features included. 

FSelector: Gain Ratio An entropy-based filter algorithm which selects features 
guided by gain ratio (ratio of information gain to the 
intrinsic information). 

379 non-zero features included 

FSelector: Information 
Gain 

A filter algorithm which selects features based on the 
reduction of entropy. 

379 non-zero features included. 

FSelector: Symmetrical 
Uncertainty 

A filter algorithm which selects features based on a 
modified information gain criterion. 

379 non-zero features included. 

FSelector: Linear 
Correlation 

A filter algorithm which selects features according to 
Pearson’s correlation coefficients. 

Top 100 features included. 

FSelector: Rank 
Correlation 

A filter algorithm which selects features according to 
Spearman’s correlation coefficients. 

Top 100 features included. 

FSelector: One-R A filter algorithm which selects features by generating one 
rule per predictor. 

Top 100 features included. 

FSelector: Random 
Forests 

A filter algorithm which selects features based on a 
random forest learner. 

Top 100 features selected. 

Regularizations   
Lasso Dimension reduction based on L1 penalization (sum of 

absolute values of the coefficients) 
Seven features with non-zero coefficients 
selected. 

Ridge Algorithm is based on L2 penalization (sum of squared 
coefficients) 

100 features with the largest absolute 
coefficients included. 

Elastic Net Regularization which linearly combines L1 and L2 
penalizations. 

377 features with non-zero coefficients included. 

 

Table 2: Predictive performance assessment metrics of internally-validated machine learning models. All 
four machine learning models achieved perfect performance on internal validation with uniform metrics 
given below. 

Metric Formula/Derivation Value 
Sensitivity TPR = TP / (TP + FN) 1.0000 
Specificity SPC = TN / (FP + TN) 1.0000 
Precision PPV = TP / (TP + FP) 1.0000 
Negative Predictive Value NPV = TN / (TN + FN) 1.0000 
False Positive Rate FPR = FP / (FP + TN) 0.0000 
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False Discovery Rate FDR = FP / (FP + TP) 0.0000 
False Negative Rate FNR = FN / (FN + TP) 0.0000 
Accuracy ACC = (TP + TN) / (P + N) 1.0000 
F1 Score F1 = 2TP / (2TP + FP + FN) 1.0000 
Matthews Correlation Coefficient TP*TN - FP*FN / 

sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) 
1.0000 

AUROC Discrimination metric estimated as the area under the 
curve of sensitivity against (1-specificity).  

1.0000 

ACC = accuracy; AUROC = area under the receiver operating characteristic curve; FN = number of false 
negative observations; FDR = false discovery rate; FNR = false negative rate; FP = number of false positive 
observations; FPR = false positive rate; N = total number of negative observations (true negative and false 
negative); NPV = negative predictive value; P = total number of positive observations (true positive and false 
positive); PPV = positive predictive value; SPC = specificity; TN = number of true negative observations; TP = 
number of true positive observations; TPR = true positive rate. 

Table 3: Variable importance metrics of machine learning models 

MARS ADABOOST RF XGB-DART 
Gene Importance Gene Importance Gene Importance Gene Importance 
EGR2 100.000 EGR2 0.8940 EGR2 0.6183 EGR2 0.339923 
RAP1B 77.974 PTP4A2 0.8400 GNG11 0.6083 MICA/////MICB 0.102461 
RNF4 67.503 PNP 0.8313 ZNF473 0.4648 ZNF473 0.060776 
CSDE1 56.900 ZNF473 0.8076 SUMO3 0.4578 SUMO3 0.053481 
GAR1 46.791 SLC35A3 0.8071 LPIN2 0.4025 LPIN2 0.031212 
MLEC 40.009 KBTBD4 0.8050 CR2 0.2653 PTP4A2 0.031015 
CTDSP1 32.086 FRAT2 0.8025 CRYL1 0.2569 RAP1B 0.025142 
LOX 26.531 UCHL3 0.8020 UCHL3 0.2535 EXOC7 0.016295 
POMC 22.024 IL1B 0.7989 PTP4A2 0.2489 MRPS10 0.015143 
CNTLN 4.588 CHFR 0.7989 ACAD10 0.2458 NR1D2 0.014148 

 

 

 

Table 4: Marker genes demarcated as hub nodes in the biological interaction network 

Gene Betweenness Closeness Degree 

 mean = 70.938775510204 mean = 0.00869472439680752 mean = 7.83673469387755 
MLEC 95.9111111111112 0.00961538461538461 9 
NR1D2 102.273835804718 0.0104166666666666 15 
CSDE1 131.437541053717 0.0104166666666666 17 
UCHL3 217.048665713371 0.0112359550561797 23 
RNF4 342.601101186394 0.0105263157894736 18 
RAP1B 88.3532635664988 0.010204081632653 11 
CDV3* 133.400057948587 0.010752688172043 11 
GTF2H3* 96.9161763073529 0.010204081632653 10 
IMP3* 151.888667704844 0.0103092783505154 16 
CTDSP2* 124.136457333516 0.00961538461538461 11 
SP3* 323.10581085581 0.0103092783505154 13 
H1-0* 120.752832135185 0.01 10 
CUL2* 255.441218748571 0.010752688172043 16 
PNP 132.481177156177 0.00925925925925925 9 

*Predicted by GENEMANIA 
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Figure 1: Parameter tuning to determine the optimal number of features and components for SPLSDA. 
Plot of the number of selected features against balanced error rate identified 150 features per component 
and ncomp = 3 as optimal. 
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Figure 2: Parameter tuning to determine the optimal ncomp for SPLSDA: Plot of balanced classification 
error rate (BER) versus the number of components as per three prediction distances. The ncomp = 3 was 
selected as a reasonable criterion minimizing BER.  
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Figure 3: Features of the first component of SPLSDA output distributed between the two classes of the 
target variable. 
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Figure 4: Features of the second component of SPLSDA output distributed between the two classes of the 
target variable. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 9, 2022. ; https://doi.org/10.1101/2022.02.07.22270652doi: medRxiv preprint 

https://doi.org/10.1101/2022.02.07.22270652


 

Figure 5: Features of the third component of SPLSDA output distributed between the two classes of the 
target variable. 

 

 

Figure 6: Variable importance plot of MARS model visualizing the top 10 most important features. 
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Figure 7: Variable importance plot of ADABOOST model visualizing the top 10 most important features. 

 

 

Figure 8: Variable importance plot of RF model visualizing the top 10 most important features. 
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Figure 9: Variable importance plot of XGB-DART model visualizing the top 10 most important features. 

 

Figure 10: Protein-protein interactions network generated by OmicsNet. Seed nodes are highlighted (n = 
30) 
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Figure 11: Two different presentations of the protein-protein interactions network visualized in 
Cytoscape.  
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